超大型船舶性能的研究

超大型船舶性能的研究
超大型船舶性能的研究

目录

第1章超大型船舶的操纵特点和性能 (3)

1.1超大型船舶定义 (3)

1.2超大型船舶的特性 (3)

1.2.1 线型尺度大 (4)

1.2.2 质量大1.2.3 超大型船舶的旋回性及航向稳定性 (4)

1.2.4 四是动量大 (4)

第2章超大型船舶的操纵 (4)

2.1进出港和经狭水道的操纵 (4)

2.1.1正确掌握转向的提前量和所用舵角 (4)

2.1.2正确掌握压反舵时机 (4)

2.2超大型船舶在进人航道前应注意要点 (4)

2.3 进出港和经狭水道使用安全航速和注意前后船与本船之间的距离。 (4)

2.4. 超大型船舶港内操纵 (5)

第3章超大型船舶避让船舶的操纵 (6)

3.1大海上避让机动船港内避让机动船 (6)

3.2港内避让机动船 (6)

3.3大海上避让渔船 (6)

3.4港内避让渔船 (7)

结论 (7)

超大型船舶性能的研究

[摘要]:随着超大型船舶的发展我国大吨位的传播正在逐年增加,对远洋运

输产生了很重要的作用。与普通的万吨轮相比较,超大船舶在实际操纵中具有一定的特性。本文根据自己掌握的航海知识,结合自己的海上经验,综合吸收航海人员的超大型船舶操纵经验和专家学者的文献及其相关资料,并且以两艘近17万总吨的CAPE SIZE超大型船舶“港明”轮和“港星”轮操纵经验为例,阐述了超大型船舶的操纵特点及性能。

[关键词]:超大型船舶;偏转现象;安全航速;

第1章超大型船舶的操纵特点和性能

1.1超大型船舶定义

超大型船舶指总吨位超过10万总吨的船舶,一般用于运输石油、矿砂。超大型船舶具有排水量大;惯性大;停船性能较差;追随性差;舵对船舶航向的控制能力较低等特点。

1.2超大型船舶的特性

超大型船操纵特点是线型尺度大、质量大,旋回性和航向稳定性差,动量大,受风、流和水深的影响突出。然而需要进行机动操纵时往往是在富余水深相对较小,回旋余地受限,通航密度较高的水域。超大型船舶机动航行时一旦出事就会酿成灾难性的后果,所以掌握船舶机动航行性能是船长和驾驶员上船接班后必须尽快做到的头等大事。

1.2.1 线型尺度大

重载时的浅水效应和岸壁效应均较为突出,而且停车后会在很短的时间内丧失舵效,在海上,一般地说万吨级船舶余速2kn左右时,尚有舵效,而4万吨级的油轮在余速3.2kn时已就无舵效。在港内由于浅水效应,岸壁效应及海底形状的影响,有些超大型的满载船舶,甚至一旦停车就丧失舵效。因此如何维持舵效保持船舶在预定的航,将是超大型船舶在港区操纵的一个重要难题。

1.2.2 质量大

每单位所分摊的主机功率较一般船舶低,变速机动操纵较为呆笨,停船性能较差。所以靠泊前,一般超大型船舶在距泊位2海里时,余速应控制在以下1kn以下。距泊位1海里时余速控制在2kn以下。距泊位1倍船长时,余速控制在4kn以下。因此超大型船舶在靠泊前,如何控制好船速又是一个关键的难题。它与保向维持舵效相,矛盾,速度高舵效好保向容易而速度低舵效差,保向难。

1.2.3 超大型船舶的旋回性及航向稳定性

由于超大型船舶船型肥大粗短,方形系数CB多高于0.8,尽管舵面积比多低于1/65却具有良好的旋回性,也就是说它的K值较大,但航向稳定性差,追随性差即具有较大的T值,操纵中特别是在浅水域,为保向就须频繁用舵而且舵角较大,还应早用舵,早回舵。

1.2.4 四是动量大

由于超大型船舶的质量很大,在船舶速度很低时仍具有很大的动量,靠泊时必须控制好靠泊速度。

第2章超大型船舶的操纵

操船者必须充分了解和掌握它的特点之后,才能安全地操纵超大型船舶,笔者曾在两艘近17万总吨的CAPE SIZE超大型船舶“港明”轮和“港星”轮任船副,下面从实操方面谈谈关于CAPE SIZE超大型船舶操纵的体会。

2.1进出港和经狭水道的操纵

2.1.1正确掌握转向的提前量和所用舵角。

2.1.2、正确掌握压反舵时机。

船首岸推力与船尾岸吸力形成转船力矩,使船首向航道中心侧偏转,即所谓的“偏转现象”。该力矩的大小与船速的平方成正比降低船速是减小岸吸力的最有效的手段横力系数CF大小与航道的宽度b与船宽B之比b/B以及船舶首尾线与航道中心的距同船宽之比有关,航道越窄,船舶偏离航道中心线的距离越大,则横力系数Cv越大这就是船舶偏离航道中心线越多。为保向所需的压舵角越大的原因.

早用舵,早回舵,所操舵角比较大。大角度转向(大于60度),当转到接近新航向前20度开始压反舵,反舵角等于或大于转向时所用舵角(视当时转头速度灵活掌握),接近新航向5度回正舵,再小舵角调整把定在新航向上。小角度转向(30-60度),当转到接近新航向前10度开始压反舵,反舵角等于或大于转向时所用舵角(视当时转头速度灵活掌握)。接近新航向3度回正舵,再小舵角调整把定在新航向上。

只有完全掌握船舶的操作特性,才能熟练、准确、安全地操纵船舶。

2.2.超大型船舶在进人航道前应注意以下几点:

(1)航道是否清爽。超大型船舶进港通常均为单向通航,只有当条件允许本船不与其它,较大船舶在航道上会遇时方可进人,并向VTS中

心报告。

(2)水位情况。潮水水位要满足船舶在航道上行驶时,龙骨以下留有

0.8m的富裕水深。

(3)泊位情况. 泊位有否它船靠泊及泊位的水深,长度.

总之因航道两侧水深的限制,超大型船舶一旦进人航道,尤其是主航道,要想驶出就很困难,几乎是不可能,所以超大型船舶进人航道前要特别谨慎,切不可

盲目进入。

2.3.进出港和经狭水道使用安全航速和注意前后船与本船之间的距离。

进出港和经狭水道航行应使用安全航速;航经狭水道前后船与本船之间的距离最好保持在2海里以上。进出港由于受航道水深和可航水域的限制,加上个别港口进出港航道繁忙,船长应时刻注意本船与前后船舶之间的距离保持在倒车冲程以上,如有引航员在船,发现距离前船在本船当时安全航速的倒车冲程以内,有必要提醒引航员,用高频与前后船舶联系协调行动,保证本船与前后船舶之间的距离在本船倒车冲程以上;注意让开航道两边的浮标,浅点和障碍物。注意航道的富余水深和船舶航行时的下沉量,确保本船进出港航行安全。

航经狭水道注意让开狭水道两边的浅点和障碍物。实践证明,单方位避险线和单距离避险线是避让危险物的最简单实用的避让方法。有分道通航的狭水道应遵守分道通航制,没有分道通航的狭水道避让船舶应先用高频联系好,协调行动,谨慎驾驶,以策安全。

2.4、超大型船舶港内操纵

《国际避碰规则》第十五条指出每一船舶均应以安全航速行驶,以便能够在适合当时环境和情况的距离内把船停住。但是《国际避碰规则》中并没有说明几节的速度才是安全航速。因为对安全航速做出量的规定是非常困难的,也是不现实的。驾驶人员要根据当时的具体情况做出最合理的判断。比如天津港监对天津港主航道做出了限速10kn的规定。限10kn并不是安全航速,它只是对最高船速的限额。超大型船舶行驶在天津港主航道时,依据浅水效应及岸吸力的影响,应适当地降低航速,这样既有利于减少船体下沉,也有利于减小岸吸力,还能为必要时留有储备螺旋桨转数。根据日本学者在伊士运河中实的结论:“速度过大时,即使对同一艘船来说,使用的舵角也显著增大,且用舵次数增多”。因此适当降低船速将有利于船舶操纵。至于几节的速度最为合适,最符合安全航速,每一船舶或同一船舶环境不同都不一样。笔者认为超大型船舶满载时在天津港主航道上的航行速度应以8~9kn比较合适。船速太慢也不好,首先是占用航道的时间过长,影响航道的通航能力;其次是舵效差不利于克服流压的影响。何为最佳航速还需驾引人员在操船实践中进一步总结。

大船顺着航道进人港区,应适时减速,并为以靠泊做准备。根据以往的操船实践,当大船接近浮时就开始减速,到防坡堤时应减到微速或停车,尤其是大型集装箱船和大型油轮靠泊四港池和南疆码头,更要提前降速,在防波堤前就要停车淌航。当然,减速的时机还与减速前的初始速度有关;也与减速的方法有关。如果超大型船舶靠自身减速,则应提前进行。因超大型船舶质量大,惯性大,稳定性差;又受到浅水效应的影响,停车后会很快失去舵效,大船一旦发生偏转,很难用舵克服,要不断地用车来配合,这样频繁地用车,大船降速就更为困难。而且利用倒车降速船首又会发生偏转,给操纵带来不利。但是如果采取拖轮

协助降速,则降速时机可以适当地推迟。拖轮应选择大马力的全回转拖轮,将拖轮带在大船尾的中央导缆孔上全速向后倒车拖大船达到降速的目的。而舵效则靠进车维持,当船接近泊位时,如拖轮还没有将大船拖住,则大船用倒车配合,很快就可将大船停住。笔者见引领外轮“奥瑞萨”进靠新港19号泊位时。就是采用此方法一般来说如果大船的微速前进速度为5~6kn那么带上拖轮以后, 在拖力作用下,其微进的速度可降至3~4kn,以有的甚至更低.所以大船停车后,大船用后退二很短的时间内即可将大船停住。该方法操纵容易,尾拖轮的缆绳可以带得很短,其排出流也不会降低它的拖力,只有当大船的速度很慢时才有一定的影响。一旦有影响拖轮可以适当地松长拖缆。笔者认为操纵超大型船舶最主要的就是控速和保向,利用拖轮拖尾降速的方法值得推广。它的优点是:降速,二是增加舵效,使大船能够在很小的进距内转过较大的角度。

第3章超大型船舶避让船舶的操纵

大部分船舶都是螺旋桨右旋转的船舶,由于受沉深横向力的影响,使得船舶向左转较向右转容易;超大型船舶由于追随性差,用左舵10度以上,10秒钟后船才开始有反应,15秒钟后船才开始转;用右舵10度以上,15秒钟后船才开始有反应,20秒钟后船才开始转;所以操纵超大型船舶要早用舵,早回舵。

3.1 大海上避让机动船

一般在大海上避让机动船,天气好的情况下,相距8海里以上开始用高频联系,对遇船双方商定哪一舷会遇,交叉船双方商定过船头还是过船尾,相距6

海里采取协调行动,会遇距离在2海里左右;风浪较大时,会遇距离在2海里以上,以策安全。

3.2 港内避让机动船

港内避让机动船,一般都是靠右行驶,先用高频联系好,会遇距离一般在1海里左右,几个CABLE 也可以,根据具体情况而定。

3.3 大海上避让渔船

a.对拖网渔船

拖网渔船船速较低,一般在4节以下,应尽可能避免穿越密集渔船,不得不穿越时,对单拖网渔船,应尽可能从其船头经过;对双拖网渔船,不能从双拖网渔船中间穿越,并且尽可能从其船头经过;避让拖网渔船应在距离3海里开始用舵避让,如果从其船头经过,最近会遇距离在1海里以上。如果从其船尾经过,最近会遇距离在2海里以上。以策安全。

b.对非拖网渔船

非拖网渔船有静止的钓鱼船和船速6节左右的其它捕鱼作业船。对静止的钓鱼船,在距离3海里开始用舵避让,最近会遇距离在1海里以上。对速度比较快的渔船在4海里左右开始用舵,最近会遇距离在2海里左右,以策安全。

3.4 港内避让渔船

由于超大型船舶受吃水和可航水域的限制,一般在港内避让渔船操纵比较难,国内有些港口管制不严,渔船经常占用航道捕鱼。当渔船占用航道时,应用汽笛警告渔船让开,当拖网渔船行动不便时,由于港内航行速度较低,应果断用大舵角避开,避开后大舵角压回控制船舶让清浅滩和危险物。超大型船舶停车淌航速度4节以下就没有舵效,所以,如果船舶淌航速度低情况下避让船舶,应用进车配合以增加舵效。谨慎驾驶,夜间应显示大船灯。提醒周围船舶注意宽让。航速及减速时机和减速方法。

结论

以上观点点供参考有不当之处请指正如何才能更好更安全地操纵超大型船舶还有待于在今后的操船实践中不断地总结。随着航海事业的不断发展,海上运输的船舶日趋大型化,专业化合高速化,为了更好的操纵大型,超大型船舶安全营运,保障迅速,安全进出港,船长和驾驶员,必须全面了解其特性,熟悉和掌握并结合实际营运情况合理运用船舶的操纵特性,以确保船舶航运安全。促进航海事业的房展,并促进全球经济的繁荣发展。

[参考文献]

[1] 古文贤,船舶操纵,人民交通出版社1993年

[2] 巫忠远,大型船舶操船须知,人民交通出版社1981年

[3] 吴兆磷.船舶避碰与值班.[M].大连海事大学出版社,1998

[4 ] 科.科罗夫特,海上避碰规则指南,大连海事大学出版社,1999

[5] 蔡存强,海上避碰规则导论,人民交通出版社,1993.01

[6] 何欣主编.船舶避碰.北京:人民交通出版社,1996

[7] 赵劲松译.海上避碰规则指南.大连:大连海运学院出版社,1992

[8]蔡存强编著.国际海上避碰规则释义.北京:人民交通出版社.1995

[9]JIANG HUA,GUAO Guo-an, liu Dong-Liang.Design and implement of multicriteria,multiobjective decsion evaluation system[J].journal of System Engineering,1999

[10]F.P coenen G.P smeaton A.G Bloe,knowledage-based collision aviodance,The Journal of navigation,1989.42(1)

[11]潭跃进。系统工程原理[M].长沙。国防科技大学出版社,1999

[12]吴秀恒。船舶操纵性与耐波性[M]. 北京:人民交通出版社.1999

[13]日本海难防止协会。超大型船舶操纵[M]日本:成山堂书店,1992

英文文献(译文)

Dynamic Simulation of Very Large Ship Turning SHI Guo you;JIA Chuan ying;DU Jia li;HONG Bi guang (Dalian Maritime

University;Dalian 116026;China) In order to perform the analysis of ship maneuvering scheme and the evaluation of ship navigation safety a mathematical model of very large ship maneuvering was set up based on the Japanese MMG separately building model idea. Using power series expansion theory and trigonometric power series calculating back method, a direct positive and negative solution algorithm of equal latitude in electric chart, and relative coordinate transforming algorithm were introduced, and a method of estimating the number of needed tugs for practical use was also given in this paper. On the above basis a monoboard computer simulation platform was established, and then real time dynamic simulation of a very large ship departing from shipyard, turning and berthing to outfitting wharf of Dalian New Ship Heavy Industry was carried out. The result of simulation was reliable and can be provided to captains and pilots for reference as well as offered scientific basis for making decision 超大型船舶旋回调头的实时动态仿真;史国友,贾传荧,杜嘉立,洪碧

光为了进行船舶操纵方案论证、船舶通航安全评估 ,应用日本MMG分离建模方法 ,建立了大型船舶操纵运动的仿真模型。应用幂级数展开理论和三角级数回求方法 ,给出了电子海图中等量纬度的直接正反解算法和相关的坐标转换算法。给出了所需拖轮数量的实用估算方法。在此基础上 ,建立了单机版船舶操纵仿真平台并对大型船舶在出船坞旋回调头靠大连新船重工的舾装码头进行实时动态仿真。仿真的结果比较可靠 ,对船长、驾驶员具有重要的参考价值 ,也为需方在进行决策时提供了科学的依据

致谢语

本课题在选题及研究过程中得到李老师的悉心指导与改善。李老师曾多次询问研究进程,并不断地为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。李老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且还教了我不少做人的真谛。虽历时三载,却给予终生受益之道。对李老师的感激之情有如滔滔江水连绵不绝。

感谢老师们对我的悉心教育与培养。他们细心的指导了我的学习与研究,使我的学习、做人方面更上一层楼。在此,我要向诸位老师深深地鞠上一躬,以示我的感激之情!

在论文即将完成之际,我的心情激情澎湃,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无私的帮助,在这里请接受我诚挚的谢意!

最后,对本论文给予关心和帮助的领导老师航海家驾驶员再次表示衷心的感谢!

船舶用高性能铝合金材料的研制

船舶用高性能铝合金材料研制

目录 1铝材在船舶、舰艇上的应用概况 (1) 2船舶用高性能铝合金材料的发展趋势 (1) 3高性能铝合金材料在船舶领域研发及工程化的发展问题 (3) 4项目的总体目标与阶段目标 (4) 4.1项目的基本内容 (4) 4.2项目总体目标 (4) 4.3阶段思路 (4) 5 项目现有基础、启动条件极其运行机制 (5) 5.1项目现有基础 (5) 5.2项目运行机制 (5)

1铝材在船舶、舰艇上的应用概况 铝材在船舶上的应用发展得很快,铝合金已成为造船工业很有发展前途的材料。现在铝材在造船业上应用越来越广泛,小自舶板、汽艇,大到万吨巨轮,从民用到军用,从高速气垫船到深水潜艇,从渔船到海洋采矿船都在采用性能良好的铝合金材料做为船壳体、上层结构、各种设施、管路以至用具。船舶用铝合金材料包括板、型材、管、锻件、铸件等,随着船体大型化和挤压技术的进步,铝合金挤压型材的应用飞速发展。船用型材的铝合金主要有5154、5083、6063和6082等,典型的船舶型材种类及尺寸有:a、高40~300mm的对称圆头扁铝;b、高40~200mm的非对称圆头扁铝;c、厚3~80mm,宽7.5~250mm 的扁铝;d、高70~400mm的同向圆头角铝;e、高35~120mm的反向圆头角铝;f、15×15~200×200mm的等边角铝;g、20×15~200×120mm的非等边角铝;h、凸缘25V×45,腹板40~250mm的槽铝; i、200~2500mm扁宽薄壁带筋壁板型材;j、100~800mm扁宽空心壁板型材等等。除了一些常规的型材外,船舶上使用的特殊型材,如龙骨、舷墙、桅杆、、舱底和船底外板型材等。铝合金是代替钢材作为船壳体及船舶上层结构的理想材料,也是当今所需要的节能、环保绿色材料,铝合金与钢配合建造船舶,可使船舶减重达50%以上。 2船舶用高性能铝合金材料的发展趋势 中国船舶制造业在全球市场上所占的比重正在明显上升,中国已

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

船舶及其操作性能

1.4 船舶及其操作性能 船舶,各种船只的总称。船舶是能航行或停泊于水域进行运输或作业的交通工具,按不同的使用要求而具有不同的技术性能、装备和结构型式。 船舶是一种主要在地理水中运行的人造交通工具。另外,民用船一般称为船,军用船称为舰,小型船称为艇或舟,其总称为舰船或船艇。内部主要包括容纳空间、支撑结构和排水结构,具有利用外在或自带能源的推进系统。外型一般是利于克服流体阻力的流线性包络,材料随着科技进步不断更新,早期为木、竹、麻等自然材料,近代多是钢材以及铝、玻璃纤维、亚克力和各种复合材料。 1.4.1 概述 船舶从史前刳木为舟起,经历了独木舟和木板船时代,1879年世界上第一艘钢船问世后,又开始了以钢船为主的时代。船舶的推进也由19世纪的依靠人力、畜力和风力(即撑篙、划桨、摇橹、拉纤和风帆)发展到使用机器驱动。 1807年,美国的富尔顿建成第一艘采用明轮推进的蒸汽机船“克莱蒙脱”号,时速约为8公里/小时;1839年,第一艘装有螺旋桨推进器的蒸汽机船“阿基米德”号问世,主机功率为58.8千瓦。这种推进器充分显示出它的优越性,因而被迅速推广。 1868年,中国第一艘载重600吨、功率为288千瓦的蒸汽机兵船“惠吉”号建造成功。1894年,英国的帕森斯用他发明的反动式汽轮机作为主机,安装在快艇“透平尼亚”号上,在泰晤士河上试航成功,航速超过了60公里。 早期汽轮机船的汽轮机与螺旋桨是同转速的。后约在1910年,出现了齿轮减速、电力传动减速和液力传动减速装置。在这以后,船舶汽轮机都开始采用了减速传动方式。 1902~1903年在法国建造了一艘柴油机海峡小船;1903年,俄国建造的柴油机船“万达尔”号下水。20世纪中叶,柴油机动力装置遂成为运输船舶的主要动力装置。 英国在1947年,首先将航空用的燃气轮机改型,然后安装在海岸快艇“加特利克”号上,以代替原来的汽油机,其主机功率为1837千瓦,转速为3600转/分,经齿轮减速箱和轴系驱动螺旋桨。这种装置的单位重量仅为2.08千克/千瓦,远比其他装置轻巧。60年代先后,又出现了用燃气轮机和蒸汽轮机联合

船舶分类

船舶按不同的分类标准可以划分为许多种不同的船型。 (1) 按用途可分为民用船舶和军用船舶。在民用船舶中又分为运输船舶、科学调查船、公务执法船、工程船舶、渔船、海洋开发装置等。 (2) 按航区可分为海船和内河船。 (3) 按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效应船等。后四种船型基本上属高性能船舶。 (4) 按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等。 (5) 按动力装置种类可分为柴油机推进船、电力推进船、蒸汽动力装置船、燃气动力装置船、核动力装置船。 以下阐述的船型是指柴油机带动螺旋桨推进的排水型海洋运输船舶。 运输船舶大致可以分为以下几类: 1. 油船——原油船、成品油船、供油船 2. 散货船 3. 集装箱船 4. 干(杂)货船 5. 多用途船 6. 滚装船(Ro-Ro 船) 7. 客滚船、车客渡船 8. 客船、客货船 9. 交通船 10. 豪华型旅游船(邮船) 11. 液化气体船——液化石油气体船(LPG 船)、液化天然气体船(LNG 船)、压缩天然气船(CNG 船) 12. 化学品船 13. 冷藏船 14. 驳船 通常我们将油船、散货船、集装箱船称之为三大主力船型,它在世界船舶保有量(现有船舶中)中占77.4%。(现有杂货船和多用途船占9.2%,且其比例逐步缩小,而集装箱船比例将逐步上升),在造船产量中占89.9%。 通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、超大型集装箱船、滚装船称之为高新技术船型。

油船: 油船(Oil tanker)通常有原油船(Crude oil carrier)和成品油船(Product oil tanker)之分或者两者兼运之,即原油/成品油船或成品油/原油船。这里泛指的油船是包含不需特殊涂料的船。 由于MARPOL(防污染公约)的13F,13G 及25A 等条款的实施。很多单壳油船将被强制淘汰,新建油船必需双壳。由于在西班牙沿岸造成的油船海损事故,造成了大面积的海上污染,这个强制淘汰限期一再被提前。 油船按载重量吨位的大小大致可分为以下几类: ULCC: DW 35 万吨以上; VLCC: DW 25~32.5 万吨; Suez max :DW ~16 万吨; Aframax :DW 10~11 万吨; Panamax :DW 7~7.5 万吨; Handysize: DW4~5 万吨。 具体情况如下: (1) 超级油船(ULCC—Ultra Large Crude Oil Carrier) 载重量35 万吨以上,已建成的最大吨位为56.5 万吨“Jahre Viking”号,由于港口条件限制这种船建造量极小。 (2) 巨型油船(VLCC—Very Large Crude Oil Carrier) 载重量25~32.5 万吨的原油船。由于装载量大,运输经济性好,是国际上远洋运输原油的主要工具。适合于载运闪点低于60℃的原油产品,航行于无限航区。货油舱区为双壳结构,由两道纵舱壁和多道横舱壁将其分为15 个货油舱(3×5),2 个污油舱。 随着国际上对油船的公约、规则和法规不断提出新要求以及船东对航运的经济效益要求越来越高,VLCC 的发展不断更新换代。国际上自1966 年第一艘单壳体VLCC 在日本问世以来,上世纪90 年代已发展到第三代双壳体VLCC。 前几年,欧洲船东又提出一种超宽浅吃水双尾鳍双桨VLCC,称之为V-max 型VLCC。 又称第4 代VLCC,它操纵性好、航速高、安全性好。 (3) 苏伊士型油船(Suez max) 顾名思义,是能通过苏伊士运河的最大型油船,载重量16 万吨左右。有一道纵舱壁和多道横舱壁分为12 个货油舱(2×6),2 个污油油舱。 (4)阿芙拉型油船(Aframax) 11 万吨级Aframax 型油船自诞生之日起,就因其航行范围广,承运油品种类多,技术经济性好的特点而倍受国际著名航运公司的青睐。 因航线不同,为适应不同港口和市场需要可以优化出四型吨位相同但尺度不同的Aframax 船型。

谈影响船舶航行安全的因素及相关措施

谈影响船舶航行安全的因 素及相关措施 Revised by Hanlin on 10 January 2021

谈影响船舶航行安全的因素及相关措施【内容摘要】:为了切实推进船舶航行安全工作,保障安全形势的稳定,减少人民群众生命财产损失,达到航行更安全、海洋更清洁的目标,本文从“人、船、环境、管理”四个方面来具体分析船舶航行安全状况,并提出相应的措施。 [关键词]:船舶、航行安全、人、船、环境、管理、对策。 [Abstract]:inordertopromotethesafenavigationwork,toguaranteethe stabilityofthesecuritysituation,andreducethelossofthelivesandpr opertyofthepeople,achievemoresecurity,theseavoyagemorecleantarg et,thispaper,fromthe"people,ship,environmentandmanagement"foura spectsofthevoyagetotheanalysisofthesecuritysituation,andputforw ardthecorrespondingcountermeasure. [Keywords]:ships,navigationsafety,people,ship,environmentandman agement,strategy. (一)影响船舶航行安全的因素及原因 1.人的因素

(1)船员安全意识淡薄 船舶海上航行时,船员没有严格遵守《雾航规则》、《72海规》等规定,安全意识淡薄、责任心不强、思想麻痹、心存侥幸或以想当然的态度对船舶实施操纵。如2010年4月3日“SNHO.1”轮在澳大利亚大堡礁海洋公园附近水域搁浅事故就是因为大副接二副班后,大幅并没有测量到转向点的距离也没有测量到转向点的时间,只是想当然地认为到1700时转向075°就可以避开危险,在加上他非常疲劳,安全意识的淡薄促成了事故的发生。 (2)船员心理素质差 在船舶遇到紧迫局面或异常情况下,船员应急能力差,惊慌失措,没有那种顽强的战胜困难的意志与毅力,既不能运用良好的船艺,也不能采取果断有效的手段避免事故发生或减少事故的损失,一味的盲目地采取措施,或以消极的方式坐等事故的发生。 (3)船员技能不熟练 虽然技能与知识素有密切的关系,然而在本质上却各有其特殊的内容与要求。即使理论知识学得特别好,但没有从事船舶操纵的实际经

船舶航行性能

船舶航行性能 为了确保船舶在各种条件下的安全和正常航行,要求船舶具有良好的航行性能,这些航行性能包括浮力、稳性、抗沉性、快速性、摇摆性和操作性。 船舶浮性 船舶在一定装载情况下的漂浮能力叫做船舶浮性(buoyancy) 船舶是浮体,决定船舶沉浮的力主要是重力和浮力。其漂浮条是:重力和浮力大小相等方向相反,而且两力应作用在同一铅垂线上。 船舶重力即船舶的总重量。船舶浮力是指水对船体的上托力 根据阿基米德定理,船舶浮力大小等于船体所排开同体积水的重量。 船舶重力,通常用W表示,它经过船舶重量的中心,也叫重心(G),其方向垂直向下,船舶重心G的位置是随货物移动而改变;船舶浮力,通常用B表示,它经过船舶水下体积的几何中心,也叫浮心(G),其方向垂直向上,船舶浮心G的位置是随水线下船体体积的变化而变化,如图1-23所示。 船舶重力(W)和浮力(B)大小相等、方向相反且重力与浮力又是作用在同一铅垂线上,这时船舶就平衡漂浮在水面上。 如果增加载货,重力增大船舶就会下沉,使吃水增加,浮力也就增大,直到浮力和重力又相等,船舶就达到新的平衡位置;同样,若重力减少,船舶上浮,也会到达另一新的平衡点。船舶的平衡漂浮状态,简称船舶浮态。船舶浮态可分为四种。 1.正浮状态 是指船舶首、尾、中的左右吃水都相等的情况。 2.纵倾状态 是指左右吃水相等而首尾吃水不等的情况。船首吃水大于船尾 水叫首倾;船尾吃水大于船首吃水叫尾倾。为保持螺旋桨一定的水深,提高螺旋桨效率,一航未满载的船舶都应有一定的尾倾。 3、横倾状态 是指船首尾吃水相等而左右吃水不等的情况,航行中不允许出现 横倾状态。 4、任意状态 是指既有横倾又有纵横倾的状态。 船舶在海上航行,经常会遇到海浪打上甲板,冬季还会结成很厚 的冰,这就等于给船舶增加了重量。为了保障船舶安全,船舶必须留有一定的储备浮力(也叫保留浮力)。储备浮力是指船舶主甲板以下至水线之间水密空间产生的浮力,如下图所示。载货越少,船舶干舷越高,储备浮力越大,浮性越好,越有利于航行安全。所以,为了既保证船舶安全,又能充分利用船舶的载重能力,就必须根据不同季节和航区进行合理配载,使最大吃水不超过载重线标志上规定的满载吃水线。 船舶稳性 稳性(stability)是指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

高性能船舶船型介绍

高性能船舶船型介绍 发布: 2010-3-11 18:07 | 作者: lowellzhu | 来源: 龙de船人 [i=s] 本帖最后由lowellzhu 于2010-3-11 18:27 编辑 接触高性能船舶时一直不太理解什么是高性能船以及高性能船舶船型的分类,经过翻阅各类书籍及论文,总结一下,供船人参考,并希望专业人士斧正! 当前,高性能船舶的研发与推广应用备受国内外造船界的青睐,其船型更是国际著名学者机构研究的热点。这类船舶种类繁多,新船型层出不穷,日新月异,在各类船舶中是新思想最丰富、最有创新、也最有活力的领域;其高航性、优良的耐波性、低物理场辐射特征、舒适安全性、良好的经济性等性能受到军事和民用领域的极大关注,拥有良好的发展前景 依据支持船重的方式和作用原理的差异对高性能船舶船型进行分类,并分别介绍各类船型。 1 高性能船舶的分类 高性能船舶按其特性可分为气垫船,水翼船,小水线面双体船,多体船,地效翼船,高速单体船等各式各样的显著不同于常规船舶的船型。而按照支承船重的方式和作用原理差异,把高性能船舶分为:浮力支承型、静态气垫升力支承型、动态升力支承型、复合型。本文将按照后者分类方式分别对各种高性能船舶的船型进行介绍。 2 船型介绍 2.1

浮力支承型 1)高速深V型船 船首部横剖面呈深V形,并突出到船体基线的下方,其V形断面比U形断面的船体可以更好的满足适航性的要求。深V船型具有两种基本的舯剖面形式,即单折角线或双折角线(见下图)。当要求设计艇有较大内部容积和较低的相对航行速度(低傅氏数)时采用双折线型,而单折角线型的艇则更适合于要求较低的排水量和较高的相对航行速度(较高傅氏数)的情况。然而,对船舯剖面形式的选择不存在确定性的规则,因为其它的参数也起重要作用。所以双折角线型也可以应用于快艇,反之亦然。 1.jpg 2) 小水线面双体船 小水线面双体船基本上由三大部分组成,即水下体(提供浮力)、桥体结构(生活与工作平台)、支柱(星双凸流线形截面,作为前二者之联结体)。 小水线面双体水下体(如图)有两个深置水下承受大部分浮力的鱼雷状下潜体,它的宽敞的船体高出水面,船体和鱼雷状下潜体之间由狭长的流线型支柱连接。 小水线面双体船有几种形式:下图所示的为“单体单支型”,还有“单体双支柱型”(即一个潜体用前后两个支柱连接),或者“双体双支柱型”(每一侧有前后两个潜体,每个潜体各有一个支柱)。下潜体后端安装有两个螺旋桨,内侧装有前后各两个稳定鳍,前小后大[5]。

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

国际常见船舶类型

《国际船舶分类》 油船(Oil Tanker) 也就是石油油船,是一种散装运输油品的商船。根据运输油品的类型可以分为两个大类,原油油船和成品油船。 ①原油船(Crude Tanker),用于将大量未加工的原油从提取处运输到精炼处。 ②成品油船(Product Tanker),一般船型较小,用于将加工好的石化产品从精炼处运输到就近的消费市场。 油船在国际上一般以载重吨(DWT)的大小进行分类,下文所说的船舶大小均指载重吨。 载重吨(DWT) 顾名思义,载重吨是指船舶允许装载货物的重量,分为总载重吨和净载重吨。总载重吨是指在任意的吃水下,所能允许船舶装载的最大重量,其数值等于船舶满载排水量减去空船排水量。在不同的海区、不同盐度、不同纬度和季节,总载重吨的数额并不一致,诸如国际航行海船一般有热带淡水、淡水、热带、夏季、冬季、北大西洋冬季等不同的载重吨位,木材船还有木材载重吨位。这些吨位都以载重线的方式勘绘在船体上。 净载重吨是指在具体的某个航次中,船舶所能装载的最大货物重量。 也就是总载重吨减去燃油、柴油、淡水、备件、物料、供应品、船员和/或旅客及其行李以及船舶常数(包括船底壳附着物、机械内油品残留物等)所得到的载重吨位。 我们熟悉的干散货船、油轮的分类,例如好望角型、巴拿马型、灵便型、阿芙拉型、苏伊士型……等,均是以载重吨为标准划分。下面我把根据不同载重吨级所划分的油船类型给大家详细介绍一下。 1)沿海油轮(Coastal)

大小:3000-100吨 沿海油轮是最小的油轮类型,一般用于沿海水域的油品运输并能够在较浅水域靠泊。主要运输煤油、加热油、燃料油和化学品。 2)小油轮(Small) 大小:100-19000吨 这种油轮比沿海油轮大一些,也主要用于沿海水域的油品运输,运输的类别与沿海油轮相同,也是煤油、加热油、燃料油和化学品。 3)小灵便型油船(Handysize) 大小:19000-25000吨 该船型的特点是灵活性强,吃水浅,船长短(170m-180m),舱数量多,所以需求量很大,是一种很受欢迎的船型,但一般并不用于长途的运输。 4)大灵便型油船(Handymax) 大小:25000-45000吨 大灵便型油船就是小灵便型油船的扩大版。 5)LR1型油船(Large/Long Range One) 大小:45000-700吨 6)LR2型油船(Large/Long Range Two) 大小:700-1000吨 7)xx型船(Panamax) 大小:500-800吨 巴拿马型船是指能够通过巴拿马运河的油船,水闸为1000ft*110ft*85ft (ft:

船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能) 船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。 一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转 心、旋回时间、旋回中的降速和横倾等。这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用

反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水

高性能船舶动力定位系统技术分析

高性能船舶动力定位系统技术分析 摘要:对国外一些船舶动态定位控制系统设计方案的控制精度和响应速度控制 问题等进行了分析和研究,提出了相应的改进方案。根据定位控制系统设备情况 的基本配置,分析了系统的基本工作原理,得到了定位控制系统的基本数学模型 和传递函数,并根据控制系统的工作特性提出了解决问题的方法。该方法采用了 控制系统中的神经网络控制算法,代替了原方案中的多级系统控制算法。与改进 方案的控制性能相比,改进方案的控制性能大大提高。 关键词:高性能;船舶;定位系统;技术分析 1 前言 某造船厂为国外某公司承造的多用途工作船具有向钻井平台输送物资、起锚、消防、救生及拖带船舶和钻井平台等作业功能。根据该船设计任务书的要求,该 船必须配置动力自动定位系统,既能克服自动化操船问题,又能解决该船在大风 浪下的安全作业问题。该系统原由国外某公司进行设计,使用表明,其系统的设 计方案基本可行,但尚有改进之处。本文对该系统的基本设计思路进行了分析和 研究,提出了系统的设计改进方案,仿真结果表明该改进方案优于原设计方案, 可供有关人员参考及借鉴。 2 原设计方案 根据DNV规范及船东的要求,设计方提出了本船动力定位系统的设计方案的 基本配置如下: 2.1电力系统 电力系统包括2台2 000 kW的轴带发电机,2台1 360 kW及500 kW的主柴 油发电机,1台200 kW的应急发电机,12屏的主配电板一个,应急配电板一个,电站设有电站管理系统,可实现自动起停机组、自动并车、转移负载、大功率负 载询问、故障报警及处理功能。电力系统为动力定位系统的侧推、方位推等设备 提供驱动动力,为各设备及控制系统提供工作电源。 2.2推进系统 推进系统包括2台主机及齿轮箱、2根轴系及2个可调桨、2台舵机、艏艉侧推及方位推各1个以及相关的辅助设备等。在推进系统中,方位推与艏侧推、艉 侧推与桨及舵、主机与轴带电机之间可互为备用,能够保证推进系统的有效运性,从而确保动力定位系统的功能能够安全可靠地实现。推进系统的各主要设备均通 过通讯线路与动力定位控制系统相联,可由动力定位系统自动控制或人工操控, 实现动力推进功能。 2.3动力定位控制系统 该系统包括动力定位操作台、便携式定位操作板、动力定位系统控制器等设备。能够实现:手动操作、自动转向、自动定位、自动寻迹航行、自动导航和自 动跟踪目标航行等功能。动力定位操纵台:该操纵台为动力定位系统的主要控制 中心,配有显示器及操纵杆等设备。便携式操作板可作为动力定位操作台的备用 设备,其接线盒分别安装驾驶室的前后台、左右两翼及后操作椅上共5个位置。 动力定位系统控制器:该装置为动力定位系统信号采集、控制信息处理中心。本 船采用的动力定位控制处理器将采集到的各种信号进行分析处理后,送到控制模 块进行运算,并将得出的控制指令发送至所控制的推进或报警设备,实现船舶推 进控制及报警等功能。 3 动力定位控制系统设计原理

第一章 船舶操纵性能复习重点

第一章船舶操纵性能 说课笔记 知识与技能掌握要点: 通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用; 对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。 对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。 掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。 工学结合: 三副值班时,船舶操纵知识及能力要求与本次课的关联; 岗位与船舶操纵知识及能力要求实际应用; 测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色: 理论性较强,注意三校生与普高生的认知能力差别; 充分运用企业提供生产案例和影视资料,使内容贴近航运岗位; KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感; 在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。 第一节船舶旋回性能 在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。 一、船舶旋回运动的过程 船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。 1.第一阶段——转舵阶段 船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

船舶的重量性能与容积性能

第一节 船舶的重量性能与容积性能 一、概述 1. 船舶货运的研究对象和内容。 1)海上货运流程:受载、配载、装船、途中管理、卸载、交付 2)海上货运要求:安全、优质、快速、经济 2. 本课程教学安排与要求。 1)知识理念 2)学习方法及要求 二、船体基础知识 1. 船舶主尺度 1)主尺度的内容、种类及用途 内容:长、宽、深、吃水 种类及用途:型尺度、登记尺度、最大尺度 2)型尺度的定义 2. 船用坐标系、船舶基准(剖)面 ◆ 船舶基准面: 中线面:过船宽中央的纵向垂直平面。 中站面:过船长中点的横向垂直平面。 基平面:过船长中点,龙骨板上缘且平行于设计水线面的平面。 ◆ 船体基准剖面: 中纵剖面:中线面上船体剖面。 中横剖面:中站面上船体剖面。 设计水线面:过设计吃水且平行于基平面的平面上船体剖面。 三、船舶浮性 1. 船舶平衡条件 重力与浮力平衡: 9.819.81W V g ρ?=??=?? 2.重心G :Gravity(X g ,Y g ,Z g ) i i g i P X X LC G P ∑?= =∑…… Longitudinal Center of Gravity

i i g i P Y Y TC G P ∑?==∑………… Transverse Center of Gravity ()i i g i P Z Z VC G K G P ∑?= =∑…… Vertical Center of Gravity 浮心B :Buoyancy (X b ,Y b ,Z b ),船舶排水体积形心,其位置可从资料中查取。 常用:浮心纵向坐标B X 、垂向坐标()B Z K B 3. 船舶浮态:四种(取决于重心与浮心的位置关系) 理论推导计算时常取正浮状态,实际航行时一般要求适度尾倾。 四、船舶重量性能 1. 排水量?:船舶所排开水的重量。V W ρ?=?=(总重量) 空船排水量L ?(Light ship displacement):即空船重量,由资料查得,定值。 L D W ?=?+ 2. 总载重量D W (Deadweight):船舶在某一水线下装载的所有重量。 DW Q G C =∑+∑+ 式中: Q ∑:船舶载货量。 G ∑:航次储备量。指船上船员、行李、备品重量1G 和油水重量2G 之和。 C :船舶常数(Constant)。营运后的空船重量与新出厂时的空船重量的差值。 变量,某一时间段内(如具体航次)取为定值。 总载重量用途:统计船舶的重量拥有量。 如:我国8000吨远洋货船,8000吨是指设计状态下的 总载重量 3. 具体航次最大装货量:净载重量N D W (Net Deadweight) max N D W D W G C =-∑- max D W :最大总载重量(最大装载量),由多种因素决定。 五、容积性能 1. 船舶总舱容 Vch 1)散装舱容(Grain Capacity) 2)包装舱容(Bale Capacity):一般为散装舱容的90%~95% 3)液货舱舱容(Liquid Capacity) 2. 舱容系数(Coefficient of load):每一净载重量所占有的货舱容积。

highspeedship高性能船舶

High speed vessels of semi-displacement type are often equipped with appendages such as trim tabs, stern flaps and wedges to control the trim angle and improve the resistance performance. However, dynamic instability can be occurred if dimensions of those appendages are not suitable for the hull. So it is important to predict effects of appendages on the running attitudes of a vessel and choose proper dimensions of appendages at initial design stage. There are many researchers that calculate running attitudes of high speed vessels in calm water and in waves. Especially, steady states of prismatic planning hulls were theoretically predicted in some previous researches. In this paper, running attitudes of a semi-displacement vessel are predicted by theoretical methods, and model tests are carried out to verify theoretical calculations. Present calculations are based on previous formulas for prismatic planning hulls and developed to be applied to semi-displacement round bilge vessels. High speed model tests for the vessel with various trim tabs are performed in Seoul National University towing tank. Vertical motions in calm water are measured at various Froude numbers, and those are compared with calculation, results. Running attitudes of semi-displacement vessels are significantly changed at high speed and thus have an effect on resistance performance and stability of the vessel. There have been many theoretical approaches about the prediction of running attitudes of high-speed vessels in calm water. Most of them proposed theoretical formulations for the prismatic hard-chine planing hull. In this paper, running attitudes of a semi-displacement round bilge vessel are theoretically predicted and verified by high-speed model tests. Previous calculation methods for hard-chine planing vessels are extended to be applied to semi-displacement round bilge vessels. Force and moment components acting on the vessel are estimated in the present iteration program. Hydrodynamic forces are calculated by 'added mass planing theory', and near-transom correction function is modified to be suitable to a semi-displacement vessel. Next, 'plate pressure distribution method' is proposed as a new hydrodynamic force calculation method. Theoretical pressure model of the 2-dimensional flat plate is distributed on the instantaneous waterplane corresponding to the attitude of the vessel, and hydrodynamic force and moment are estimated by integration of those pressures. Calculations by two methods show good agreements with experimental results. The Effect of Appendages on the Course Keeping Ability of a Semi-Displacement

船舶的分类

1船舶的种类 (Types of Ships) 船舶的种类很多,通常可根据其用途进行划分,有时也根据需要按不同的要求进行划分。 按航区(navigation area)划分,可将船舶分为极区船(arctic ship)、远洋船(ocean going ship)、沿海船(coastal vessel)和内河船(inland waterways vessel)。 按航行状态(navigation configuration)划分,可将船舶分为排水型船(displacement ship)和动力支撑型船(dynamic supported craft)。 按机舱(engine room)位置划分,可将船舶分为中机型船(amidships engined ship)、艉机型船(stern engined ship)和中艉机型船(amidships/stern engined ship)。 按甲板(deck)的层数划分,可将船舶分为单甲板船(single decked ship)和多层甲板船(multi-decked ship)。 按上层建筑(superstructure)划分,可将船舶分为三岛型船(three island vessel)和平甲板型船(flush deck vessel)等。 从航运生产实际和船员作业需要出发,本书主要按船舶的用途进行区分。 1.1 货船 货船(cargo ship)一般称为运输船舶,是按用途及承运的货物的种类进行区分的。 (1)杂货船(general cargo vessel) 主要从事各种包装或无包装的非大宗货物运输的船舶,又称为普通货船,这是最基本的一种货船船型。该类型船的货舱一般

船舶操纵性总结汇总

操纵性 绪论 操纵性定义:船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。 操纵性内容: 1. 航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。 2.回转性:表示船舶在一定舵角作用下作圆弧运动的性能。 3.转首性和跟从性:表示船舶应舵转首及迅速进入新的稳定运动状态的性能。 4. 停船性能:船舶对惯性停船和盗车停船的相应性能。 附加质量和附加惯性矩: 作不定常运动(操纵和耐波运动)的船舶,除了船体本身受到愈加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度。根据作用力和反作用力,水对船体存在反作用力,这个反作用力称为附加惯性力。 附加惯性力是与船的加速度成比例的,其比例系数称为附加质量。船舶操纵 一、操纵运动方程

1.1坐标系 一、固定坐标系: 固定坐标系是固结在地球表面,不随时间而变化的,如图所示。 首向角ψ:X 0与X 的夹角(由X 0转向X ,顺时针为正)。 二、运动坐标系: 运动坐标系是固结在船体上的,随船一起运动的,如图所示。 重心坐标:X OG 、Y OG ; 船速:V 重心G 瞬时速度; 航速角ψ0:X0轴与船速V 夹角(顺时针为正); 漂角:β船速与X 轴夹角(顺时针为正); 回转角速度:γ= dψdt ; 回转曲率:R 右舷为正; 舵角:δ左舷为正。 三、枢心: 回转时漂角为零点、横向速度为零的点。 1.2线性运动方程 一、坐标转换 00cos sin sin cos ψψψψ =-=+G G x u v y u v

二、简化方程 当重心在原点处:X G =0 运动坐标系一般方程: 三、对于给定船型、给定流体中的运动情况 船型参数和流体特性为已知条件; 操纵运动为缓变过程,忽略高阶小量; 忽略推进器转速影响; 操舵过程短暂,忽略转舵加速度。 则可将给定船型流体中受力情况表示如下: 由泰勒展开式,用水动力导数表示如下: 四、简化后的操纵运动线性方程式: 2()()() ψψψψψψ=--=++=++G G Z G X m u v x Y m v u x N I mx v u 00cos sin ψψ =+G G X mx my 00cos sin ψψ =-G G Y my mx ()() ψψψ =-=+=z X m u v Y m v u N I (,,,,,,)(,,,,,,)(,,,,,,) X X u v r u v r Y Y u v r u v r N N u v r u v r δδδ== =v r v r v r v r Y Y v Y r Y v Y r Y N N v N r N v N r N δδδδ =++++=+++ +111()()v ur v u u r r v u r +=++?+?=+

相关文档
最新文档