船舶回转性能分析

船舶回转性能分析
船舶回转性能分析

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

超大型船舶的操纵探讨

超大型船舶操纵特点与操作技巧探讨 国际航线干散货轮一般分为以下四种类型:好望角型(10 万载重吨以上)、巴拿马型(7-9万载重吨)、大灵便型(4-5万载重吨)和灵便型(2-4万载重吨)。 《长江江苏段船舶定线制》规定超大型船舶为:实际淡吃水9.7米以上的;船长205米以上的;总长305米以上的拖带船队或总宽65米以上的船队(小型吊拖船队除外);水面以上最大高度达到或超过拟通过的桥梁、过江电缆等水上跨江架空设施的设计通航净空高度的。 与普通船舶相比,超大型船舶主要呈现出6个操纵特点,具体说就是“三下降、三增大”: 三下降:操纵性能的下降、提速及停船性能的下降、锚的作用下降。 三增大:限制水域的影响增大、低速航行时的风流影响增大、港内船舶操纵中对拖轮的依赖增大。 一、操纵性能下降 操纵性能就是船舶对驾引人员实施操纵的相应能力。我们说一条船的船舶操纵性能好就是船舶对驾引人员实施操纵的响应能力好,一方面可以方便稳定的保持运动状态,另一方面又可以迅速准确地改变运动状态。具体可以用“追随性”(T,时间常数)、

“旋回性”(K,增益常数)、“航向稳定性”这三个指标来表示。 从操纵性能来看,超大型船舶的K、T值都较大,也就是旋回性较好,追随性和航向稳定性差。因此超大型船舶在实际操纵中要特别注意用舵,一般用舵时,起始至少20度,把定时也用大舵角,甚至经常用满舵压,否则压不住。在船舶避让时,这一点是非常不利的,因为用舵时船舶反应很慢,而一旦转起来又很难让它停下来,因此,超大型船舶在用舵避让时,都是非常慎重的,除非会遇态势很明了,否则轻易不用舵。 二、提速及停车性能下降 超大型船舶的排水量巨大,而出于经济效率考虑,超大型船舶的主机马力并不与排水量同比增长。对超大型船舶而言,一单位主机马力的力需要推动10吨左右的物体,而对集装箱船舶而言,一单位主机马力的力只需推动1.4吨的物体就可以了,如下表所示,两者相差6—7倍。 表不同船舶排水量和主机马力对比 船名排水量主机马力吨/马力XIN HUANGPU(集装 6993049633 1.41箱船) AIGAION(矿船)197870229208.62 YOUNARA GLORY(油 3731373600010.4船)

船舶及其操作性能

1.4 船舶及其操作性能 船舶,各种船只的总称。船舶是能航行或停泊于水域进行运输或作业的交通工具,按不同的使用要求而具有不同的技术性能、装备和结构型式。 船舶是一种主要在地理水中运行的人造交通工具。另外,民用船一般称为船,军用船称为舰,小型船称为艇或舟,其总称为舰船或船艇。内部主要包括容纳空间、支撑结构和排水结构,具有利用外在或自带能源的推进系统。外型一般是利于克服流体阻力的流线性包络,材料随着科技进步不断更新,早期为木、竹、麻等自然材料,近代多是钢材以及铝、玻璃纤维、亚克力和各种复合材料。 1.4.1 概述 船舶从史前刳木为舟起,经历了独木舟和木板船时代,1879年世界上第一艘钢船问世后,又开始了以钢船为主的时代。船舶的推进也由19世纪的依靠人力、畜力和风力(即撑篙、划桨、摇橹、拉纤和风帆)发展到使用机器驱动。 1807年,美国的富尔顿建成第一艘采用明轮推进的蒸汽机船“克莱蒙脱”号,时速约为8公里/小时;1839年,第一艘装有螺旋桨推进器的蒸汽机船“阿基米德”号问世,主机功率为58.8千瓦。这种推进器充分显示出它的优越性,因而被迅速推广。 1868年,中国第一艘载重600吨、功率为288千瓦的蒸汽机兵船“惠吉”号建造成功。1894年,英国的帕森斯用他发明的反动式汽轮机作为主机,安装在快艇“透平尼亚”号上,在泰晤士河上试航成功,航速超过了60公里。 早期汽轮机船的汽轮机与螺旋桨是同转速的。后约在1910年,出现了齿轮减速、电力传动减速和液力传动减速装置。在这以后,船舶汽轮机都开始采用了减速传动方式。 1902~1903年在法国建造了一艘柴油机海峡小船;1903年,俄国建造的柴油机船“万达尔”号下水。20世纪中叶,柴油机动力装置遂成为运输船舶的主要动力装置。 英国在1947年,首先将航空用的燃气轮机改型,然后安装在海岸快艇“加特利克”号上,以代替原来的汽油机,其主机功率为1837千瓦,转速为3600转/分,经齿轮减速箱和轴系驱动螺旋桨。这种装置的单位重量仅为2.08千克/千瓦,远比其他装置轻巧。60年代先后,又出现了用燃气轮机和蒸汽轮机联合

船舶分类

船舶按不同的分类标准可以划分为许多种不同的船型。 (1) 按用途可分为民用船舶和军用船舶。在民用船舶中又分为运输船舶、科学调查船、公务执法船、工程船舶、渔船、海洋开发装置等。 (2) 按航区可分为海船和内河船。 (3) 按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效应船等。后四种船型基本上属高性能船舶。 (4) 按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等。 (5) 按动力装置种类可分为柴油机推进船、电力推进船、蒸汽动力装置船、燃气动力装置船、核动力装置船。 以下阐述的船型是指柴油机带动螺旋桨推进的排水型海洋运输船舶。 运输船舶大致可以分为以下几类: 1. 油船——原油船、成品油船、供油船 2. 散货船 3. 集装箱船 4. 干(杂)货船 5. 多用途船 6. 滚装船(Ro-Ro 船) 7. 客滚船、车客渡船 8. 客船、客货船 9. 交通船 10. 豪华型旅游船(邮船) 11. 液化气体船——液化石油气体船(LPG 船)、液化天然气体船(LNG 船)、压缩天然气船(CNG 船) 12. 化学品船 13. 冷藏船 14. 驳船 通常我们将油船、散货船、集装箱船称之为三大主力船型,它在世界船舶保有量(现有船舶中)中占77.4%。(现有杂货船和多用途船占9.2%,且其比例逐步缩小,而集装箱船比例将逐步上升),在造船产量中占89.9%。 通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、通常我们又将CNG 船、LNG 船、全冷式LPG 船多功能化学品船、豪华型旅游船、超大型集装箱船、滚装船称之为高新技术船型。

油船: 油船(Oil tanker)通常有原油船(Crude oil carrier)和成品油船(Product oil tanker)之分或者两者兼运之,即原油/成品油船或成品油/原油船。这里泛指的油船是包含不需特殊涂料的船。 由于MARPOL(防污染公约)的13F,13G 及25A 等条款的实施。很多单壳油船将被强制淘汰,新建油船必需双壳。由于在西班牙沿岸造成的油船海损事故,造成了大面积的海上污染,这个强制淘汰限期一再被提前。 油船按载重量吨位的大小大致可分为以下几类: ULCC: DW 35 万吨以上; VLCC: DW 25~32.5 万吨; Suez max :DW ~16 万吨; Aframax :DW 10~11 万吨; Panamax :DW 7~7.5 万吨; Handysize: DW4~5 万吨。 具体情况如下: (1) 超级油船(ULCC—Ultra Large Crude Oil Carrier) 载重量35 万吨以上,已建成的最大吨位为56.5 万吨“Jahre Viking”号,由于港口条件限制这种船建造量极小。 (2) 巨型油船(VLCC—Very Large Crude Oil Carrier) 载重量25~32.5 万吨的原油船。由于装载量大,运输经济性好,是国际上远洋运输原油的主要工具。适合于载运闪点低于60℃的原油产品,航行于无限航区。货油舱区为双壳结构,由两道纵舱壁和多道横舱壁将其分为15 个货油舱(3×5),2 个污油舱。 随着国际上对油船的公约、规则和法规不断提出新要求以及船东对航运的经济效益要求越来越高,VLCC 的发展不断更新换代。国际上自1966 年第一艘单壳体VLCC 在日本问世以来,上世纪90 年代已发展到第三代双壳体VLCC。 前几年,欧洲船东又提出一种超宽浅吃水双尾鳍双桨VLCC,称之为V-max 型VLCC。 又称第4 代VLCC,它操纵性好、航速高、安全性好。 (3) 苏伊士型油船(Suez max) 顾名思义,是能通过苏伊士运河的最大型油船,载重量16 万吨左右。有一道纵舱壁和多道横舱壁分为12 个货油舱(2×6),2 个污油油舱。 (4)阿芙拉型油船(Aframax) 11 万吨级Aframax 型油船自诞生之日起,就因其航行范围广,承运油品种类多,技术经济性好的特点而倍受国际著名航运公司的青睐。 因航线不同,为适应不同港口和市场需要可以优化出四型吨位相同但尺度不同的Aframax 船型。

高技术船舶科研项目指引

高技术船舶科研项目指南 (2014年版) 为贯彻落实《船舶工业加快结构调整促进转型升级实施方案(2013-2015)》和《船舶工业“十二五”发展规划》,促进船舶工业科技发展,引导建立产学研用协同创新机制,提升自主创新能力,推动技术、产品结构升级,提高国际市场竞争力,按照《船舶工业“十二五”科技发展方向与重点》的任务部署,特制定本指南。 一、工程与专项 (一)节能环保示范工程 1.总目标 根据船舶节能环保相关国际公约、规范的要求,结合船舶技术的发展和国内外航运市场需求,通过风帆、混合对转推进系统等节能环保装备的实船应用示范以及江海直达环保示范船型的开发,突破清洁能源与节能装备应用关键技术,全面提升我国船舶节能环保整体技术水平。 2.重点研究方向 (1)风帆技术示范应用开发 研究目标: 针对国际公约对船舶节能环保的新要求与当前船舶节

能技术发展的水平,以超大型油船(VLCC)为目标船型,通过对风帆-主机混合动力推进技术的研究,掌握风帆设计、制造与应用关键技术,完成风帆在大型油船上的示范应用。利用风帆技术,可实现VLCC在相同航速下平均日油耗降低12%以上。 主要研究内容: 1)风帆-主机混合动力VLCC总布置及航行性能研究; 2)风帆模型风洞、水池试验技术研究; 3)风帆-主机混合动力VLCC推进系统关键技术研究; 4)风帆-主机混合动力船舶控制策略及系统开发; 5)风帆工程样机研制与试验技术研究; 6)风帆-主机混合动力VLCC结构设计关键技术研究; 7)大型风帆实船安装工艺及精度控制技术研究; 8)风帆-主机混合动力VLCC节能指标与经济性分析; 9)风帆-主机混合动力VLCC实船验证技术研究。 主要成果形式: 1)相关技术研究报告及试验报告; 2)相关设计图纸和计算书; 3)经实船应用的风帆及控制系统样机; 4)相关专利及技术标准研究报告。

船舶航行性能

船舶航行性能 为了确保船舶在各种条件下的安全和正常航行,要求船舶具有良好的航行性能,这些航行性能包括浮力、稳性、抗沉性、快速性、摇摆性和操作性。 船舶浮性 船舶在一定装载情况下的漂浮能力叫做船舶浮性(buoyancy) 船舶是浮体,决定船舶沉浮的力主要是重力和浮力。其漂浮条是:重力和浮力大小相等方向相反,而且两力应作用在同一铅垂线上。 船舶重力即船舶的总重量。船舶浮力是指水对船体的上托力 根据阿基米德定理,船舶浮力大小等于船体所排开同体积水的重量。 船舶重力,通常用W表示,它经过船舶重量的中心,也叫重心(G),其方向垂直向下,船舶重心G的位置是随货物移动而改变;船舶浮力,通常用B表示,它经过船舶水下体积的几何中心,也叫浮心(G),其方向垂直向上,船舶浮心G的位置是随水线下船体体积的变化而变化,如图1-23所示。 船舶重力(W)和浮力(B)大小相等、方向相反且重力与浮力又是作用在同一铅垂线上,这时船舶就平衡漂浮在水面上。 如果增加载货,重力增大船舶就会下沉,使吃水增加,浮力也就增大,直到浮力和重力又相等,船舶就达到新的平衡位置;同样,若重力减少,船舶上浮,也会到达另一新的平衡点。船舶的平衡漂浮状态,简称船舶浮态。船舶浮态可分为四种。 1.正浮状态 是指船舶首、尾、中的左右吃水都相等的情况。 2.纵倾状态 是指左右吃水相等而首尾吃水不等的情况。船首吃水大于船尾 水叫首倾;船尾吃水大于船首吃水叫尾倾。为保持螺旋桨一定的水深,提高螺旋桨效率,一航未满载的船舶都应有一定的尾倾。 3、横倾状态 是指船首尾吃水相等而左右吃水不等的情况,航行中不允许出现 横倾状态。 4、任意状态 是指既有横倾又有纵横倾的状态。 船舶在海上航行,经常会遇到海浪打上甲板,冬季还会结成很厚 的冰,这就等于给船舶增加了重量。为了保障船舶安全,船舶必须留有一定的储备浮力(也叫保留浮力)。储备浮力是指船舶主甲板以下至水线之间水密空间产生的浮力,如下图所示。载货越少,船舶干舷越高,储备浮力越大,浮性越好,越有利于航行安全。所以,为了既保证船舶安全,又能充分利用船舶的载重能力,就必须根据不同季节和航区进行合理配载,使最大吃水不超过载重线标志上规定的满载吃水线。 船舶稳性 稳性(stability)是指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

超大型船舶旋回性能的探讨

第26卷 第3期大连海事大学学报V o l.26,N o.3 2000年8月Journa l of Da l i an M ar iti m e Un iversity A ug.,2000 文章编号:100627736(2000)0320048203 超大型船舶旋回性能的探讨Ξ 夏国忠,史国友 (大连海事大学航海学院,辽宁大连 116026) 摘要:在操纵模拟器上进行大型船舶模拟试验的基础上,结合本科教学实践和多年的航海经历,分析得出了影响超大型船舶旋回性能的主要因素除船型、船速、吃水差、舵面积外,还有舵角和装载状态. 关键词:超大型船舶;旋回性能;模拟试验 中图分类号:U664182 文献标识码:A 大型船舶由于载重量大,吃水深,尺度长,冲程大,惯性大,受海域限制等特点,操纵比较困难.其中旋回性能受多种因素的影响,如船型(方型系数C b),船速,吃水差,舵面积,舵角,以及装载状态等.本文将分析其主要的影响因素及影响程度,并与中小船舶的旋回性能作一比较.为此,选择三种类型超大型船,在我校研制的操纵模拟器上进行了旋回性能操纵实验. 超大型船(VL CC、U L CC)与一般的货船相比,在船型上显然不同,如表1,2所示.即大型船的长宽比小,方型系数大,在船体设计上,增加船长不如加宽加深较易大型化,这类肥满型船,今后有增加的趋势. 表1 各类船型主要尺寸 T ype DW 万t L p p B D d L B B d C b A L d TAN KER1024640.221.815.076.122.670.7981 67.5 1528146.225.016.66.082.780.8141 64.6 2032649.823.217.696.552.830.8281 63.3 3033053.332.024.786.192.150.8502 103.96 表2 三种实验船舶的主要尺寸 T ype DW L p p B D L B B d C b A R L.d 525091331.6726739.8146.72.840.6141 73.715山口11394726043146.043.070.7281 69.18 SAN KO3000003185620.65.672.710.82721 114.4 Ξ收稿日期:20002032311 作者简介:夏国忠(1935~),男,浙江温州人,教授,主要从事船舶操纵与避碰的研究1

船舶种类中英文词典

l. 船舶的种类 (Types of Ships) 船舶的种类很多,通常可根据其用途进行划分,有时也根据需要按不同的要求进行划分。 按航区(navigation area)划分,可将船舶分为极区船(arctic ship),远洋船(ocean going ship),沿海船(coastal vessel)和内河船(inland waterways vessel)。 按航行状态(navigation configuration)划分,可将船舶分为排水型船(displacement ship)和动力支撑型船(dynamic supported craft)。 按机舱(engine room)位置划分,可将船舶分为中机型船(amidships engined ship),舰机型船(stern engined ship)和中艉机型船(amidships/stern engined ship)。 按甲板(deck)的层数划分,可将船舶分为单甲板船( single decked ship)和多层甲板船(multi-decked ship)。 按上层建筑(superstructure)划分,可将船舶分为三岛型船(three island vessel)和平甲板型船(flush deck vessel)等。 从航运生产实际和船员作业需要出发,本书主要按船舶的用途进行区分。 1.1货船 货船(cargo ship)一般称为运输船舶,是按用途及承运的货物的种类进行区分的。 (1)杂货船(general cargo vessel) 主要从事各种包装或无包装的非大宗货物运输的船舶,又称为普通货船,这是最基本的一种货船船型。该类型船的货舱一般分为两层或多层,货舱口处设有起货设备,此类船舶的优点是对货物种类和码头条件的适应性强,但缺点是装卸效率不高。杂货的批量受到货源的限制,此类船舶的载重量一般在1万~2万吨左右(见图1.1.1)。

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较

船舶分类、种类大全

船舶分类、种类大全(原创) 船舶得分类、种类按照不同得方法划分得,本文根据我得造船知识,并参照了一些船舶专业书籍与互联网上得一些文章整理出来,试图找到最全得船舶分类与种类划分。 一、船舶分类得方法?现代船舶就是为交通运输、港口建设、渔业生产与科研勘测等服务得,随着工业得发展,船舶服务面得扩大,船舶也日趋专业化。不同得部门对船舶有不同得要求,使用权船舶得航行区域、航行状态、推进方式、动力装置、造船材料与用途等到方面也各不同,因而船舶种类繁多,而这些船舶在船型上、构造上、运用性能上与设备上又各有特点。 1、船舶得航行区域:船舶按航行区域可分为海洋船反作用、港湾船舶与内河船舶三种。航行内湖泊上得船舶一般也归入内河船舶类。 2、船舶航行得状态:船舶按航行状态可归纳为浮行、滑行、腾空航行三种.浮行就是指船舶在航行时,船体得重量与排水量相等而瓢浮在水面航行得船舶(又叫做排水量船)。水下潜航得船舶也属于浮行。滑行船舶就是指高速状态下航行时,船体得大部分被水得动力作用抬起,在水面滑行。滑行时船得排水量小于静止时得排水量,同时减小了湿表面积,水阻力大大减小,使船得速度加快。如快艇、水翼艇。腾空航行船舶就是船身在完全脱离水面得状态下航行得。如气垫船与冲翼艇。 3、推进方式:船舶按进方式可分为原始得撑篙、拉绎、划桨、摇橹等人力推进得船舶与风力推进得帆船;机械推进得明轮船,喷水船、螺旋桨船、以及空气推进船等。dc 明轮就是船舶以机器作为动力以来,最古老得一种推进器.以后又出现把推进哭装在船得艉部水面以下部分得螺旋桨推进器,后来,对少数殊要求得船舶有得在艉部螺旋桨上加上导管,也有在艏部加装辅助得螺旋桨。大多数船舶螺旋桨得叶片就是固定得,对经常驻要求改变工况得船,采用可调螺距得螺旋桨。浅水航道中得船舶还有喷水推进得.全浮式气垫船与腾空艇上则用空气螺旋桨推进。 4、动力装置:船舶按动力装置得种类可分为蒸汽机船、内燃机船,。电力推进船与核动力装置船。早期使用得蒸汽往复机目前已被淘汰.汽轮机(有蒸汽轮机与燃汽轮机)在一些高速客船与军舰上使用.现在各类船舶应用最广得就是柴油机动力装置。小艇上也有用汽油机作为动力得。电动推进船就是以内燃机或蒸汽机驱动发电机(或直接用蓄电池)发电,再带动与螺旋桨联成一体得电动机来推进船舶.这种动力装置得螺旋桨转速可任意调节,且操作简单、操纵方便,为有特殊要求得船舶采用,如潜艇、破冰船厂、科学考察船、火车渡船等。核动力装置就是当前世界上较先进得动力装置,它以核反应堆通过原子核得反应,产生蒸汽热能来驱动汽轮机运转。 二、船舶得分类?由于船舶得发展,现代船舶得种类很多,可以有各种各样得分类方法,如按船体材料分,有木船、钢船、水泥船与玻璃钢船等;按航行区域分,有远洋船、近洋船、沿海船与内河船等;按动力装置分,有蒸汽机船、内燃机船、汽轮机船、电动船与核动力船等;按推进方式分,有明轮船、螺旋桨船、平旋推进器船与风帆助航船等;按航行方式分,有自航船与非自航船;按航行状态分,有排水型与非排水型船。而最能说明船

国际常见船舶类型

《国际船舶分类》 油船(Oil Tanker) 也就是石油油船,是一种散装运输油品的商船。根据运输油品的类型可以分为两个大类,原油油船和成品油船。 ①原油船(Crude Tanker),用于将大量未加工的原油从提取处运输到精炼处。 ②成品油船(Product Tanker),一般船型较小,用于将加工好的石化产品从精炼处运输到就近的消费市场。 油船在国际上一般以载重吨(DWT)的大小进行分类,下文所说的船舶大小均指载重吨。 载重吨(DWT) 顾名思义,载重吨是指船舶允许装载货物的重量,分为总载重吨和净载重吨。总载重吨是指在任意的吃水下,所能允许船舶装载的最大重量,其数值等于船舶满载排水量减去空船排水量。在不同的海区、不同盐度、不同纬度和季节,总载重吨的数额并不一致,诸如国际航行海船一般有热带淡水、淡水、热带、夏季、冬季、北大西洋冬季等不同的载重吨位,木材船还有木材载重吨位。这些吨位都以载重线的方式勘绘在船体上。 净载重吨是指在具体的某个航次中,船舶所能装载的最大货物重量。 也就是总载重吨减去燃油、柴油、淡水、备件、物料、供应品、船员和/或旅客及其行李以及船舶常数(包括船底壳附着物、机械内油品残留物等)所得到的载重吨位。 我们熟悉的干散货船、油轮的分类,例如好望角型、巴拿马型、灵便型、阿芙拉型、苏伊士型……等,均是以载重吨为标准划分。下面我把根据不同载重吨级所划分的油船类型给大家详细介绍一下。 1)沿海油轮(Coastal)

大小:3000-100吨 沿海油轮是最小的油轮类型,一般用于沿海水域的油品运输并能够在较浅水域靠泊。主要运输煤油、加热油、燃料油和化学品。 2)小油轮(Small) 大小:100-19000吨 这种油轮比沿海油轮大一些,也主要用于沿海水域的油品运输,运输的类别与沿海油轮相同,也是煤油、加热油、燃料油和化学品。 3)小灵便型油船(Handysize) 大小:19000-25000吨 该船型的特点是灵活性强,吃水浅,船长短(170m-180m),舱数量多,所以需求量很大,是一种很受欢迎的船型,但一般并不用于长途的运输。 4)大灵便型油船(Handymax) 大小:25000-45000吨 大灵便型油船就是小灵便型油船的扩大版。 5)LR1型油船(Large/Long Range One) 大小:45000-700吨 6)LR2型油船(Large/Long Range Two) 大小:700-1000吨 7)xx型船(Panamax) 大小:500-800吨 巴拿马型船是指能够通过巴拿马运河的油船,水闸为1000ft*110ft*85ft (ft:

船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能) 船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。 一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转 心、旋回时间、旋回中的降速和横倾等。这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用

反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水

船舶种类与特点

船舶种类与特点 (一) 普通船舶 l .客船( Passenger ship) 是用于运送旅客及其携带行李的船舶。对兼运少量货物的客船也称客货船。 凡载客超过12 人行均视为客船。客船的特点是具有良好的航海性能,安全设备与生活设施齐全,上层建筑高大,航速较高,具有良好的抗沉性。 2.杂货船( General cargo ship) 主要装运各种成捆、成包、成箱和桶装的杂件货。杂货船的货舱一般分为上下两层或多层,以防底部货物被压损,舱口尺寸较大以便于装卸。舱口上通常设有3t?5t的起货设备,个别舱口处还设有数十吨以上的大型起货设备。 3.散货船( Bulk carrier) 是专门装运谷物、煤炭、矿砂等大宗散货的船舶。散货船多为尾机型单甲板船,舱口较宽大,并且多不配起货设备。 根据货种和结构形式的不同,散货船大体可分为以下几种: (1) 通用型散货船: (2) 矿砂船( Ore carrier): (3) 自卸式散货船: (二) 专用运输船舶 1.集装箱船( container ship) 是指以装运集装箱货物为主的船舶。事先将货物装入集装箱内,再把集装箱装上船。这种运输方式的优点是装卸效率高,能减少货损货差。 主要特点是: (1)货舱和甲板均能装载集装箱; (2)多为单层甲板,舱口宽而长,采用双层船壳结构,两层船壳之间可作为

压载水舱; (3)为使集装箱堆放和稳固,在货舱内设置箱轨、柱、水平桁材等,组成固定集装箱用的蜂窝关格栅,集装箱沿着导轨垂直地放入格栅中。在甲板上设有固定集装箱用的专用设施; (4)主机马力大、航速高,多数为两部主机,双螺旋桨,船型较瘦削的远洋高速集装箱船的方形系数小于0.6; (5)通常不设起货设备,而利用码头上的专用设备装卸。半集装箱船因货源不稳定而在部分货舱装运集装箱,其他货舱装运杂货或散货,船上通常设有起货设备。 2.滚装船(roll on/roll off ship) 它装运的货物主要是车辆和集装箱。装卸时,在船的尾部、舷侧或首部,把跳板放到码头上,汽车或拖车通过跳板上下,实现货物的装卸。故滚装船又称开上开下船或滚上滚下船。 滚装船的主要特点是: (1)结构较特殊,上层建筑高大,上甲板平整,无舷弧和梁拱,露天甲板上无起货设备; (2)甲板层数多(一般为2~4 层),货舱内支柱极少,一般为纵通甲板,主甲板以下设有双层船壳,两层船壳之间可作为压载水舱; (3)为了便于拖车进出,货舱区域内不设横舱壁,采用强横梁和强肋骨保证横强度;在各层甲板上设有升降平台或内跳板供车辆行驶; (4)滚装船多数在尾部开口,即尾门;尾门跳板靠机械或电动液压机均进行开闭,并保证水密;尾门跳板分尾直跳板和尾斜跳板,为装卸作业的安全,尾直跳板的工作坡度应小于8。(跳板与水平面的夹角),通常为4。~5。,尾跳板可向船的一个舷侧向偏斜30。-40。(跳板与水平面的夹角);另还有尾旋转跳板、舷侧跳板和首门跳板,其结构不同,工况也有差异; (5)装卸作业时,因为跳板与码头的坡度不能太大,所以要求船舶吃水在装卸过程中变化不能太大,因此,必须用压载水平调节吃水、纵横倾和稳性等; (6)滚装船大多数在首侧侧推装置,以改善靠离码头的操纵性;

关于CAPE SIZE超大型船舶的操纵

关于CAPE SIZE超大型船舶的操纵 超大型船舶指总吨位超过10万总吨的船舶,一般用于运输石油、矿砂。超大型船舶具有排水量大;惯性大;停船性能较差;追随性差;舵对船舶航向的控制能力较低等特点。操船者必须充分了解和掌握它的特点之后,才能安全地操纵超大型船舶,笔者曾在两艘近17万总吨的CAPE SIZE超大型船舶“港明”轮和“港星”轮任船长,下面从实操方面谈谈 关于CAPE SIZE超大型船舶操纵的体会。 一、进出港和经狭水道的操纵 1、正确掌握转向的提前量和所用舵角。 a. 低速(7-10节)转向角度大(大于90度),满载情况下,用满舵角,用舵时机在离转向点 0.6-0.8海里;空载时,舵角可减小5度。 b. 低速(7-10节)转向角度比较大(60-90度),满载情况下,用20度舵角,用舵时机在离转向点0.6-0.8海里;经大角度转向后,船速会下降,(一般超大型船舶转过90度后,船速下降4节左右),所以当大角度转向船速下降时,可适当加大舵角以增加舵效。空载时,舵角可减小5度。 c. 低速(7-10节)转向角度小(30-60度),满载情况下,用15度舵角,用舵时机在离转向点 0.5海里,空载时,舵角可减小5度。 d. 低速(7-10节)转向角度小(小于30度),满载情况下,用10度舵角,用舵时机在离转向点0.5海里;空载时和满载情况下一样。 e. 常速(10节以上)转向角度大(大于90度),满载情况下,用20度舵角,用舵时机在离转向点0.6-0.8海里;空载时,舵角可减小5度。 f. 常速(10节以上)转向角度比较大(在60-90度),满载情况下,用20度舵角,用舵时机在离转向点0.5海里;空载时,舵角可减小5度。 g. 常速(10节以上)转向角度小(30-60度),满载情况下,用15度舵角,用舵时机在离转向点0.5海里;空载时,舵角可减小5度。 h. 常速(10节以上)转向角度小(小于30度),满载情况下,用10度舵角,用舵时机在离转向点0.5海里;空载时和满载情况下一样。 2、正确掌握压反舵时机。 早用舵,早回舵,所操舵角比较大。大角度转向(大于60度),当转到接近新航向前20度开始压反舵,反舵角等于或大于转向时所用舵角(视当时转头速度灵活掌握),接近新航向5度回正舵,再小舵角调整把定在新航向上。小角度转向(30-60度),当转到接近新航向前10度开始压反舵,反舵角等于或大于转向时所用舵角(视当时转头速度灵活掌握)。接近新航向3度回正舵,再小舵角调整把定在新航向上。 只有完全掌握船舶的操作特性,才能熟练、准确、安全地操纵船舶。 3、进出港和经狭水道使用安全航速和注意前后船与本船之间的距离。 进出港和经狭水道航行应使用安全航速;航经狭水道前后船与本船之间的距离最好保持在2海里以上。进出港由于受航道水深和可航水域的限制,加上个别港口进出港航道繁忙,船长应时刻注意本船与前后船舶之间的距离保持在倒车冲程以上,如有引航员在船,发现距离前船在本船当时安全航速的倒车冲程以内,有必要提醒引航员,用高频与前后船舶联系协调行动,保证本船与前后船舶之间的距离在本船倒车冲程以上;注意让开航道两边的浮标,浅点和障碍物。注意航道的富余水深和船舶航行时的下沉量,确保本船进出港航行安全。航经狭水道注意让开狭水道两边的浅点和障碍物。实践证明,单方位避险线和单距离避险线是避让危险物的最简单实用的避让方法。有分道通航的狭水道应遵守分道通航制,没有分道通航的狭水道避让船舶应先用高频联系好,协调行动,谨慎驾驶,以策安全。

第一章 船舶操纵性能复习重点

第一章船舶操纵性能 说课笔记 知识与技能掌握要点: 通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用; 对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。 对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。 掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。 工学结合: 三副值班时,船舶操纵知识及能力要求与本次课的关联; 岗位与船舶操纵知识及能力要求实际应用; 测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色: 理论性较强,注意三校生与普高生的认知能力差别; 充分运用企业提供生产案例和影视资料,使内容贴近航运岗位; KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感; 在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。 第一节船舶旋回性能 在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。 一、船舶旋回运动的过程 船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。 1.第一阶段——转舵阶段 船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

船舶的分类

1船舶的种类 (Types of Ships) 船舶的种类很多,通常可根据其用途进行划分,有时也根据需要按不同的要求进行划分。 按航区(navigation area)划分,可将船舶分为极区船(arctic ship)、远洋船(ocean going ship)、沿海船(coastal vessel)和内河船(inland waterways vessel)。 按航行状态(navigation configuration)划分,可将船舶分为排水型船(displacement ship)和动力支撑型船(dynamic supported craft)。 按机舱(engine room)位置划分,可将船舶分为中机型船(amidships engined ship)、艉机型船(stern engined ship)和中艉机型船(amidships/stern engined ship)。 按甲板(deck)的层数划分,可将船舶分为单甲板船(single decked ship)和多层甲板船(multi-decked ship)。 按上层建筑(superstructure)划分,可将船舶分为三岛型船(three island vessel)和平甲板型船(flush deck vessel)等。 从航运生产实际和船员作业需要出发,本书主要按船舶的用途进行区分。 1.1 货船 货船(cargo ship)一般称为运输船舶,是按用途及承运的货物的种类进行区分的。 (1)杂货船(general cargo vessel) 主要从事各种包装或无包装的非大宗货物运输的船舶,又称为普通货船,这是最基本的一种货船船型。该类型船的货舱一般

相关文档
最新文档