超静定结构计算力法

超静定结构计算力法
超静定结构计算力法

第十章超静定结构计算力法

一.超静定次数确定

1、 超静定结构的特性:与静定结构比较,超静定结构有如下特性:

静定结构 超静定结构 几何特性 无多余约束的几何不变体系 有多余约束的几何不变体系

静力特性

满足平衡条件内力解答是唯

一的,即仅由平衡条件就可求出

全部内力和反力。

超静定结构满足平衡条件内力解

答有无穷多种,即仅由平衡条件求

不出全部内力和反力,还必须考虑

变形条件。

非荷载外因的影响 不产生内力 产生了自内力

内力与刚度的关系 无关

荷载引起的内力与各杆刚度的比值有关,非载载外因引起的内力与各杆刚度的绝对值有关。

内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。 2、超静定次数的确定: 结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。

在超静定结构上去掉多余约束的基本方式,通常有如下几种:

(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。

(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束

(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。

3、几点注意:

①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。对于无铰闭合框结构其超静定次数=3×闭合框数。如图10-2 所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静 定次

数为3×5-(1+1+3)=15次。D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。

②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。如图10-1结构。

③在确定超静定次数时,要将内外多余约束全部去掉。如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。

④在支座解除一个约束,用一个相应的约束反力来代替,在结构内部解除约束,用作用力和反作用力一对力来代替。如图10-1结构所示。

⑤只能去掉多余约束,不能去掉必要的约束,不能将原结构变成瞬变体系或可变体系。如图10-4结构中A点的水平支杆不能作为多余约束去掉。如图10-5结 构中支杆a,b和链杆c不能作为多余约束去掉,否则就将原结构变成了瞬变体系。

二、力法基本概念

1、超静定结构的求解思路:欲求解超静定结构,先选取一个便于计算结构作为基本体系,然后让基本体系与原结构受力一致,变形一致即完全等价,通过这个等价 条件去建立求解基本未知量的基本方程。(基本未知量是超静定结构计算中必须首先求解的关键未知量)。由于求解过程中所选的基本未知量和基本体系不同,超静 定结构的计算有两大基本方法--力法和位移法。

2、力法基本概念:在力法中,以去掉多余约束得到的静定结构作为力法基本体系,以多余未知力作为力法的基本未知量,通过基本体系中沿多余未知力方向的位移 应等于原结构相应的位移来建立力法基本方程,解方程求出多余未知力;多余未知力求出以后,其它反力和内力的计算问题就转化为静定结构的计算问题,可按叠加 法或平衡条件计算。

三、力法典型方程

1、力法典型方程:力法典型方程是根据原结构的位移条件建立起来的。典型方程的数目等于结构的超静定次数。n次超静定结 构的基本体系有n个多余未知力,相应的有n个位移协调条件。利用叠加原理将这些位移条件表述成如下的力法典型方程:

2、几点注意:

①力法方程的物理含义是:基本体系在外部因素和多余未知力共同作用下产生的多余未知力方向上的位移,应等于原结构相应的位移。实质上是位移协调条件。

②主系数δii表示基本体系仅由X i=1作用所产生的Xi方向的位移。

系数恒大于零,负系数可为正、负或零。力法方程的系数只与结构本身和基本未 知力的选择有关,是基本体系的固有特性,与结构上的外因无关。

③自由项 , 分别表

示基本体系仅由荷载作用,支座移动,温度变化所产生的X i方向的位移,可为正、负或零。

④对于具有弹性支承和内部弹性约束的超静定结构,若取弹性约束力作为基本未

知力X i, 右端项为,若的计

⑵荷载的对称性:

对称荷载——绕对称轴对折后,对称轴两边的荷载等值、作用点重合、同向。在大小相等、作用点对称的前提下,与对称轴垂直反向布置的荷载、与对称轴平行同向 布置的荷载、与对称轴重合的集中力是对称荷载。如图(b)所 示。 反对称荷载——绕对称轴对折后,对称轴两边的荷载等值、作用点重合、反向。在大小相等、作用点对称的前提下,与对称轴垂直同向布置的荷载、与对称轴平行反 向布置的荷载、垂直作用在对称轴上的荷载、位于对称轴上的集中力偶是反对称荷载。如图(c) 所示。

任何荷载都可以分解成对称荷载+反对称荷载两部分。

2、取对称的基本体系计算:(荷载可以是任意,仅用于力法)。

不论在何种外因作用下,对称结构应考虑利用对称的基本体系计算。沿对称轴上梁的中央截面切开,三对多余未知力中,弯矩X1和轴力X2是 对称未知力,剪力X3是反对称未知力。 对称未知力产生的单位弯矩图和变形图是对称的;反对称未知力产生的单位弯矩图和变形图是反对称的。如下图所示。

因此,力法方程中的系数

于是,力法方程可简化为

(1)

力法方程分解为独立的两组,一组只包含对称未知 力,一组只包含反对称未知力。

如果荷载对称,M P对称,Δ3P=0,X3=0,对称未知力不为零;

如 果荷载反对称,M P反对称,Δ1P=0, Δ2P=0, X1= X2 =0,反对称未知力不为零。

一般地说,对称结构在对称荷载作用下,内力、反力和变形及位移是对称的。对称结构在反对称荷载作用下,内力、反力和变形及位移是反对称的。

3、取等代结构计算:利用上述对称结构在对称荷载和反对称荷载作用下的受力和变形特点,可以利用半刚架结构(即等代结 构)计算对称结构。

⑴对称结构在对称荷载作用下位于对称轴上的截面,水平位移和转角为零,只有竖向位移。

①奇数跨(无中柱)对称结构在对称荷载作用下的等代结构是将对称轴上的截面切开设置成定向支座,取半边结构。

②偶数跨(有中柱)对称结构在对称荷载作用下的等代结构取法:将对称轴上的刚结点、组 合结点化成固定端,铰结点化成固定铰支座,取半边结构。

⑵对称结构在反对称荷载作用下位于对称轴上的截面,竖向位移为零,水平位移和转角不为零。

①奇数跨(无中柱)对称结构在反对称荷载作用下的等代结构是将对称轴上的截面切开设置 成与对称轴重合的支杆,取半边结构。

②偶数跨(有中柱)对称结构在反对称荷载作用下的等代结构是将对称轴上的柱子的刚度折 半,取半边结构。

4、无弯矩状态判定:

在不考虑轴向变形的前提下,超静定结构在结点集中力作用下有时不产生弯矩、剪力,只产生轴力。 常见的无弯矩状态有以下三种:

1)一对等值反向的集中力沿 一直杆轴线作用,只有该杆有轴力。

2)一集中力沿一柱子轴线作用,只有该柱有轴力。

3)无结点线位移的结构, 受结点集中力作用,只产生轴力。

5、对称结构简化计算小结如下:

1)对称结构在对称(或反对称)荷载作用时的计算要点:

①选取等代结构; ②对等代结构进行计算,绘制弯矩图;

③利用对称或反对称性作原结构的弯矩图;

2)对称结构在任意荷载作用时的处理方法:

①在对称轴上解除多余约束,取对称和反对称未知力直接计算。

②将荷载分为对称和反对称两组,选等代结构计算,再叠加。集中结点力作

用时常这样处理

五、荷载下力法计算

1、超静定梁和刚架:用力法计算荷载作用下的超静定梁和刚架时,通常忽略剪力和轴力对位移的影响,因此,力法方程中系数 和自由项的表达式

为:

(a)

2、选取恰当的基本体系:同一结构取不同的基本体系计算,力法典型方程代表的位移条件不同,力法方程中的系数、自由项不 同,计算过程的简繁程度不同,最后内力图相同。

因此,在保证基本体系是几何不变的前提下,尽量选择恰当的基本体系,使力法方程中的系数和自由项计算简单,并有较多的副系数和自由项等于零。另外,应使基 本体系是由几个独立的基本部分形成,荷载所在部分尽量是基本部分,这样可使各单位弯矩图和荷载弯矩图分布局部,减少它们之间的重叠,使副系数和自由项的计 算简单,也有可能为零。解力法方程也简单。

3、超静定排架:铰接排架由屋架和柱组成。当对排架柱进行内力分析时,通常可将屋架简化为轴向刚度为无穷大的链杆。用力 法计算排架时,切断链杆,代以一对等值反向的多余未知力。因链杆的轴向刚度为无穷大,计算系数和自由项时仍用(a)式。

4、超静定桁架:桁架是铰接链杆体系,在结点荷载作用下,各杆只有轴力。力法方程中得系数和自由项及最后轴力叠加公式 为:

(b) 5、超静定组合结构:在组合结构中,链杆只受轴力,梁式杆既受弯矩,也承受轴力和剪力。在计算位移时,对链杆只考虑轴力 项的影响,对梁式杆只考虑弯矩项的影响。因此,力法方程中得系数和自由项及最后内力叠加公式

为:

(b)

六、非荷载下力法计算

由于超静定结构有多余约束,所以在无荷载作用时,只要有发生变形的因素,如温度改变、支座移动、材料收缩、制造误差等,都可以产生内力(自内力)。 用力法分析这些非荷载因素作用下的超静定结构,其基本原理及步骤与荷载作用下相同,力法典型方程中的系数是基本体系的固有特性,不随外界作用因素而变,所 不同的是力法典型方程中的自由项不再是由荷载所产生,而是由上述因素产生的基本体系在多余未知力方向的位移。

1、温度改变时内力的计算。

温度改变时的力法计算特点:

1)温度改变引起的自内力全由多余未知力引起,且与杆件刚度 EI的绝对值成正比;

2)力法典型方程的形式、系数与荷载作用时相同,自由项不同;

3)当杆剪截面内外边缘由温差时,自内力使得温度低的一面产 生拉应力,温度高的一面产生压应力。因此,在钢筋混凝土结构 中要特别注意降温可能出现的裂缝。

2、温度改变时的内力计算。

支座移动时的力法计算特点:

1)取不同的基本体系计算时,不仅力法方程代表的位移条件不同,而且力法方程的形式也可能不一样,方程的右边可不为零(=±与多余未知力对应的支座位 移)。

2)系数计算同前;自由项 ΔiC=-∑R·c ,c是基本体系的支座位移。 所以,基本体系的支座位移产生自由项。与多余未知力对应的支座位移出现在方程的右边。 3)内力全由多余未知力引起,且与杆件刚度EI的绝对值成正比 七、超静定位移计算

因为原结构在外因作用下产生的受力情况和位移情况,与基本体系在外因和多余未知力作用下产生的受力情况和位移情况相同。因此求原结构的位移可转化为求基本 体系的位移。

为了求基本体系的位移,要先求出基本体系产生位移的弯矩图(即原结构的弯矩图M); 另外,由于是求基本体系的位移,所以在基本体系加单位力,画出虚拟的单位弯矩图,于是,基本体系的位移(亦即原结构的位移)为

虚拟的单位荷载可以加在任一基本体系上,单位弯矩图虽然不同,但求得的位移相同。所以,应选一个便于计算的基本体系虚拟单位荷载。

八、力法计算校核

超静定结构的最后内力图校核要从平衡条件和变形条件两方面进行。

一、平衡条件的校核:从结构中任意取出一部分,都应满足平衡条件。

二、变形条件的校核:计算超静定结构内力是,要同时考虑平衡条件和变形条件。因此,校核工作必须包括变形条 件校核。由于力法方程是变形条件,力法计算主要是围绕着力法方程的建立和求解进行的,所以,力法校核的重点是演算变形条件。

变形条件的一般校核方法是:任选一基本体系,任选一多余未知力X i, 由最后内力图计算出X i方向的位移,并 检查是否与原结构对应位移相等。在荷载作用下,超静定结构的最后弯矩图,与任意基本体系的任一多余未知力的单位弯矩图图乘结果如果等于零, 则满足变形条件。

如果在变形条件的校核使用力法计算时没有使用的单位弯矩图进行计算,可以在一代程度上代替与力法计算中各个单位弯矩图相乘,可以检查出各个单位弯矩图是否 正确。

单元测试

一、填空题

1.1 无荷载就无内力,这句话只适用于静定结构,不适用于超静定结构。

1.2 图示结构截断三根链杆,可以变成一个简支梁,故它有三次超静定。

1.3 图示两次超静定结构,可以选图(b)为基本体系进行力法计算。

1.4 判定下列各超静定结构的弯矩图的形状是否正确。

(a) (b)(c)(d)

(e) (f)(g)(h)

1.5 在图示两结构中,(a)中拉杆的轴力N与(b)中的水平反力X B的关系是:当拉杆的刚度EA=有限值时,N<X B; 当拉杆的刚度EA=无穷大时,N=X B。

1.6 图(a)示对称结构在支座移动下的弯矩图形状如图(b)所示。

1.7 图(a)示对称结构,内部温度升高t,其弯矩图形状如图(b)所示。

1.8 在题1.7中由于弯矩图不满足,所

1.9 在力法计算时,多余未知力由位移条件来求,其它未知力由平衡条件来求。

1.10 在图示结构中若增大柱子的EI值,则梁跨中截面弯矩值减少。

1.11 对图(a)所示结构,选(b)为基本体系,则力法典型方程为。

1.12 图(a)和图(b)为同一结构的两种外因状态,若都选图(c)为基本体系计算,则它们的力法方程中的主系数相同,付系数相同,自由项不同,右端项不同。

1.13 在图示结构中,如将刚结点A化成铰结点,相当于去掉了两个约束。

二、单项选择题

2.1 力法计算的基本未知量是

A 多余未知力

B 支座反力

C 角位移

D 独立的结点线位移

2.2 打开联接三刚片的复铰,相当于去掉几个约束。

A 2

B 3

C 4

D 5

2.3 力法方程中的系数δki表示的是基本体系由

A X i产生的Xk方向的位移

B X i=1产生的X k方向的位移

C X i=1产生的Xi方向的位移

D X k=1 产生的X i方向的位移

2.4 力法基本结构决不能取

A 静定结构

B 超静定结构

C 可变体系

D 不变体系

2.5 力法方程的实质是

A 平衡条件

B 位移条件

C 物理条件

D 互等定理

2.6 图(a)结构如选图(b)为基本体系,其力法方程为

2.7 关于图示对称结构,下列论述正确的是

A A点线位移为零

B AB杆无弯矩

C AB杆无剪力

D AB杆无轴力

2.8 图示对称结构C截面不为零的是

A 竖向位移

B 弯矩

C 剪力

D 轴力

2.9 图示对称结构最少可以简化成几次超静定计算

A 1

B 2

C 3

D 4

2.10 在图示结构中,针对a,b,c,d四杆而言,不能作为多于约束去掉的是

A a

B b

C c

D d

2.11 在图示结构中,若增大拉杆的刚度EA,则梁内D截面弯矩如何?

A 不变

B 增大

C 减小

D 可能会下侧受拉

2.12 图(a)结构如选图(b)为基本体系,其力法方程为

2.13 图示十字架超静定刚架,各杆EI相同,在图示荷载作用下,Q AB为

A 0.5P

B 0.25P

C -0.25P

D 0

2.14 图示两结构中跨中点截面的弯矩之间的关系是

A 跨中点截面的弯矩相等

B C截面弯矩大于D截面弯矩

C 当n很大时C截面弯矩小于D截面弯矩

D 当n很小时C截面弯矩小于D 截面弯矩

结构力学习题集——静定结构位移计算

第三章 静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. M =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。 A a a 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l l /3 2 /3 /3 q 13、图示结构,EI=常数 ,M =?90kN m , P = 30kN 。求D 点的竖向位移。 P 3m 3m 3m 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 q 16、求图示刚架中D点的竖向位移。EI = 常数 。 l l l/2 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。

力法求解超静定结构的步骤

第七章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 §7-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

静定结构位移计算练习题(答案在后)

静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l /3 2 /3 /3 q 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。 18、求图示刚架中D 点的竖向位移。 E I = 常数 。 q l l l/l/22

19、求图示结构A、B两截面的相对转角,EI=常数。 23 l/ l/3 20、求图示结构A、B两点的相对水平位移,E I = 常数。 l l 26、求图示刚架中铰C两侧截面的相对转角。 27、求图示桁架中D点的水平位移,各杆EA 相同。 a 30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。

《结构力学习题集》(上)第四章超静定结构计算——力法

第四章 超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1)、 (2)、 (a ) (b ) (3)、 (4)、 (5)、 (6)、 (7)、 (a)(b) 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a) (b) X 1

6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方 程中?1212 2t a t t l h =--()/()。 t 21 t l A h (a) (b) X 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为 。 (a)(b) 1 二、计算题: 8、用力法作图示结构的M 图。 3m m 9、用力法作图示排架的M 图。已知 A = 0.2m 2 ,I = 0.05m 4 ,弹性模量为E 0。 q

a a 11、用力法计算并作图示结构的M 图。 ql /2 12、用力法计算并作图示结构的M 图。 q 3 m 4 m 13、用力法计算图示结构并作出M 图。E I 常数。(采用右图基本结构。) l 2/3 l /3 /3 l /3 14、用力法计算图示结构并作M 图。EI =常数。 3m 3m

2m 2m 2m 2m 16、用力法计算图示结构并作M 图。EI =常数。 l l q l l 17、用力法计算并作图示结构M 图。E I =常数。 18、用力法计算图示结构并作弯矩图。 16 1 kN m m m m 19、已知EI = 常数,用力法计算并作图示对称结构的M 图。 q l l q

《结构力学习题集》(上)超静定结构计算――力法1(精)

超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1、 (2、 (a (b (3、 (4、 (5、 (6、 (7、 (a(b 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a(bX 1

c 6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中?12122t a t t l h =--(/(。 t 2 1 t l A h (a(bX 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为。 (a(bP k P X 1 二、计算题: 8、用力法作图示结构的M 图。 B EI 3m 4kN A 283 kN 3m EI

/m C 9、用力法作图示排架的M 图。已知 A = 0.2m 2,I = 0.05m 4 ,弹性模量为E 0。 q 8m =2kN/m 6m I I A 10、用力法计算并作图示结构M 图。EI =常数。 M a a a a 11、用力法计算并作图示结构的M图。 q l l ql/2 2 EI EI EI 12、用力法计算并作图示结构的M图。

q= 2 kN/m 3 m 4 m 4 m A EI C EI B 13、用力法计算图示结构并作出M图。E I 常数。(采用右图基本结构。P l2/3l/3l/3 l2/3 P l/3 X 1 X 2 14、用力法计算图示结构并作M图。EI =常数。 3m 6m

2006典型例题解析--第3章-静定结构位移计算

第3章 静定结构位移计算 §3 – 1 基本概念 3-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 3-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 3-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

结构力学自测题(第六单元位移法解超静定结构)

结构力学自测题(第六单元位移法解超静定结构) 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、图 示 结 构 ,?D 和 ?B 为 位 移 法 基 本 未 知 量 ,有 M i l ql AB B =-682 ?// 。 ( ) l D ? 2、图 a 中 Z 1, Z 2 为 位 移 法 的 基 本 未 知 量 , i = 常 数 , 图 b 是 Z Z 2110== , 时 的 弯 矩 图 , 即 M 2 图 。 ( ) a b l ( ) ( ) 3、图 示 超 静 定 结 构 , ?D 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。 此 结 构 可 写 出 位 移 法 方 程 111202 i ql D ?+=/ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。 ( ) 2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 : A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+426? ??/。 ( ) ?A B 3、图 示 连 续 梁 , 已 知 P , l ,?B , ?C , 则 : A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 ( ) l l l l /2/2

(整理)力法求解超静定结构的步骤:.

第八章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 6) §8-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

结构力学位移法题及答案

> 超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1) (2) (3) (4) (5) (6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI=EI= 24442 @ 2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。 2 * 13、用位移法计算图示结构并作M 图。E I =常数。

l l /2l /2 14、求对应的荷载集度q 。图示结构横梁刚度无限大。已知柱顶的水平位移为 ()5123/()EI →。 12m 12m 8m q 15、用位移法计算图示结构并作M 图。EI =常数。 l l l l — 16、用位移法计算图示结构,求出未知量,各杆EI 相同。 4m 19、用位移法计算图示结构并作M 图。 q l l

20、用位移法计算图示结构并作M 图。各杆EI =常数,q = 20kN/m 。 6m 6m | 23、用位移法计算图示结构并作M 图。EI =常数。 l l 2 24、用位移法计算图示结构并作M 图。EI =常数。 q 29、用位移法计算图示结构并作M 图。设各杆的EI 相同。 q q l l /2/2 * 32、用位移法作图示结构M 图。 E I =常数。

典型例题解析-_静定结构位移计算

第5章 静定结构位移计算 §5 – 1 基本概念 5-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 5-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 5-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

位移法例题

第7章 位移法 习 题 7-1:用位移法计算图示超静定梁,画出弯矩图,杆件EI 为常数。 题7-1图 7-2:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-2图 7-3:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-3图 7-4:用位移法计算图示超静定梁,画出弯矩图。 C H 2

题7-4图 7-5:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-5图 7-6:用位移法计算图示排架,画出弯矩图。 题7-6图 7-7:用典型方程法计算7-2题,画出弯矩图。 7-8:用典型方程法计算7-3题,画出弯矩图。 7-9:用典型方程法计算7-5题,画出弯矩图。 7-10:用典型方程法计算图示桁架,求出方程中的系数和自由项。 题7-10图 7-11:用典型方程法计算图示刚架,求出方程中的系数和自由项。 1 1 E

题7-11图 7-12:用位移法计算图示结构,杆件EI 为常数(只需做到建立好位移法方程即可)。 题7-12图 7-13:用位移法计算图示结构,并画出弯矩图。 题7-13图 7-14:用位移法计算图示结构,并画出弯矩图。 C L L F

题7-14图 7-15:用位移法计算图示刚架,画出弯矩图。 题7-15图 7-16:用位移法计算图示结构,并画出弯矩图。 题7-16图 7-17:用位移法计算图示结构,并绘弯矩图,所有杆件的EI 均相同。 L L L L a a

题7-17图 7-18:确定图示结构用位移法求解的最少未知量个数,并画出基本体系。 题7-18图 7-19:利用对称性画出图示结构的半刚架,并在图上标出未知量,除GD 杆外,其它杆件的EI 均为常数。 e ) k C C d ) (c ) F k a ) (b ) D B L L

第5章 静定结构位移计算

第5章 静定结构位移计算 习题 5-1:由积分法求图示悬臂梁C 点的竖向位移CY ?,杆件的EI 为常数。 题5-1图 5-2:由积分法求图示悬挑梁C 点、D 点的竖向位移CY ?和DY ?,杆件EI 为常数。 题5-2图 5-3:图示刚架的A 支座向下发生了a 的移动,向左发生了b 的移动,求由此引起C 点的转角C ??和D 点的竖向位移DY ?。 题5-3图 题5-4图 5-4:图示刚架的A 支座向下发生了a 的移动,C 支座向右发生了b 的移动,求由此引起铰D 两侧截面的相对转角D ??和E 点的竖向位移EY ?。 5-5:图示桁架的CE 杆由于制造误差比设计短了a ,试计算由此引起的D 点水平位移DX ?。杆件的EA 均相同。 m 4kN

题5-5图 5-6:图示桁架的EB 杆由于制造误差比设计短了a ,试计算由此引起的D 点水平位移DX ?。杆件的EA 均相同。 题5-6图 5-7:求图示桁架E 点的竖向位移 EY ?、FG 杆的转角 FG ??,所有杆件EA 相同。 题5-7图 5-8:求出图示桁架C 点的竖向位移 CY ?,所有杆件的EA 相同。

题5-8图 5-9:求图示结构的C 、D 两点的相对水平位移 CDX ?,所有杆件的EI 相同。 题5-9图 5-10:求图示结构D 点的水平位移 DX ?,所有杆件的EI 相同。 题5-10图 5-11:计算图示结构D 点的转角 D ??,所有杆件的EI 相同,弹簧刚度系数为k 。 10kN

题5-11图 5-12:试求图示结构G 点的水平位移GX ?,所有杆件的EI 均为常量。 题5-12图 5-13:用图乘法求图示结构D 点的竖向位移DY ?,所有杆件的EI 相同,弹簧的刚度系数为k 。 题5-12图 5-14:求图示结构A 点的水平位移 AX ?、D 点的转角 D ??,所有杆件的EI 相同。 q kN

结构力学-第7章-位移法Word版

第7章位移法 一. 教学目的 掌握位移法的基本概念; 正确的判断位移法基本未知量的个数; 熟悉等截面杆件的转角位移方程; 熟练掌握用位移法计算荷载作用下的刚架的方法 了解位移法基本体系与典型方程的物理概念和解法。 二. 主要章节 §7-1 位移法的基本概念 §7-2 杆件单元的形常数和载常数—位移法的前期工作 §7-3 位移法解无侧移刚架 §7-4 位移法解有侧移刚架 §7-5 位移法的基本体系 §7-6 对称结构的计算 *§7-7支座位移和温度改变时的位移法分析(选学内容) §7-8小结 §7-9思考与讨论 三. 学习指导 位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。 四. 参考资料 《结构力学(Ⅰ)-基本教程第3版》P224~P257 第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。

本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)② 基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解) §7-1 位移法的基本概念 1.关于位移法的简例 为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。图7-1和图7-2所示。 (a) (a) (b) (b) 图7-1 图7-2 第一步:从结构中取出一个杆件进行分析。(杆件分析) 图7-2中杆件AB 如已知杆端B 沿杆轴向的位移为i u (即杆件的伸长)则杆端力Ni F 为: i i i Ni u l EA F (7-1) E-为弹性模量,A-为杆件截面面积,i l -为杆件长度

工程力学习题集(三)

力法 思考题 1.超静定结构与静定结构在几何组成上有何区别?解法上有什么不同? 2.力法中超静定结构的次数是如何确定的? 3.力法方程及方程中各系数和自由项的物理意义是什么? 4.应用力法计算时,对超静定结构作了什么假定? 5.在超静定桁架和组合结构中,切开或撤去多余链杆的基本结构,两者的力法方程是否相同? 6.举例说明用力法解超静定结构的步骤。 7.力法方程中为什么主系数必为正值,而副系数可为正值、负值或为零? 8.如何判定结构是否为对称结构?在分析对称结构时,应如何简化计算? 习题 1.试确定图示各结构的超静定次数。

题1图 2.试用力法计算图示超静定梁,并绘出内力图。 题2图 3.用力法计算图示连续梁,并绘弯矩图,EI为常量。

题3图 4.用力法计算图示刚架,并作出内力图。 题4图 5.用力法计算图示刚架,并作出内力图。 题5图 6.用力法计算图示刚架,并作出弯矩图。

题6图 7.试求图示超静定桁架各杆的内力。各杆EA均相同。 题7图 8.作图示结构中CD梁的弯矩图,各杆EI=常数,立柱AB截面面积A= 题8图 9.试用力法计算下列排架,作弯矩图。

题9图 10.利用对称性计算图示结构,绘出弯矩图。 题10图 位移法 思考题 1.用位移法计算结构时,为什么能够用结点位移作为基本未知量? 2.举例说明用位移法解超静定结构的步骤。 3.为什么一个刚结点只有一个转角作为基本未知量?为什么铰处的转角不作

为基本未知量? 4.位移法能否用于求解静定结构,为什么? 习题 1.试确定图示各结构用位移法计算时的基本未知量数目。 题1图 2.用位移法计算图示刚架,并作出内力图。 题2图 3.用位移法计算图示刚架,并作出内力图。

结构力学位移法题及答案

超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1)(2)(3) (4)(5)(6) 2、位移法求解结构内力时如果P R一定为零。 M图为零,则自由项1P 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M图,横梁刚度EA →∞,两柱线刚度i相同。 13、用位移法计算图示结构并作M图。E I =常数。 14、求对应的荷载集度q。图示结构横梁刚度无限大。已知柱顶的水平位移为 () /() EI→。 5123 15、用位移法计算图示结构并作M图。EI =常数。 16、用位移法计算图示结构,求出未知量,各杆EI相同。 19、用位移法计算图示结构并作M图。 20、用位移法计算图示结构并作M图。各杆EI =常数,q = 20kN/m。 23、用位移法计算图示结构并作M图。EI =常数。 24、用位移法计算图示结构并作M图。EI =常数。 29、用位移法计算图示结构并作M图。设各杆的EI相同。 32、用位移法作图示结构M图。E I =常数。 36、用位移法计算图示对称刚架并作M图。各杆EI =常数。 38、用位移法计算图示结构并作M图。EI =常数。 42、用位移法计算图示结构并作M图。 43、用位移法计算图示结构并作M图。EI =常数。 48、已知B点的位移?,求P。 51、用位移法计算图示结构并作M图。 超静定结构计算——位移法(参考答案) 1、(1)、4;(2)、4;(3)、9;(4)、5;(5)、7; (6)、7。 2、(X) 3、(X) 4、(O) 5、(X) 12、13、

超静定计算

一. 用力法计算超静定结构 (一)复习重点 1. 理解超静定结构及多余约束的概念,学会确定超静定次数 2. 理解力法原理 3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构) 4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构) 5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构) (二)小结 1. 超静定结构、多余约束、超静定次数 (1)超静定结构 从几何组成角度,结构分为静定结构和超静定结构。 静定结构:几何不变,无多余约束。 超静定结构:几何不变,有多余约束。 (2)多余约束 多余约束的选取方案不唯一,但是多余约束的总数目是不变的。 (3)超静定次数 多余约束的个数是超静定次数。 判断方法:去掉多余约束使原结构变成静定结构。

2. 力法原理 力法是计算超静定结构最基本的方法 (1)将原结构变为基本结构 (2)位移条件: (3)建立力法方程

3.用力法求解超静定梁和刚架例:二次超静定结构 (1)原结构变为基本结构 (2)位移条件 (3)力法方程

(3)绘弯矩图 4. 用力法计算超静定桁架和组合结构 注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。 例:超静定组合结构 (1)原结构变为基本结构 (2)位移条件

(3)力法方程 (4)绘弯矩图 5. 了解温度变化、支座移动时超静定结构的内力计算 (1)温度变化时,超静定结构的内力计算 原结构变为基本结构 位移条件 力法方程

(2)支座移动时,超静定结构的内力计算 原结构变为基本结构 位移条件 二. 用位移法计算超静定结构 (一)复习重点 1. 了解位移法基本概念及位移法与力法的区别 2. 掌握用位移法计算超静定结构(具有一个及两个结点位移) 3. 掌握计算对称结构的简化方法 (二)小结 1. 了解位移法基本概念及位移法与力法的区别 位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。 位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,且弯曲变形是微 2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构) 例:求连续梁的内力 解:(1)确定基本未知量及基本体系

位移法解超静定结构

结构力学自测题(第六单元) 位移法解超静定结构 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、图 示 结 构 ,?D 和 ?B 为 位 移 法 基 本 未 知 量 ,有 M i l ql AB B =-682?// 。 ( ) l D 2、图 a 中 Z 1, Z 2 为 位 移 法 的 基 本 未 知 量 , i = 常 数 , 图 b 是 Z Z 2110== , 时 的 弯 矩 图 , 即 M 2 图 。 ( ) a b l ( ) ( ) 3、图 示 超 静 定 结 构 , ?D 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。 此 结 构 可 写 出 位 移 法 方 程 111202 i ql D ?+=/ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。 ( ) 2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 : A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+426?? ?/。 ( ) ?A B 3、图 示 连 续 梁 , 已 知 P , l ,?B , ?C , 则 : A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 ( ) 4、图 示 刚 架 , 各 杆 线 刚 度 i 相 同 , 则 结 点 A 的 转 角 大 小 为 : ( ) A . m o / (9i ) ; B . m o / (8i ) ; C . m o / (11i ) ; D . m o / (4i ) 。 5、图 示 结 构 , 其 弯 矩 大 小 为 : ( ) A . M AC =Ph /4, M BD =Ph /4 ; B . M A C =Ph /2, M B D =Ph /4 ; C . M AC =Ph /4, M B D =Ph /2 ; D . M AC =Ph /2, M BD =Ph /2 。 2 6、图 示 两 端 固 定 梁 , 设 AB 线 刚 度 为 i , 当 A 、B 两 端 截 面 同 时 发 生 图 示 单 位 转 角 时 , 则 杆 件 A 端 的 杆 端 弯 矩 为 : A. I ; B. 2i ; C. 4i ; D. 6i ( ) ( )i A B A =1 ?B =1 ? 7、图 示 刚 架 用 位 移 法 计 算 时 , 自 由 项 R P 1 的 值 是 : A. 10 ; B. 26 ; C. -10 ; D. 14 。 ( ) 4m 6kN/m 8、用 位 移 法 求 解 图 示 结 构 时 , 独 立 的 结 点 角 位 移 和 线 位 移 未 知 数 数 目 分 别 为 : A . 3 , 3 ; B . 4 , 3 ; C . 4 , 2 ; D . 3 , 2 。 ( ) 三、填 充 题 ( 将 答 案 写 在 空 格 内 ) 1、位 移 法 可 解 超 静 定 结 构 , 解 静 定 结 构 , 位 移 法 的 典 型 方 程 体 现 了 ________________________条 件 。 2、图 b 为 图 a 用 位 移 法 求 解 时 的 基 本 体 系 和 基 本 未 知 量 Z Z 12 , , 其 位 移 法 典 型 方 程 中 的 自 由 项, R 1 P = , R 2 P = 。 a b ( ) ( ) 3、图 示 刚 架 ,各 杆 线 刚 度 i 相 同 ,不 计 轴 向 变 形 ,用 位 移 法 求 得 M AD =???????? ,M BA =___________ 。 4、图 示 刚 架 ,欲 使 ?A =π/180,则 M 0 须 等 于 。 5、图 示 刚 架 ,已 求 得 B 点 转 角 ?B = 0.717/ i ( 顺 时 针 ) , C 点 水 平 位 移 ?C = 7.579/ i (→) , 则 M AB = , M DC = ___________ 。 6、图 示 排 架 ,Q BA =_______ , Q DC =_______ , Q FE = _________ 。 EA=EA=

4静定结构的位移计算习题解答.

第4章静定结构的位移计算习题解答 习题4.1 是非判断题 (1 变形体虚功原理仅适用于弹性体系,不适用于非弹性体系。( (2 虚功原理中的力状态和位移状态都是虚设的。( (3 功的互等定理仅适用于线弹性体系,不适用于非线弹性体系。( (4 反力互等定理仅适用于超静定结构,不适用于静定结构。( (5 对于静定结构,有变形就一定有内力。( (6 对于静定结构,有位移就一定有变形。( (7 习题4.1(7图所示体系中各杆EA 相同,则两图中C 点的水平位移相等。( (8 M P 图,M 图如习题4.1(8图所示,EI =常数。下列图乘结果是正确的: 4 832(12l l ql EI ??? ( (9 M P 图、M 图如习题4.1(9图所示,下列图乘结果是正确的: 0332 02201111(1y A EI y A y A EI ++ ( (10 习题4.1(10图所示结构的两个平衡状态中,有一个为温度变化,此时功的互等 定理不成立。(

F C C F l (aP l l (b P l 习题 4.1(7图图 (bM l /4 1 图 (aM P l 8

1ql 2q M 图 (bP M 图 (a1 02 y A 3A 2 1A 2 EI EI 1 01 y 03 y 习题 4.1(8图习题 4.1(9图(a(b F P t 12 t

习题 4.1(10图 【解】(1错误。变形体虚功原理适用于弹性和非弹性的所有体系。 (2错误。只有一个状态是虚设的。 (3正确。 (4错误。反力互等定理适用于线弹性的静定和超静定结构。 (5错误。譬如静定结构在温度变化作用下,有变形但没有内力。 (6错误。譬如静定结构在支座移动作用下,有位移但没有变形。 (7正确。由桁架的位移计算公式可知。 (8错误。由于取0y 的M 图为折线图,应分段图乘。 (9正确。 (10正确。习题4.2 填空题 (1 习题4.2(1图所示刚架,由于支座B 下沉?所引起D 点的水平位移?D H =______。 (2 虚功原理有两种不同的应用形式,即_______原理和_______原理。其中,用于求位移的是_______原理。 (3 用单位荷载法计算位移时,虚拟状态中所加的荷载应是与所求广义位移相应的________。 (4 图乘法的应用条件是:__________且M P 与M 图中至少有一个为直线图形。 (5 已知刚架在荷载作用下的M P 图如习题4.2(5图所示,曲线为二次抛物线,横梁的 抗弯刚度为2EI ,竖杆为EI ,则横梁中点K 的竖向位移为________。 (6 习题4.2(6图所示拱中拉杆AB 比原设计长度短了1.5cm ,由此引起C 点的竖向位移为________;引起支座A 的水平反力为________。 (7 习题4.2(7图所示结构,当C 点有F P =1(↓作用时,D 点竖向位移等于?(↑,当E 点有图示荷载作用时,C 点的竖向位移为________。 (8 习题4.2(8图(a 所示连续梁支座B 的反力为(16 11R ↑=B F ,则该连续梁在支座B

超静定结构计算力法

第十章超静定结构计算力法 一.超静定次数确定 1、 超静定结构的特性:与静定结构比较,超静定结构有如下特性: 静定结构 超静定结构 几何特性 无多余约束的几何不变体系 有多余约束的几何不变体系 静力特性 满足平衡条件内力解答是唯 一的,即仅由平衡条件就可求出 全部内力和反力。 超静定结构满足平衡条件内力解 答有无穷多种,即仅由平衡条件求 不出全部内力和反力,还必须考虑 变形条件。 非荷载外因的影响 不产生内力 产生了自内力 内力与刚度的关系 无关 荷载引起的内力与各杆刚度的比值有关,非载载外因引起的内力与各杆刚度的绝对值有关。 内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。 2、超静定次数的确定: 结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。 在超静定结构上去掉多余约束的基本方式,通常有如下几种: (1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。 (2)断一根弯杆、去掉一个固定端,相当于去掉三个约束 (3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。 3、几点注意: ①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。对于无铰闭合框结构其超静定次数=3×闭合框数。如图10-2 所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静 定次

数为3×5-(1+1+3)=15次。D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。 ②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。如图10-1结构。 ③在确定超静定次数时,要将内外多余约束全部去掉。如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。 ④在支座解除一个约束,用一个相应的约束反力来代替,在结构内部解除约束,用作用力和反作用力一对力来代替。如图10-1结构所示。 ⑤只能去掉多余约束,不能去掉必要的约束,不能将原结构变成瞬变体系或可变体系。如图10-4结构中A点的水平支杆不能作为多余约束去掉。如图10-5结 构中支杆a,b和链杆c不能作为多余约束去掉,否则就将原结构变成了瞬变体系。

结构力学自测题(第六单元)位移法解超静定结构

结构力学自测题(第六单元)位移法解超静定结构 姓名 学号 一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误) 1、图示结构,?D 和?B 为位移法基本未知量,有M i l ql AB B =-682 ?//。 ( ) l D ? 2、图a 中Z 1,Z 2为位移法的基本未知量,i =常数,图b 是Z Z 2110== ,时的弯矩图,即M 2图。 ( ) Z a b l ( ) ( ) 3、图示超静定结构,?D 为D 点转角(顺时针为正),杆长均为l ,i 为常数。此结构可写 出位移法方程111202 i ql D ?+=/。 ( ) 二、选择题(将选中答案的字母填入括弧内) 1、位移法中,将铰接端的角位移、滑动支承端的线位移作为基本未知量:( ) A. 绝对不可; B. 必须; C. 可以,但不必; D. 一定条件下可以。 2、AB 杆变形如图中虚线所示,则A 端的杆端弯矩为: ( ) A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+4 26???/ 。 ?A B 3、图示连续梁,已知P ,l ,?B ,?C ,则:( ) A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 4、图示刚架,各杆线刚度i 相同,则结点A 的转角大小为: ( ) A .m o /(9i ) ; B .m o /(8i ) ; C .m o /(11i ) ; D .m o /(4i ) 。 5、图示结构,其弯矩大小为: ( ) A .M AC =Ph /4, M BD =Ph /4 ; B .M A C =Ph /2, M B D =Ph /4 ; C M AC =Ph /4, M BD =Ph /2 ; D .M AC =Ph /2, M BD =Ph /2 。

相关文档
最新文档