(完整版)三相逆变器SPWM的仿真

(完整版)三相逆变器SPWM的仿真
(完整版)三相逆变器SPWM的仿真

目录

一摘要 (2)

二三项逆变器SPWM调制原理 (2)

三SPWM逆变电路及其控制方法 (2)

3.1SPWM包括单极性和双极性两种调制方法 (2)

3.2调制法 (3)

3.3特定谐波消去法 (4)

四三相桥式逆变器SPWM调制的仿真型 (5)

4.1SUBSYSTEM封装模块 (6)

4.2SUBSYSTEM1封装模块 (7)

五三相桥式逆变器SPWM调制的仿真波形 (7)

六频谱分析 (14)

6.1对相电压UN’、VN’、WN’输出电压进行谐波分析 (14)

6.2对负载的线电压U UV、U VW、U WU的输出波形进行谐波分析 (16)

6.3负载VN的相电压UN、VN、WN输出波形进行谐波分析 (17)

七结语 (19)

八参考文献 (19)

三相逆变器双极性SPWM调制技术的仿真

一摘要:在电力电子技术中,PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。本论文以三相逆变器双极性SPWM调制技术的仿真为例,通过运用了

Matlab/Simulink和Power System Block(PSB)电力系统模块集工具箱仿真环境,对电路进行建模、计算和仿真分析。通过调节载波比N,用示波器观看输出波形的改变。另外,采用subplot作出相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,并加以分析。

关键词:PWM 三相逆变器载波比N 示波器仿真波形

二三相逆变器SPWM调制原理

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。图1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,是指环节的输出响应波形基本相同。

重要理论基础——面积等效原理

a)矩形脉冲b)三角脉冲c)正弦半波脉冲d)单位脉冲函

图1 形状不同而冲量相同的各种窄脉冲

三SPWM逆变电路及其控制方法

3.1 SPWM包括单极性和双极性两种调制方法

(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。

(2)如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式。

图2双极性PWM控制方式

其中:载波比——载波频率f c与调制信号频率f r 之比N,既N = f c / f r

调制度――调制波幅值Ar与载波幅值Ac之比,即Ma=Ar/Ac

同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

?基本同步调制方式,f r 变化时N不变,信号波一周期内输出脉冲数固定;

?三相电路中公用一个三角波载波,且取N 为3的整数倍,使三相输出对称;

?为使一相的PWM波正负半周镜对称,N应取奇数;

?f r 很低时,f c 也很低,由调制带来的谐波不易滤除;

?f r 很高时,f c 会过高,使开关器件难以承受。

异步调制***——载波信号和调制信号不同步的调制方式。

?通常保持f c 固定不变,当f r 变化时,载波比N 是变化的;

?在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称;

?当f r 较低时,N 较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小;

?当f r 增高时,N 减小,一周期内的脉冲数减少,PWM 脉冲不对称的影响就变大。

3.2 调制法

1)单相桥式SPWM逆变电路调制法

设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补。以u o正半周,让V1通,V2断,V3和V4交替通断。由于负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。负载电流为正的区间,V1和V4导通时,u o等于U d 。V4关断时,负载电流通过V1和VD3续流,u o=0

负载电流为负的区间,V1和V4仍导通,i o为负,实际上i o从VD1和VD4流过,仍有u o=U d 。V4关断V3开通后,i o从V3和VD1续流,u o=0。

u o总可得到U d和零两种电平。u o负半周,让V2保持通,V1保持断,V3和V4交替通断,u o可得-U d和零两种电平。

图3 三相桥式PWM型逆变电路

2)U 、V、W三相的PWM控制是通常公用一个三角波Uc,三相的调制信号Uru、Urv、Urw依次相差120°。U、V、W各相功率开关器件的控制规律相同,现以U相为例来分析。当Uru>Uc时,给桥臂V1以导通的信号,给下桥臂V4以关断的信号,则U相相对于直流电源假想中点N’的输出电压UN’=Ud/2。当Uru

UN=UN’-(UN’+VN’+WN’) /3

在电压型逆变电路的PWM控制中,同一相上下两个臂的驱动信号都是互补的。

3.3特定谐波消去法

输出电压半周期内,器件通、断各3次(不包括0和π),共6个开关时刻可控。为减少谐波并简化控制,要尽量使波形对称。首先,为了消除偶次谐波,应使波形正负两个半周期镜对称。

特定谐波消去法的输出SPWM波形

四 三相桥式逆变器SPWM 调制的仿真模型

总图

U

V

W

Continuous pow ergui

v +-

WN'1

v +-WN'

v +-

VW

v +-

VN'1

v +-

VN'

v +-

UW

v +-

UV

v +-

UN'1

v +-

UN'

In2

In3

In4In6

In7

In5

Out1Out2Out3Out4Out5Out6

Conn1Conn3ConnN'

Conn2

Subsystem1

Out1Out2

Out3

Out4

Out5

Out6

Out7

Subsystem

RL3

RL2

RL1

6Multimeter

F

E

D1

D

C

B

A

电阻R=1,电感L=1e-3,电容C=inf

Operator Operator2

脉冲电路参数设置为:载波比N=9-21,取N=16设置三角波时间[0 6.25e-4 1.25e-3] 幅值[-1 1 -1],Ma=0.8-0.95,取Ma=0.88,单相调制信号波U, V, W依次相差120°电角度。w取100*pi, U、V、W 取角度分别取0、2/3*pi、4/3*pi。E1=E2=150V。

6Out65

Out54Out43

Out32

Out21

Out14

Conn33

Conn22

Conn11ConnN'

VD6VD5

VD4

VD3VD2

VD1g

m

C

E

V6

g

m

C

E

V5

g

m

C

E

V4

g

m

C

E

V3

g

m

C

E

V2

g

m

C

E

V1

E2

E1

6

In55

In74

In63In42

In31In2

E1=E2=150V

4.3调制波电路分析

4.3.1单相双极性SPWM 调制原理图

Sequence

当0.88Ur>=Uc 时,输出Out3 当0.88Ur

4.3.2 三相双极性SPWM调制原理图

Operator Operator2

原理同上比较得出,当0.88Ur>=Uc时,输出Out3;当0.88Ur=Uc时,输出Out4;当0.88Vr=Uc,时,输出Out6,当0.88Wr

输出信号Out2,3,4,5,6,7用示波器B测得波形,信号经过晶闸管IGBT得到输出信号Out1,2,3,4,5,6,用示波器C测得波形。用示波器A测得三角波和三个正弦波行,用示波器D测相电压UN'UV' WN'电压波形,用示波器D1测相电压UN VN WN 的波形,用示波器E测得线电压UV VW UW的波形,用示波器F测得电阻电感两端的电压电流。

封装模块

1)选择要建立的子系统模块,不包括输入端口和输出端口。

2)选择模型编辑窗口Edit菜单中的Create Subsystem命令,或右击鼠标选择该命令,这样,子系统就建好了,系统自动把输入模块和输出模块添加到子系统。

3)修改子系统名,修改需要的子系统名。

4)选择模块,右击鼠标选择"Mask Subsystem",将其封装。

5)在编辑器(Mask Edit)中添加需要封装的相关参数(Parameters):Ar,fr,N,Ma.

6)初始化(Initialization)其他参数,这里需要用Matlab语句执行:Ac=Ar/Ma;fc=fr*N

7)确定完成封装.

五 三相桥式逆变器SPWM 调制仿真波形 电阻RL1、RL2、RL3电压电流波形

-200

0200Ub: RL1

Ib: RL1

-200

0200Ub: RL2

Ib: RL2

-200

0200Ub: RL3

Ib: RL3

示波器A 仿真波形

subplot(1,1,1)

plot(a.time,a.signals(1).values)

title('三角载波与调制信号波波形N=16')

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

三角载波与调制信号波波形N=16

示波器B 波形 subplot(6,1,1)

plot(b.time,b.signals(1,1).values) title('out2电压波形') subplot(6,1,2)

plot(b.time,b.signals(1,2).values) title('out3电压波形') subplot(6,1,3)

plot(b.time,b.signals(1,3).values) title('out4电压波形') subplot(6,1,4)

plot(b.time,b.signals(1,4).values) title('out5电压波形') subplot(6,1,5)

plot(b.time,b.signals(1,5).values) title('out7电压波形') subplot(6,1,6)

plot(b.time,b.signals(1,6).values) title('out6电压波形')

0.005

0.01

0.0150.020.025

0.03

0.035

0.04

00.51out2电压波形

00.0050.010.0150.020.025

0.030.0350.04

00.51out3电压波形

00.0050.010.0150.020.025

0.030.0350.04

00.51out4电压波形

00.0050.010.0150.020.025

0.030.0350.04

00.51out5电压波形

00.0050.010.015

0.02

0.025

0.030.0350.04

00.51out7电压波形

00.0050.010.0150.020.0250.030.0350.04

00.51

示波器C 波形 subplot(6,1,1)

plot(c.time,c.signals(1,1).values) subplot(6,1,2)

plot(c.time,c.signals(1,2).values) subplot(6,1,3)

plot(c.time,c.signals(1,3).values) subplot(6,1,4)

plot(c.time,c.signals(1,4).values) subplot(6,1,5)

plot(c.time,c.signals(1,5).values) subplot(6,1,6)

plot(c.time,c.signals(1,6).values)

00.0050.010.0150.020.0250.030.0350.04

-5000500

00.0050.010.0150.020.0250.030.0350.04

-5000500

00.0050.010.0150.020.0250.030.0350.04

-5000500

00.0050.010.0150.020.0250.030.0350.04

-5000500

00.0050.010.0150.020.0250.030.0350.04

-5000500

00.0050.010.0150.020.0250.030.0350.04

-500

0500

示波器D 波形 subplot(3,1,1)

plot(d.time,d.signals(1,1).values) title('相电压UN ’电压波形') subplot(3,1,2)

plot(d.time,d.signals(1,2).values) title('相电压VN ’电压波形') subplot(3,1,3)

plot(d.time,d.signals(1,3).values) title('相电压WN ’电压波形')

00.0050.010.0150.020.0250.030.0350.04

相电压UN’电压波形

相电压VN’电压波形

00.0050.010.0150.020.0250.030.0350.04

相电压WN’电压波形

示波器D1波形 subplot(3,1,1)

plot(d2.time,d2.signals(1,1).values) title('U 相相电压波形图') subplot(3,1,2)

plot(d2.time,d2.signals(1,2).values) title('V 相相电压波形图') subplot(3,1,3)

plot(d2.time,d2.signals(1,3).values) title('W 相相电压波形图')

0.0050.010.0150.020.0250.030.0350.04

-2000200U 相相电压波形图

00.0050.010.0150.020.0250.030.0350.04

-2000200V 相相电压波形图

0.0050.010.0150.020.0250.030.0350.04

-200

0200

示波器E波形

subplot(3,1,1)

plot(e.time,e.signals(1,1).values)

title('线电压UN’电压波形')

subplot(3,1,2)

plot(e.time,e.signals(1,2).values)

title('线电压VN’电压波形')

subplot(3,1,3)

plot(e.time,e.signals(1,3).values)

title('线电压WN’电压波形')

线电压UN’电压波形

00.0050.010.0150.020.0250.030.0350.04

线电压VN’电压波形

00.0050.010.0150.020.0250.030.0350.04

线电压WN’电压波形

00.0050.010.0150.020.0250.030.0350.04

示波器F波形

subplot(3,1,1)

plot(f.time,f.signals(1,1).values);

subplot(3,1,2)

plot(f.time,f.signals(1,2).values);

subplot(3,1,3)

plot(f.time,f.signals(1,3).values);

电阻电感电压电流波形

0.0050.010.0150.020.0250.030.0350.04

-2000200-2000200-200

0200

六 频谱分析

6.1 对相电压UN ’ 、VN ’ 、WN ’输出电压进行谐波分析

相电压UN ’谐波分析

相电压VN’谐波分析

相电压WN’谐波分析

6.2 对负载的线电压Uuv、Uvw、Uwu的输出波形进行谐波分析

对线电压Uuv谐波分析

对线电压Uvw谐波分析

对线电压Uwu谐波分析

6.3负载VN的、VN、WN输出波形进行谐波分析

相电压UN谐波分析

相电压VN谐波分析

相电压WN谐波分析

由于负载的参数一样,故相电压UN 、VN和WN的三者谐波情况基本一样。频谱分析情况基本一致。

可以看出,其PWM波中不含有低次谐波,只含有角频率为Wc及其附近的谐波,以及2Wc、3Wc等及其附近的谐波。在上述谐波中,幅值最高影响最大的时角频率为Wc的谐波分量。Wc>>Wr,所以SPWM波形中所含的主要谐波的频率要比基波频率高的多,是很容易滤除的。载波频率越高,SPWM波形谐波频率就越高,所需滤波器的体积越小。另外,一般的滤波器都有带宽,如按载波频率设计滤波器,载波附近的谐波也可滤除。

七结语

通过以上的仿真过程分析,可以得到下列结论:(1)与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。(2)载波频率越高,SPWM 波形中谐波频率就越高。所需滤波器的体积就越小。一般在输出电压半周期内,器件通、断各k次,考虑到PWM波四分之一周期对称,k个开关时刻可控,除用一个自由度控制基波幅值外,可消去k-1个频率的特定谐波。(3)三相桥式PWM型逆变电路采用双极性控制方式比较可行,且操作简单。再依次验证了PWM控制技术在逆变电路中有着十分重要的意义。让自己学到挺多认识更深,更了解Simulink。通过学习对CAD的认识更深,能够更好的运用仿真软件,以后可以更好的运用。很多以前的不懂的现在都明白,做完就很有成就感,经过这次的仿真更明白Simulink。对单相交流降压电路更了解。

八参考文献

黄俊,王兆安电力电子技术(第5版)北京:机械工业出版社,2010

张晓华控制系统数字仿真与CAD(第3版) 北京:机械工业出版社 2010

刘卫国,MATLAB程序设计与应用,(第2版)北京:高等教育出版社,2006.

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

基于SIMULINK的并网逆变器的仿真研究

计算机辅助工程设计 课程设计与报告 题目:基于SIMULINK的并网逆变器的仿真研究

基于SIMULINK的并网逆变器的仿真研究 第一章绪论 1.1课题背景及研究意义 当今社会,资源、环境和能源问题仍困扰着世界的发展。对此,各国对开发利用新型能源、使用清洁能源的需求日益迫切,尤其是中国,地广人多,是能源消耗大国。目前,国内更多的依靠火电、水电和核聚变发电来供电。然而火电生产排放大量的硫化物、粉尘等严重污染空气,影响气候变迁,其来源化石能源也将消耗殆尽;水电建设成本高,资源有限,还会给江河系统造成不可逆的破坏;核电在安全方面有缺陷,一旦核泄漏,将给环境造成毁灭性的破坏,日本福岛核泄漏事故就是一个活生生的例子。 因此,人类不得不寻求更加清洁、安全的替代能源。进入21世纪后,各国政府都在大力鼓励研究清洁可再生能源,太阳能、风能、地热能、潮汐能等环境能量开发技术获得快速发展,其中尤以风能和太阳能应用最多。由于我国资源分布不均衡,有些地方如内蒙古、沿海,有的地方太阳能蕴藏量大,如西藏,但这些地方发出的电当地并不能完全消纳,而其他一些地区则因负荷过重而缺电,因此将电资源丰富的地方发出的电并入电网是明智之举。 然而,分布型电能并入电网需要做到与电网同频同相同幅值,目前并网技术成为了新能源发电的瓶颈技术。因此,本文通过从并网逆变器的设计着手研究新能源并网技术,具有一定实际意义。 1.2 并网标准 新能源发电并入电网的电能必须满足以下3个条件[5]: (1)电压幅值:纹波幅值≤10%。 (2)频率:频差≤0.3Hz[1]。 (3)相位相同,相序相同,且相位差≤20°。 表1-1 并网标准化指标

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

三电平光伏并网逆变器和仿真

三电平光伏并网逆变器共模电压SVPWM抑制策略研究 发布:2018-09-07 | 作者: | 来源: mahuaxiao | 查看:436次 | 用户关注: 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进,调整了有效矢量的选择范围,并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。1引言目前,多电平变流器以其突出的优点在高压大 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进, 调整了有效矢量的选择范围, 并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。 1 引言 目前, 多电平变流器以其突出的优点在高压大功率变流器中得到了日益广泛的应用,它不仅能减少输出波形的谐波,也易于进行模块化设计[1, 2]。二极管中点箝位式(NPC>三电平拓扑结构即是高压大功率变频器的主流拓扑结构之一[3] 。然而在三电平变流器的应用中, 也出现了一些问题,特别是共模电压问题。目前,变频器共模电压的抑制方法主要有两种:一是外加无源滤波器等,或有源滤波器[4-6],这类方法会导致体积和成本显著增加,且不易应用于高压大容量场合;二是通过控制策略从源头减小共模电压,文献[7]、[8]提出一种SPWM消除共模电压的调制方法。该方式是通过异相调制来消除开关共模电压,但是存在直流电压利用率低、线性调制区过小的问题。 针对SPWM调制的电压利用率低、不利于运用于各种调制比工况下的缺点,本文从三电平逆变器共模电压形成机理出发,提出了一种基于优化电压空间矢量(SVPWM>方法, 可有效抑制三电平逆变器输出共模电压。并通过 Matlab/Simulink软件对该方法进行了仿真验证, 结果表明效果良好。 2 光伏三电平逆变器及其共模电压 本文研究的三电平光伏逆变器系统如图1所示。其输入为光伏阵列的直流电压,逆变器主拓扑为NPC三电平结构。设直流母线电压的幅值为Vdc,用开关状态字“1”,“0”和“-1”分别表示逆变器每相输出为+Vdc/2、0和-Vdc/2的三种状态,则三相三电平逆变器总共有27种不同的开关状态。根据幅值和相位可以画出三电平逆变器的电压空间矢量图,具体如图2所示。

单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真

————————————————————————————————作者:————————————————————————————————日期:

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。 输出电压波形

四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

H桥逆变器SPWMMATLAB仿真

H桥逆变器 S P W M M A T L A B仿真文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度,基波频率50Hz。仿真时间秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容:

(1)在同一副图中,画出载波与调制波的波形 ; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*=400,实际值,相对误差% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近

(3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形; (2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC 滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1,电感15mH。

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

根据SVPWM三相并网逆变器仿真报告

基于SVPWM三相并网逆变器 仿真报告

目录 1. SVPWM逆变器简介 (1) 2. SVPWM逆变器基本原理 (2) 2.1. SVPWM调制技术原理 (2) 2.2. SVPWM算法实现 (5) 3. SVPWM逆变器开环模型 (11) 3.1. SVPWM逆变器开环模型建立 (11) 3.2. SVPWM逆变器开环模型仿真分析 (14) 4. SVPWM逆变器闭环模型 (16) 4.1. SVPWM逆变器闭环模型建立 (16) 4.2. SVPWM逆变器闭环模型仿真分析 (17)

1.SVPWM逆变器简介 三电平及多电平空间矢量调制(Space Vector Pulse Width Modulation,SVPWM)法是建立在空间矢量合成概念上的PWM方法。它以三相正弦交流参考电压用一个旋转的电压矢量来代替,通过这个矢量所在位置附近三个相邻变换器的开关状态矢量,利用伏秒平衡原理对其拟和形成PWM波形。空间矢量调制方法在大范围调制比内有很好的性能,具有很小的输出谐波含量和较高的电压利用率。而且这种方法对各种目标的控制相对容易实现。 SVPWM技术源于三相电机调速控制系统。随着数字化控制手段的发展,在UPS/EPS、变频器等各类三相PWM逆变电源中得到了广泛的应用。与其他传统PWM技术相比,SVPWM技术有着母线电压利用率高、易于数字化实现、算法灵活便于实现各种优化PWM技术等众多优点。

2. SVPWM 逆变器基本原理 2.1. SVPWM 调制技术原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加,这样通过控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,就可以使逆变器输出近似正弦波电压。 SVPWM 实际上是对应于交流感应电机或永磁同步电机中的三相电压源逆变器功率器件的一种特殊的开关触发顺序和脉宽大小的组合,这种开关触发顺序和组合将在定子线圈中产生三相互差120°电角度、失真较小的正弦波电流波形。实践和理论证明,与直接的正弦脉宽调制(SPWM)技术相比,SVPWM 的优点主要有: (1) SVPWM 优化谐波程度比较高,消除谐波效果要比SPWM 好,实现容易,并且可以提高电压利用率; (2) SVPWM 比较适合于数字化控制系统。 目前以微控器为核心的数字化控制系统是发展趋势,所以逆变器中采用SVPWM 应是优先的选择。 对称电压三相正弦相电压的瞬时值可以表示为: a m b m c m cos 2cos()32cos()3u U t u U t u U t ωωπωπ? ?=? ? =-?? ? =+?? (2.1)

相关文档
最新文档