苏云金杆菌的液体发酵培养基优化研究

苏云金杆菌的液体发酵培养基优化研究
苏云金杆菌的液体发酵培养基优化研究

苏云金杆菌的液体发酵培养基优化研究

高家合;李梅云;宋春满;廖文程;王革

【摘要】运用正交试验L27(313)设计法对鳞翅目昆虫高毒效的苏云金杆菌33菌株进行培养基优化试验,在培养温度(30±1)℃,50 mL/500 mL三角瓶,摇床转速180 r/min条件下,苏云金杆菌33菌株的发酵最佳培养基是(%):碳源0.5,氮源A 2.0,氮源B 0.15,氮源C 0.25,生长因子0.075,磷酸氢二钾0.25,碳酸钙0.05,硫酸镁0.035及pH 8.0.

【期刊名称】《云南农业大学学报》

【年(卷),期】2004(019)001

【总页数】3页(P7-9)

【关键词】正交试验;苏云金杆菌;培养基;液体发酵

【作者】高家合;李梅云;宋春满;廖文程;王革

【作者单位】云南烟草科学研究院农业研究所生物实验室,云南,昆明,650106;云南烟草科学研究院农业研究所生物实验室,云南,昆明,650106;云南烟草科学研究院农业研究所生物实验室,云南,昆明,650106;云南烟草科学研究院农业研究所生物实验室,云南,昆明,650106;云南玉溪红塔集团技术中心,云南,玉溪,653100

【正文语种】中文

【中图分类】农业科学

第 19 卷第 l 期 2伽年 2月云南农业大学学报Journalof Y田man A伊cultural University Vol.19No.IFeb.2α问苏云金杆菌的液体发酵培养基优化研究., 高家

枯草芽孢杆菌发酵培养基的优化

枯草芽孢杆菌发酵培养基优化 作者姓名 专业 指导教师姓名 专业技术职务

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1枯草芽孢杆菌简介 (3) 1.2枯草芽孢杆菌的应用 (3) 1.2.1枯草芽孢杆菌在工业酶生产中的应用 (3) 1.2.2枯草芽孢杆菌在生物防治领域中的应用 (3) 1.2.3枯草芽孢杆菌在微生物添加剂领域中的应用 (4) 1.2.4 枯草芽孢杆菌在医药方面的应用 (4) 1.2.5 枯草芽孢杆菌在水产中的应用 (4) 1.2.6枯草芽孢杆菌是微生物学与分子生物学研究的良好试验材 料 (5) 1.2.7枯草芽孢杆菌在环境保护方面的应用 (5) 1.3 国内外的研究现状与发展趋势 (6) 1.4研究的思路、目的及意义 (7) 第二章材料与方法 (7) 2.1实验材料 (7) 2.1.1 菌株鉴定 (7) 2.1.2 培养基 (7)

2.1.3 主要设备 (8) 2.2 培养基的优化 (9) 2.2.1 培养方法 (9) 2.2.2实验流程 (9) 2.2.3实验方法 (10) 2.2.4正交试验 (11) 第三章结果和分析 (11) 3.1 鉴定结果如下 (11) 3.2 枯草芽孢杆菌最优化培养基正交实验结果 (16) 3.3 pH变化曲线(以G18为例) (19) 3.4 实验总结 (25) 致谢 (27)

摘要 枯草芽孢杆菌是主要的饲用益生菌菌株,本论文以两株枯草芽孢杆菌G18和G21培养的延滞期和倍增时间为评价指标,通过三角瓶摇床培养,进行了两因素三水平的正交试验,对发酵培养基主要组分进行了优化,豆粕处理的蛋白酶加量2u/g 豆粕、5u/g豆粕、10u/g豆粕和玉米浆添加量0.5%、1.0% 、1.5% 做两个因素三水平的正交实验,研究表明:G18最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.0%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量10u/g豆粕。G21的最佳培养基是:葡萄糖0.5%,淀粉3%,豆粕3%,玉米浆1.5%,破壁酵母0.5%,磷酸氢二钠0.2%,硫酸镁0.1%,硫酸锰0.01%,普通a淀粉酶2u/g淀粉,蛋白酶添加量5u/g豆粕。[关键词] 枯草芽孢杆菌培养基优化正交试验

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

菌株MY02发酵培养基的优化设计

菌株MY 02发酵培养基的优化设计 Ξ 刘 秋,闫建芳,艾 勇,于基成,杨宝灵,范圣第 (大连民族学院生物工程研究中心,大连116600) 摘 要:以龟裂链霉菌MY 02菌株为试材,采用单因子试验与均匀试验相结合的方法,通过二次多项式回归分析,筛选出活性组分S N06最佳发酵培养基配方,并建立了多元二次回归数学模型。菌株MY 02优化发酵培养基的最佳配方:淀粉质量分数为2169%,花生饼粉质量分数为1139%,(NH 4)2S O 4质量分数为0118%,CaC O 3质量分数为0114%,NaCl 质量分数为0116%。根据回归模型计算出S N06理论效价与实测效价相比较,二者非常接近,拟合误差小。 关键词:龟裂链霉菌;农用抗生素;均匀设计试验;发酵条件 中图分类号:Q932335 文献标识码:A 文章编号:100025684(2006)0420361204 Optimization of Fermentation Culture Medium of Isolate MY02 LI U Qiu ,Y AN Jian 2fang ,AI Y ong ,Y U Ji 2cheng ,Y ANG Bao 2ling ,FAN Sheng 2di (Research Center o f Biotechnology ,Dalian Nationalities Univer sity ,Dalian 116600,China ) Abstract :Active com ponents S N06in fermentation of Streptomyces rimosus MY 02show antag onism a 2gainst pathogen 1It is a basic im plementation for production of S N06that screens medium ingredients and corresponding dosage 1In this study ,the optimum medium ingredients and dosage of Streptomyces rimosus MY 02were determined using uniform design combined with regression analysis 1A regression m odel was developed 1The optimum medium was starch 2169%,peanut steep powder 1139%,(NH 4)2S O 40118%,CaC O 30114%and NaCl 0116%1The regression m odel was tested with titre of S N06.The tested result fitted well with those calculated with the m odel 1The results confirmed the applicability of uniform design for screening the best medium ingredients for S N061 K ey words :Streptomgces rimosus ;agricultural antibiotic ;uniform design experiment ;fermentation con 2 dition 新型农用抗生素S N06是由龟裂链霉菌(Streptomyces rimosus )MY 02菌株产生的一种多烯大环内酯类抗生素[1]。该抗生素对多种蔬菜真菌病害(如番茄叶霉病、灰霉病、黄瓜枯萎病、茄子黄萎病等)都有较好的防治效果[2]。目前对龟裂链霉菌报道较多的是其能够产生抑制各种细菌生长的重要抗生素———土霉素,但土霉素对真菌的生长没有抑制作用。目前关于龟裂链霉菌能够产生抑制植物病原真菌生长的代谢产物的报道较少[3]。筛选龟裂链霉菌产生的抗真菌活性组分S N06的优化发酵培养基是高效、大量生产S N06 的基础。本试验拟通过单因子及均匀试验对S N06的摇瓶发酵条件进行优化,为进一步的中试 放大及大规模生产提供必要的前提。 1 材料与方法 111 菌种 试验用菌株为大连民族学院微生物工程实验 室自番茄保护地分离的1株链霉菌菌株,经鉴定为龟裂链霉菌(Streptomyces rimosus )MY 02菌株。活性检测指示菌为番茄叶霉病菌(Fulvia f ulva )。 Ξ基金项目:辽宁省自然科学基金资助项目(20022085),辽宁省教育厅高等学校科学研究项目(2004F079) 作者简介:刘 秋(19692),女,博士,副教授,主要从事植物病原微生物研究。收稿日期:2005207207 修回日期:2005212210  第28卷第4期吉 林 农 业 大 学 学 报V ol 128N o 14   2006年8月Journal of Jilin Agricultural University August 2006

双歧杆菌与乳酸菌筛选培养基

BBL培养基 双歧杆菌选择性培养基成份 蛋白胨15.0g 酵母粉2.0g 葡萄糖20.0g 可溶性淀粉0.5g 氯化钠5.0g 5%半胱氨酸10.0mL 西红柿浸出液400.0mL 吐温80 1.0mL 肝提取液80.0mL 琼脂20.0g 蒸馏水520.0mL pH7.0 MRS培养基 乳酸细菌培养基(MRS) 蛋白胨10.0 g 牛肉膏10.0 g 酵母膏 5.0 g 柠檬酸氢二铵[(NH4)2HC6H5O7] 2.0 g 葡萄糖(C6H12O6·H2O) 20.0 g 吐温80 1.0 mL 乙酸钠(CH3COONa·3H2O) 5.0 g 磷酸氢二钾(K2HPO4·3H2O) 2.0 g 硫酸镁(MgSO4·7H2O)0.58 g 硫酸锰(MnSO4·H2O)0.25 g 琼脂18.0 g 蒸馏水 1 000 mL pH 6.2~6.6 当乳酸菌生长代谢出乳酸后,会使pH下降而使颜色由绿变为黄绿,也由于pH 值降低再加上抗生素及厌氧培养的作用,所以一般的微生物不容易在此培养基上生长,因此十分容易鉴别乳酸菌。 2005-03-10 08:08 消息引用收藏分享 奉上一篇实验,以供参考! 厌氧菌的分离和培养 目前培养厌氧微生物的简便而又有效的技术包括有:厌氧箱培养技术;厌氧罐培养技术;厌氧袋培养技术;亨盖特厌氧滚管技术。这里介绍的是亨盖特厌氧滚管技术。

亨盖特厌氧滚管技术是美国微生物学家亨盖特(Hungate)于1950年首次提出并应用于瘤胃厌氧微生物研究的一种厌氧培养技术。以后这项技术又经历了几十年的不断改进,从而使亨盖特厌氧技术日趣完善,并逐渐发展成为研究厌氧微生物的一整套完整技术。而且多年来的实践已经证明它是研究严格、专性厌氧菌的一种极为有效的技术。 亨盖特厌样滚管培养技术不仅可用于有益厌氧菌如双歧杆菌等的分离、与活菌培养计数,还可以用于有害***菌(如酪酸菌)或病原菌(如肉毒梭状芽孢杆菌)的分离与鉴定。 1材料 1.1 样品 双歧酸奶(液体)、双歧杆菌制剂(固体)。 1.2 培养基 改良MRS培养基,PTYG培养基。 1.3 仪器和器具 亨盖特厌氧滚管装置一套,厌氧管,厌氧瓶,滚管机,定量加样器。 2 流程 铜柱除氧→预还原培养基→稀释用液制备→稀释样品→滚管→培养→计数 3方法 3.1铜柱系统除氧 铜柱是一个内部装有铜丝或铜屑的硬质玻璃管。此管的大小为40—400mm,两段被加工成漏斗装,外壁绕有加热带,并与变压器相连来控制电压和稳定铜柱的温度。铜柱两端连接胶管,一端连接气钢瓶,一端连接出气管口。由于从气钢瓶出来的气体如N2、CO2和H2等通常都含有O2,故当这些气体通过温度约360℃的铜柱时,铜和气体中的微量O2化合生成CuO,铜柱则由明亮的黄色变为黑色。当向氧化状的铜柱通入H2时,H2与CuO中的氧就结合形成H2O,而CuO又被还原成了铜,铜柱则又呈现明亮的黄色。此铜柱可以反复使用,并不断起到除氧的目的。当然H2源也可以由氢气发生器产生。 3.2 预还原培养基及稀释液的制备

实验方案(双歧杆菌的分离)

1 双歧杆菌的分离 1.1 样品 取出生后20天母乳喂养健康婴儿粪便。 1.2 培养基 根据目前的双歧杆菌选择性培养基,以及X-Gal在这方面的应用。选择使用NPNL培养基,在其基础上添加X-Gal。 1.2.1 缓冲蛋白胨水溶液(BP) 成份:蛋白胨10g 磷酸氢二钠2g 葡萄糖5g 磷酸二氢钾2g 氯化钠5g 蒸馏水1000ml 制法:精确称取各种试剂,加人到1000ml的蒸馏水中,加热溶化后分装于250ml的三角瓶中,每瓶90ml,121℃,杀菌15min后置4℃的冰箱中备用。 1.2.2 选择性改良NPNL培养基(苏世彦) 成份:酵母膏5g 淀粉0.5g 蛋白胨10g L-半胱氨酸0.5g 胰蛋白胨5g 溶液A 10ml 大豆蛋白胨5g 溶液B 5ml 葡萄糖10g 溶液C 50ml 乳糖3g 琼脂 15g 吐温80 1g pH 7.2 牛肝提取液150ml 制法:将各成分准确量取后,分别加热溶化,混合摇匀后分装,121℃杀菌10min,备用。 溶液A:K2HPO4 10g、KH2PO4 10g溶于蒸馏水100ml。 溶液B:FeSO4·7H2O 0.2g、MgSO4·7H2O 4g、MnSO4·4H2O 0.135g、NaCl 0.2g溶于蒸馏水100ml。 溶液C:丙酸钠30g、硫酸巴龙霉素400mg、硫酸新霉素200mg、NaCl 6g溶于蒸馏水1000ml。 1.2.3 NPNL培养基(孙雪) 培养基成分及用量:牛肉浸汁粉(oxoid)3g,蛋白胨10g,胰蛋白酶5g,

植胨3g,酵母浸出汁5g,肝浸出汁150ml,葡萄糖10g,可溶性淀粉0.5g,溶液A 10ml,溶液B 5ml,吐温80 1g,盐酸半胱氨酸0.5g,琼脂15g,蒸馏水815ml,X-Gal(5-溴-4-氯-3-吲哚-β-D- 半乳糖苷)60mg。pH 7.2,121℃,15min 高压灭菌。 溶液A:K2HPO425g,KH2PO425g,蒸馏水250ml。 溶液B:MgSO4·7H2O 0.5g,FeSO4·7H2O 0.5g,NaCl 0.5g,MnSO40.337g,蒸馏水250ml,硫酸新霉素100μg/ml,硫酸巴龙霉素200μg/ml,萘啶酮酸15μg/ml,氯化锂3mg/ml。 1.3 分离方法 取成年人的粪便1g,放人含有9ml缓冲蛋白胨水溶液中,用液枪充分混匀,制成1:10的稀释液,摇匀后取1ml注人含有9ml缓冲蛋白胨溶液中制成1:100的稀释液,在此基础上作10-3~10-9与的稀释,由于肠道中双歧杆菌的菌数一般在109左右,所以取10-4~10-9稀释液用倾注法倒平板,每个稀释液都各取1ml分别注人到两只无菌平皿中,每个稀释度重复3个平板。待培养基凝固后倒置,将温度调至37℃进行厌氧培养48h。用缓冲蛋白胨水溶液做稀释液可以有效地保护双歧杆菌的存活,避免受外界环境因素的影响。 1.4 分离培养 在加人样品稀释液的平皿中,分别注人适量冷却至50℃左右的选择性改良NPNL培养基,然后放人37℃的恒温培养箱中厌氧培养1.4.1 培养特性与镜检特性 双歧杆菌在改良NPNL培养基上,经过厌氧培养以后,菌落直径1-2cm,圆形、凸起,表面光滑,边缘整齐,乳白色,粘稠湿润。经革兰氏染色后镜检,双歧杆菌为革兰氏阳性无芽抱杆菌,呈多形性、典型的双歧杆菌为V字型或Y型;也有直、弯、棒状、匙形等多种形态,排列成单、双、短链、X、Y、V 或栅状;其大小为2-8×0.4-0.6μm,不具英膜和鞭毛,无运动性。 培养48h 后,平板上菌落呈现深蓝色、白色、浅蓝色三种颜色。

高性能淀粉酶菌株的筛选及培养基优化进展[文献综述]

毕业论文文献综述 生物工程 高性能淀粉酶菌株的筛选及培养基优化进展 1 前言 淀粉酶( amylase,EC 3. 2. 1. 1)以淀粉或糖原为底物,是能够催化淀粉水解转化成葡萄糖、麦芽糖及其它低聚糖的一群酶的总称。它能从分子内部水解α- 1, 4- 糖苷键, 广泛存在于动物、植物和微生物中。如今淀粉酶在酶市场销售中占据了约25%的比例,应用于粮食加工、食品工业、酿造、发酵、纺织、石油开采等行业。由于该酶是一种有内切活性的淀粉酶, 可在中性pH 条件下将淀粉水解为糊精、寡糖、麦芽糖和葡萄糖等, 从而使黏稠的淀粉糊很快失去黏性而液化, 碘的呈色反应很快消失, 故又称为淀粉液化酶[1,2]。此外它也可作为促消化剂运用于食品[3]、医药工业.淀粉酶的巨大潜力使其在当今社会中需求量日益提高.因此,如何获得高产量、高活性的淀粉酶显得至关重要。 2 淀粉酶生产菌株的筛选 2.1 初筛 将在土壤中收集得到的菌株划线接种在淀粉培养基平皿上培养2~4 d,采用革兰氏碘液染色,在菌落周围有透明圈产生证明为产淀粉酶。用游标卡尺分别测量透明圈直径和菌落直径,根据两者比值大小初步确定酶活性的高低。[4] 但应保存所有产淀粉酶的菌株以用来复筛,因为同一菌株在不同的培养基以及不同的培养条件下产酶的情况可能不同。在平皿上生长和在发酵液中培养也可能会有很大的差别。 2.1 复筛 在淀粉酶生产菌株筛选的过程中,最关键的是其产物,也就是淀粉酶的酶活的检测。由于测定原理和底物性质的不同,淀粉酶的测定方法已经超过200种以上。[5]这些方法可以归纳为两类:天然淀粉底物方法和(分子组成)确定的底物方法。以天然淀粉底物为底物的测定方法,如淀粉分解法、糖化法和色素淀粉法等。由于天然淀粉分子结构的不确定,故不同植物来源的淀粉和不同批号的淀粉,其分子结构和化学性质不尽相同,因此难以达到方法学标准化,测定误差较大。[6]目前除碘·淀粉法和DNS外,这类方法已被淘汰。使用(分子组成)确定的淀粉酶底物和辅助酶与指示酶组成的淀粉酶测定系统,可以改进酶反应的化学计

培养基优化设计

课程设计说明书 课程名称:新编生物工艺学 设计题目: 培养基优化设计 院系:生物与食品工程学院 学生姓名: 学号:200806040035 专业班级:08生物技术 指导教师:关现军 2011 年6月3 日

课程设计任务书

目录 1.摘要··页码 2.关键字··页码 3.设计背景·页码 3.1培养基简介··页码 3.2培养基优化设计的重用意义··页码 4 设计方案·页码 4.1原材料制备··页码 4.2菌种的选择··页码 4.3营养因子的比例设··页码 4.4理化条件控制··页码 4.5总工艺流程列叙··页码 5 预期结果··页码 6 方案实施时可能出现的问题与对策·页码 7 设计感受··页码 7.1 关于本方案··页码 7.2 关于自我··页码 8参考文献··页码 .

1 摘要 以改良MRS发酵培养基为墓础,选择玉米浆、牛肉膏、乳糖、番茄汁、际蛋白陈等7个营养因子增菌培养乳酸菌进行优化。利用L8(2的7次方)正交实验,优化出培养墓营养因子最佳组成是:玉米浆3%、牛肉膏1%、乳糖1%。研究结果表明,嗜酸乳杆菌、嗜热链球菌、保加利亚乳杆菌、嗜酸乳酸菌,在优化后的MRS培养基发酵液中,37℃培养20h,菌落数均高于原MRS培养基发酵液的菌落数,达到1护cumL以上,乳酸菌发酵液得到了浓缩,大大降低了乳酸菌发酵培养墓的成本,原料成本降低了约40%,同时使菌种数量达到最大。 2 关键字 乳酸菌,营养因子,优化培养,最大产菌 3. 设计背景 3.1乳酸菌培养基简介 乳酸菌工业产品为菌体本身细胞,因而设计出能增菌的培养基在工业上具有重要意义。设计选用工业上佳美低廉的原料,便于降低成本,也有利于降低菌种的适应期,利于增值。 乳酸菌增菌液配方设计中因营养要求复杂,影响生长的因素多,在实际工作中还应做其他条件的优化,如增菌液氧化还原电势、pH值、温度等,因工作量大而时间有限,只能对配方作初步的优化设计。为了降低生产成本,在工业应用时可选用乳清和脱脂乳经蛋白酶水解,用以提高增菌效果,再加入乳糖、啤酒酵母的自溶水解物,在发酵罐内完成乳酸

培养基设计与优化

培养基的设计与优化 原料:碳源,氮源 十大元素: 碳, 氢, 氧, 氮, 磷, 钾, 硫, 钙, 镁 微量元素: 硼, 锰, 锌, 钼, 钴, 碘, 铜, 等 生长因子、前体和产物促进剂 生长因子 从广义上讲,凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子。如以糖质原料为碳源的谷氨酸生产菌均为生物素缺陷型,以生物素为生长因子,生长因子对发酵的调控起到重要的作用。有机氮源是这些生长因子的重要来源,多数有机氮源含有较多的B簇维生素和微量元素及一些微生物生长不可缺少的生长因子。 前体 前体指某些化合物加入到发酵培养基中,能直接为微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。产物促进剂 指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂。其提高产量的机制还不完全清楚,其原因可能是多方面的,主要包括:有些促进剂本身是酶的诱导物;有些促进剂是表面活性剂,可改善细胞的透性,改善细胞与氧的接触从而促进酶的分泌与生产,也有人认为表面活性剂对酶的表面失活有保护作用;有些促进剂的作用是沉淀或螯合有害的重金属离子。 水 对于发酵工厂来说,恒定的水源是至关重要的,因为在不同水源中存在的各种因素对微生物发酵代谢影响甚大。水源质量的主要考虑参数包括pH值、溶解氧、可溶性固体、污染程度以及矿物质组成和含量。 培养基的设计与优化 目前还不能完全从生化反应的基本原理来推断和计算出适合某一菌种的培养基配方,只能用生物化学、细胞生物学、微生物学等的基本理论,参照前人所使用的较适合某一类菌种的经验配方,再结合所用菌种和产品的特性,采用摇瓶、玻璃罐等小型发酵设备,按照一定的实验设计和实验方法选择出较为适合的培养基。 培养基设计的基本步骤是: 1.根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分. 2.通过单因子实验最终确定出最为适宜的培养基成分。 3.当培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方法。这些实验往往基于多因子实验,包含均匀设计、正交实验设计、响应面分析等。

双歧杆菌的培养

双歧杆菌的培养和分离 双歧杆菌是专性厌氧菌,对氧气非常敏感,因此,双歧杆菌的分离、培养及活菌计数的关键是提供无氧和低氧化还原电势的培养环境。 双歧杆菌的最适生长温度37℃~41℃,最低生长温度25℃~28℃,最高43℃~45℃。初始最适pH 6.5~7.0,在pH4.5~5.0或pH 8.0~8.5不生长。其细胞呈现多样形态,有短杆较规则形、纤细杆状具有尖细末端形、球形、长杆弯曲形、分枝或分叉形、棍棒状或匙形。单个或链状、V形、栅栏状排列,或聚集成星状。革兰氏阳性,不抗酸,不形成芽孢,不运动。双歧杆菌的菌落光滑、凸圆、边缘完整、乳脂至白色、闪光并具有柔软的质地。双歧杆菌是人体内的正常生理性细菌,定殖于肠道内,是肠道的优势菌群,占婴儿消化道菌丛的92%。该菌与人体终生相伴,其数量的多少与人体健康密切相关,是目前公认的一类对机体健康有促进作用的代表性有益菌。该菌可以在肠粘膜表面形成一个生理性屏障,从而抵御伤寒沙门氏菌、致泻性大肠杆菌,痢疾致贺氏菌等病原菌的侵袭,保持机体肠道内正常的微生态平衡;能激活巨噬细胞的活性,增强机体细胞的免疫力;能合成B族维生素、烟酸和叶酸等多种维生素;能控制内毒素血症和防治便秘,预防贫血和佝偻病;可降低亚硝胺等致癌物前体的形成,有防癌和抗癌作用;能拮抗自由基、羟自由基及脂质过氧化,具有抗衰老功能。 双歧杆菌的培养方法很多,如厌氧箱法、厌氧袋法、厌氧罐法。本实验介绍的是一种简便的试管培养法——亨盖特厌氧滚管技术该技术的优点是:预还原培养基制好后,可随时取用进行试验;任何时间观察或检查试管内的菌都不会干扰厌氧条件。 近年来兴起的一种新的RAPD等分子生物学技术对双歧杆菌进行基因指纹图谱的构建,分析不同双歧杆菌种间存在的同源性和多态性;RAPD技术也可用于双歧杆菌菌种鉴定及分型。一般来讲,我们都应用适合鉴定所有厌氧菌的方法,主要包括双歧杆菌特定酶的检测、乙酸、乳酸等有机酸的测定、糖发酵试验和其他相关指标等。 一、实验方法 1、铜柱系统除氧 2、预还原培养基及稀释液的制备 制作预还原培养基及稀释液时,先将配置好的培养基和稀释液煮沸驱氧,而后用半定量加样器趁热分装到螺口厌氧试管中,一般琼脂培养基装4.5~5.0mL,稀释液装9mL,并插入通N2气的长针头以排除O2。此时可以清楚的看到培养基内加入的氧化还原指示剂—刃天青由蓝到红最后变成无色,说明试管内已成为无氧状态,然后盖上螺口的丁烯胶塞及螺盖,灭菌备用。 3、分离 (1)编号 取五支无菌水试管,分别用记号笔标明10-1、10-2……10-5。 (2)稀释 在无菌条件下,用无菌注射器吸取1mL混合均匀的液体样品,加入装有预还原生理盐水的厌氧试管中,用震荡器将其混合均匀,制成10-1稀释液。用无菌注

实验方案-益生菌生产中益生菌培养工艺的优化

工业生产中益生菌培养工艺的优化 一、实验目的 在实验室条件下,对益生菌的培养及胶囊的制备进行模拟和优化,以达到改 善益生菌的生产条件,降低工业生产成本,提高益生菌在胶囊中的活度,提高益 生菌胶囊品质的目的。 二、实验材料 1.菌种:YO-MIX 300 LYO 250 DCU(维维),含有保加利亚乳杆菌,嗜热链球菌,双歧杆菌。 2.培养基成分 2.1 TPY培养基:大豆蛋白胨1.67%, 酪蛋白胨(酪蛋白?)0.83%,乳糖0.5%, 酵母浸出粉O.5%,低聚糖(菊粉)0.7%,胡萝卜汁15%琼脂粉2%~1.5% 水. 115°C高压蒸汽灭菌15-20min.该培养基尽量配的比较透明。 2.2脱脂乳培养基:脱脂奶粉10% 菊粉4% 水。115°C高压蒸汽灭菌15-20min. 3.主要仪器: 无菌操作台三角瓶培养箱真空冷冻干燥机离心机高压蒸汽灭菌锅 超净工作台恒温箱PH计 三、实验过程: 1、益生菌混合菌株的形态学研究 1.1菌种的分离 1.2菌种的性质实验 2、益生菌生长特性以及相互影响(查文献得到) 2.1单一菌种发酵实验 2.2混合菌种发酵实验 2.3培养基配方的优化(益生因子) 3、对离心上清液的成分及性质探究 3.1抑菌性质实验 3.2促益生菌生长性质实验 3.3成分测定实验?怎么测? 3.4环境因素对其性质影响实验 4、对冻干粉存储条件的探究及优化 4.1存储温度对冻干粉活度影响实验 4.2存储时间对冻干粉活度影响实验 4.3冻干粉耐氧实验 四、实验方法 1.菌种的活化 将菌种接种在装有TPY(或脱脂乳)培养基的试管中,将试管用塞子塞好,在厌 氧操作台中厌氧培养48小时,37℃。 2.扩大培养 2.1将菌种5%接种于脱脂乳液体培养基,于恒温培养箱中37℃培养48h。每4 小时测一次菌液pH值和滴定酸度和活菌数。测活菌数采用10倍稀释后平板计数法。 2.2将菌种5%接种于TPY培养基,37℃恒温培养,在0~48h内每间隔4h测定 600nm下菌液的吸光值和pH值和滴定酸度,并相应测定菌种的活菌数,绘制生 长曲线(首先,菌悬看成是溶液,其中的菌体理想化成球状,而且是均一的。这

培养基优化方法

方法一: LB培养基、平板保存的工程菌HB101/pJJ-rhIFNα2B、Amp、酵母提取物、蛋白胨、 10×SAE、100×MgCl2、100×TES、Tris、HCl 10×SAE配方(1L): KH2PO410g、K2HPO4·3H2O52.4g、NH4Cl10g、K2SO426g 100L 【步骤】 种子制备: 1、取100mLLB培养基加入到一无菌的500ml三角形中,同时加入100μl100mg/ml的Amp。 2、接种甘油管保存的工程菌HB101/pJJ/rhIFNα-2b100μl,使工程菌分散于培养液中。 3、盖好试管,在摇床上以220rpm的速度,于37℃培养至对数中期(约5小时) 上罐准备: 1、配置500ml10×SAE 2、配置发酵培养基(3L)

称取胰蛋白胨30g,酵母提取物90g,加入2.64L去离子水,搅拌溶解后加入300ml 10×SAE、30ml100×MgCl2、30ml100×TES。 3、将培养基加入到5L发酵罐,插入pH、溶氧电极和温度探头,装上空气过滤膜,包扎好后放入灭菌锅中,同时放入一瓶250ml30%磷酸(调pH用),于1.05kg/cm2高压下蒸汽灭菌30min。 4、待灭菌结束后,将发酵罐放在冷却底座上,开启发酵罐控制系统,联接好冷凝水、空气线路。 5、控制pH=7.4,在转速650r/m、通气量3L/min 定D.O.为100%于自动控制发酵罐上37℃发酵22小时。 6、当培养基温度冷却到37℃后,接入制备好的种子 7、从接种完时刻起,每两小时取适当量样品,其中取1ml用于测菌体浓度(A600nm);另取1ml加入到一称过重ep管中,12000rpm离心,小心取出900μl上清用作测菌体浓度的空白,甩干后再次称重,计算菌体湿重,按每8.3mg菌体湿重加入300μL水重悬菌体,冻于-20℃备用。并记录发酵罐上溶氧、pH、温度等参数以了解工程菌的生长状态。 8、SDS-PAGE检测不同时间rhIFNα2B的表达情况。 9、发酵终了,收集发酵液,8000rpm离心10min,回收菌体。 10、用1.2L去离子水重悬菌体,8000rpm离心10min,弃上清 11、再用600mlTE重悬菌体,8000rpm离心10min,弃上清,得到菌体-20℃保存 方法二: 2.1种子培养基的配制 LBA:(Tryptone蛋白胨10g +Yeast Extr+acts酵母粉5g +NaCl 5g +双蒸水1L)∕L (NaOH调节PH至7.0)高压蒸气灭菌,压力:0.14Mpa 温度121℃时间:20min,用前加卡那霉素至50μg/ml。 LBA平板:加入2%琼脂粉,其余同上。 2.2生产菌种的制备 2.2.1琼脂培养基菌种的制备 从-80℃的冰箱中取出甘油种子管,在超净工作台中划LBA平板,37℃培养箱中培养过夜。2.2.2一级种子液制备 从LBA平板中挑取单菌落,在超净工作台上接种于约60ml LBA培养液中,与摇床上37℃,180rpm,生长16h,OD600值约为3.0。 2.2.3二级种子液制备 将60ml一级种子液接种于3L LBA 培养液中,于摇床上37℃,180rpm,生长12h,OD600值约为3.0。 3.发酵

发酵工程

一、绪论 1、发酵工程(Fermentation Engineering):指在最适发酵条件下,在发酵罐中大大量培养细胞和生产代谢产物的技术。 2、发酵工程研究内容:发酵工艺主要是在生物反应过程中提供各种所需的最适环境条件,如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。 3、发酵工程的特点:一个完整的发酵工程包括: (1)材料的预处理(即培养基的制备过程); (2)生物催化剂的制备(要选高产、稳定、高效、容易培养的菌株作种子或利用固定化酶或固定化细胞); (3)生化反应器及发酵条件的选择和监控(生物反应器是进行生物反应的核心设备); 4、细胞融合技术:基因操作技术能定向的制造出新的有用的微生物。 5、发酵工程的最基本的问题是过程优化与放大。 二、菌种的选育 1、代谢控制发酵:用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用。 3、自然界中有目的微生物分离的一般过程: 土样的采取→预处理→培养→菌落的选择→产品的鉴定 目的:高效地获取一株高产目的产物的微生物 采样时要注意的问题:气候、水分、空气,来源要广结合产品的特点,标签:地点、时间、气候等 3、目的微生物富集的一些基本方法 富集的目的:让目的微生物在种群中占优势,使筛选变得可能。 富集的三种方案: (1)定向培养:采用特定的有利于目的微生物富集的条件,进行培养; (2)当不可能采用定向培养时,则可设计在一个分类学中考虑; (3)不能提供任何有助于筛选产生菌的信息,这时只能通过随机分离的办法;定向培养的方法:物理方法:加热、膜过滤等,但主要是通过培养的方法 4、菌落的选出 (1)从产物角度出发:在培养时以产物的形成有目的的设计培养基,利用简单、快速的鉴定方法,如抗生素; (2)从形态的角度:菌落的外观形态,是微生物的一个重要表征。如多糖产生菌在适当的培养基上生长,从具有粘液性的菌落外观上就可以初步识别; 5、菌种选育分子改造 目的:(1)防止菌种退化;(2)解决生产实际问题;(3)提高生产能力;(4)提高产品质量;(5)开发新产品; 方法:(1)基因突变:自然选育、诱变育种; (2)基因重组:杂交、原生质体融合、基因工程; (3)基因的直接进化:点突变、易错PCR、同序法shuffling;

双歧杆菌的培养方法

双歧杆菌的培养方法 一、厌氧菌的分离和培养 目前培养厌氧微生物的简便而又有效的技术包括有:厌氧箱培养技术;厌氧罐培养技术;厌氧袋培养技术;亨盖特厌氧滚管技术。这里介绍的是亨盖特厌氧滚管技术。 亨盖特厌氧滚管技术是美国微生物学家亨盖特(Hungate)于1950年首次提出并应用于瘤胃厌氧微生物研究的一种厌氧培养技术。以后这项技术又经历了几十年的不断改进,从而使亨盖特厌氧技术日趣完善,并逐渐发展成为研究厌氧微生物的一整套完整技术。而且多年来的实践已经证明它是研究严格、专性厌氧菌的一种极为有效的技术。亨盖特厌样滚管培养技术不仅可用于有益厌氧菌如双歧杆菌等的分离、与活菌培养计数,还可以用于有害***菌(如酪酸菌)或病原菌(如肉毒梭状芽孢杆菌)的分离与鉴定。 1材料 1.1 样品 双歧酸奶(液体)、双歧杆菌制剂(固体)。 1.2 培养基 改良MRS培养基,PTYG培养基。 1.3 仪器和器具 亨盖特厌氧滚管装置一套,厌氧管,厌氧瓶,滚管机,定量加样器。 2 流程

铜柱除氧→预还原培养基→稀释用液制备→稀释样品→滚管→培养→计数 3方法 3.1铜柱系统除氧 铜柱是一个内部装有铜丝或铜屑的硬质玻璃管。此管的大小为40—400mm,两段被加工成漏斗装,外壁绕有加热带,并与变压器相连来控制电压和稳定铜柱的温度。铜柱两端连接胶管,一端连接气钢瓶,一端连接出气管口。由于从气钢瓶出来的气体如N2、CO2和H2等通常都含有O2,故当这些气体通过温度约360℃的铜柱时,铜和气体中的微量O2化合生成CuO,铜柱则由明亮的黄色变为黑色。当向氧化状的铜柱通入H2时,H2与CuO中的氧就结合形成H2O,而CuO又被还原成了铜,铜柱则又呈现明亮的黄色。此铜柱可以反复使用,并不断起到除氧的目的。当然H2源也可以由氢气发生器产生。 3.2 预还原培养基及稀释液的制备 制作预还原培养基及稀释液时,先将配制好的培养基和稀释液煮沸驱氧,而后用半定量加样器趁热分装到螺口厌氧试管中,一般琼脂培养基装4.5-5ml,稀释液装9ml,并插入通N2气的长针头以排除O2。此时可以清楚地看到培养基内加入的氧化还原指示剂—刃天青由蓝到红最后变成无色,说明试管内已成为无氧状态,然后盖上螺口的丁烯胶塞及螺盖,灭菌备用。 3.3 双歧杆菌样品不同稀释度的制备 在无菌条件下准确称取1g固体或用无菌注射器吸取1ml混合均匀的

一种乳酸菌增菌培养基的优化

一种乳酸菌增菌培养基的优化 摘要:备直投式乳酸发酵剂,通过综合运用复合生长培养基、缓冲盐法及化学中和法,利用正交实验的设计方法,对乳酸菌的增菌培养进行了研究。试验结果表明,以1%的胡萝卜汁作为生长促进剂,加0.5%K:HPO。作为缓冲盐,接种量为3%,培养温度37。C,培养过程用30%Na:CO,溶液作中和剂,将pH值控制在6.3,培养7—8 h后,可使乳酸菌的活菌数达到109的数量极。与普通的液体发酵剂相比,获得了显著的浓缩效果。 关键字:乳酸菌;增菌培养基 引言:发酵乳制品在乳制品中占有重要地位。随着我国人民消费水平的提高,对发酵乳制品中的酸奶有了新的认识,使得酸奶的产量以年平均25%的速度增长。这对乳酸菌发酵剂品质、种类提出了新的要求。目前酸奶生产厂家所采用的菌种发酵剂有2种,直投式粉末菌种发酵剂和继代式菌种发酵剂。由于继代式发酵剂存在着种种弊端,所以直投式发酵剂使用普遍。由于目前国内直投式发酵剂尚未 产业化,尚需进口,所以直投式发酵剂的国产化越来越受到重视。 1、乳酸菌的简介与作用机理 1.1乳酸菌的简介 乳酸菌指发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌的总称。凡是能从葡萄糖或乳糖的发酵过程中产生乳酸菌的细菌统称为乳酸菌。这是一群相当庞杂的细菌,目前至少可分为18个属,共有200多种。除极少数外,其中绝大部分都是人体内必不可少的且具有重要生理功能的菌群,其广泛存在于人体的肠道中。目前已被国内外生物学家所证实,肠内乳酸菌与健康长寿有着非常密切的直接关系。 1.2乳酸菌的作用机理 乳酸菌在动物体内能发挥许多的生理功能。大量研究资料表明,乳酸菌能促进动物生长,调节胃畅道正常菌群、维持微生态平衡,从向改善胃肠道功能;提高食物消化率和生物效价;降低血清胆固醇,控制内毒素;抑制肠道内腐败菌生长:提高机体免疫力等。 ⑴提供营养物质,促进机体生长乳酸菌如果能在体内正常发挥代谢活性,就能直接为宿主提供可利用的必需氨基酸和各种维生素(维生素B族和K等),还可提高矿物元素的生物活性,进而达到为宿主提必需营养物质、增强动物的营养代谢、直接促其生长的作用。Dalmin等(2001)研究报道乳酸菌可以改良水质,提高斑节对虾的存活率、生长速率和健康状况。Hamad(1979)试验证明,小麦、稻米等谷物进行乳酸发酵后,营养价值大大提高。此外,乳酸菌产生的酸性代谢产物使肠道环境偏酸性,而一般消化酶的最适PH值为偏酸性(淀粉酶6.5、糖化酶4.4),这样就有利于营养素的

发酵培养基的优化

文献综述 发酵培养基的优化 申请学位:学士学位 院(系):药学院 专业:生物技术 姓名:张永芳 学号:114080107 指导老师:张小华(讲师) 二O 一五年六月五日

文献综述: 发酵培养基的优化 张永芳:114080107 指导老师:刘向勇 【摘要】:发酵,这一门悠久的技艺,在古今中外的生产生活与科学研究中扮 演着不可或缺的角色。在实验室发酵过程中,经常需要通过试验来寻找研究对象的变化规律,这些对象包括培养基的设计、工艺参数等;而这些变化规律的寻找就要通过科学的试验设计与数据分析来实现。通过对规律的研究达到各种实用的目的,比如提高产量、降低消耗、提高产品质量等,特别对于新菌种、新产品的试验。本文对发酵培养基优化的基本方向进行了综述,并比较了常用的试验设计与数据分析方法。 【关键词】:发酵、发酵培养基、优化、最优组合、响应面法优化 【内容】: 在工业化发酵生产中,发酵培养基的设计是十分重要的,因为培养基的成分对产物浓度、菌体生长都有重要的影响。培养基优化,是指面对特定的微生物,通过实验手段配比和筛选找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。目前,对培养基优化实验进行数学统计的方法很多,下面介绍几种目前应用较多的优化方法: 响应曲面分析法:Box和Wilson提出了利用因子设计来优化微生物产物生产过程的全面方法,Box-Wilson方法即现在的响应曲面法((Response Surface Methodolog,简称RSM)。RSM是一种有效的统计技术,它是利用实验数据,通过建立数学模型来解决受多种因素影响的最优组合问题。通过对RSM的研究表明,研究工作者和产品生产者可以在更广泛的范围内考虑因素的组合,以及对响应值的预测,而均比一次次的单因素分析方法更有效。现在利用SAS软件可以很轻松地进行响应面分析。 改进单纯形优化法:单纯形优化法(Modified simplex method)是近年来应用较多的一种多因素优化方法。它是一种动态调优的方法,不受因素数的限制。由于单纯形法必须要先确定考察的因素,而且要等一个配方实验完后才能根据计算的结果进行下一次实验,因此主要适用于实验周期较短的细菌或重组工程发酵培养基的优化,以及不能大量实施的发酵罐培养条件的优化。 遗传算法:Genetic algorithm法是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holland于1975年首先提出来的。它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码

培养基设计方法

微生物发酵培养基的优化方法 作者:余继叁中国热带农业科学院热带生物技术研究所 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步[2]。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)[7]。设计发酵培养基时还应时刻把工业应用的目的留在脑海里[22]。 1 发酵培养基的成分 现代分离的微生物绝大部分是异养型微生物,它需要碳水化合物、蛋白质和前体等物质提供能量和构成特定产物的需要[2]。其营养物质一般包括碳源、氮源(有机氮源、无机氮源)、无机盐及微量元素、生长因子、前体、产物促进和抑制剂等。另外,在设计培养基时还必须把经济问题和原材料的供应问题等因素一起考虑在内[6]。 此外,还要考虑所筛选的菌种来源的地点环境,比如本实验室长期从事红树林微生物的分离及其研究工作,红树林的环境处于海洋与陆地之间,所以配制培养基所用的水除了 一般的去离子水外还包括陈海水。 如果在知道产物结构或者产物合成途径的情况下,我们可以有意识地加入构成产物和合成途径中所需的特定结构物质。我们也可以结合某一菌株的特定代谢途径,加入阻遏或者促进物质,使目的产物过量合成。例如青霉素的合成会受到赖氨酸的强烈抑制,而赖氨酸合成的前体α-氨基已二酸可以缓解赖氨酸的抑制作用,并能刺激赖氨酸的合成。这是因为α-氨基已二酸是合成青霉素和赖氨酸的共同前体。如果赖氨酸过量,它就会抑制这个反应途径中的第一个酶,减少α-氨基已二酸的产量,从而进一步影响青霉素的合成。 2发酵培养基的设计和优化 由于发酵培养基成份众多,且各因素常存在交互作用,很难建立理论模型;另外,由于测量数据常包含较大的误差,也影响了培养基优化过程的准确评估,因此培养基优化工作的量大且复杂[8]。许多实验技术和方法都在发酵培养基优化上得到应用,如:生物模型(Biologicalmimicry)、单次试验(One at a time)、全因子法(Full factorial)、部分因子法(Partialfactorial)、Plackett andBurman法等。但每一种实验设计都有它的优点和缺点,不可能只用一种试验设计来完成所有的工作[22]。 2.1 单次单因子法

相关文档
最新文档