天然温敏性高分子药物载体材料

天然温敏性高分子药物载体材料
天然温敏性高分子药物载体材料

天然温敏性高分子药物载体材料摘要:对环境刺激响应的刺激性响应材料在药物运输方面有重要的作用。本文旨在介绍几种天然温敏性高分子在药物运输方面的应用,并对此天然高分子与合成高分子在药物运输中的优缺点。

关键词:天然高分子药物载体温敏性

一.前言

刺激性响应材料因其对环境有特殊的响应而得到人们的关注,随着近几年医用高分子材料的发展,人们已可以根据特定的生理需求来制造药物载体[1]。刺激性响应高分子也叫智能高分子、环境响应高分子,当外界环境发生微小变化时,它们能迅速地发生相应的物理化学变化,根据响应因素的不同,可以分为光响应高分子、超声响应高分子、PH响应高分子、温度响应高分子等等。这些高分子在外界因素发生改变时,它们可能发生疏水/亲水转变、构象转变、溶解度改变、胶束化等等[2]。因此可以将高分子做为药物载体,从而对药物释放进行有效的控制。这这些刺激性响应材料中,温敏性高分子是研究最广泛的,所以本文将重点介绍几种温敏性天然高分子在药物载体上的应用(见表1)。

二.温敏性高分子在控制药物释放上的应用

温敏性高分子是在微观上分子随着温度发生微小改变,从而达到宏观上材料性能的改变的一类材料。这些材料一般都具有低临界溶液温度(LCST),或高临界溶液温度(UCST)。LCST的材料在温度较低时可以溶解,当加热至LCST以上时,分子从溶液中析出,经历一个溶胶-凝胶的相转变;而UCST材料正好相反,在低温时材料不能溶解,当加热至UCST以上时,材料溶解[3]。LCST和UCST 材料都可以作为药物载体,LCST共聚高分子可以简单地与药物混合,然后再室温下,用注射器将溶液注入体内,人体温度的加热作用使材料经历一个溶胶-凝胶转变,将药物包裹在材料内,从而在需治疗的位置上提供一种药物缓释作用[4]。而UCST材料则需要在病变部位加上红外激光或超声来辅助加热,从而将药物才材料中释放出来[5-7]。

温敏性药物载体有许多优点,如不需要侵入性手术植入和绕过生理障碍,从而达到特定的治疗位点[8]。另外,载体可以防止药物被酶或体内环境降解,体内药物的溶度也可以通过控制药物的释放速度来调节,因此可以避免简单注射所带来的治疗低效和体内药物浓度过高而导致的毒化作用等问题。理想的药物治疗情况如图1所示。

三.几种天然温敏性高分子

1. 弹性蛋白多肽(ELPs)

弹性蛋白多肽(ELPs)是一种五肽氨基酸重复结构构成的弹性蛋白高分子,其重复结构是:Val–Pro–Gly–Xaa–Gly (缬氨酸-脯氨酸-甘氨酸-任意氨基酸残基-甘氨酸),其中Xaa可以是除了脯氨酸之外的任意氨基酸[9][10]。在相转变温度T t以下时,ELPs是一个均匀的同业状态,当加热到相转变温度以上时,溶液变浑浊,ELPs聚集成小球[11]。ELP小球的粒径和分散度可以通过浓度和温度来控制[11]。而相转变温度可以通过调控分子量、盐浓度和ELP组成来调节[11]。ELP 是一类很好的药物载体,因其易于调控,且在体内降解后为无毒的氨基酸[12]。另外ELPs的分子量和组成可以通过基因工程来调节,从而形成分散度窄的高聚物,进一步有效地控制药物释放[13]。此外,ELPs可以由大肠杆菌大量制得,并基于加热形成胶束而很容易得到纯化[14]。

2. 壳聚糖

壳聚糖是甲壳素的多糖衍生物[15]。它本身不是温敏性高聚物,当它和甘油磷酸盐(GP)共混时才表现出温敏性[4]。在较高温度时,甘油磷酸盐(GP)与壳聚糖形成强氢键作用,形成

凝胶[4],但GP/壳聚糖之间只

有较低的凝胶率,因此在应用

上,多用氯化后的壳聚糖与

GP形成凝胶[15]。壳聚糖作为药物载体对分子量小的药物释放速度较快,几个小时内就完全释放完毕[4][16]。并且GP/壳聚糖作为药物载体运用于人体内会引起人体的炎症反应[16]。

3. 纤维素衍生物

几类纤维素衍生物,如甲基纤维素(MC)和羟丙基甲基纤维素,都有低临

界溶液温度,从而可作为药

物载体而应用[17]。甲基纤维

素的LCST大约在40-50°C

之间,羟丙基甲基纤维素的

LCST大约在75-90°C之间

[18]。但是他们的LCST可以通过物理或化学的方法来调节,如加入NaCl或减少羟丙基基团的含量[18][19]。在较低温度时,溶液形成超分子的水化状态[18],加热后,甲基之间的疏水作用导致分子疏水,从而形成形成[18]。最近的研究表明,用物理方法混合透明质酸和甲基纤维素有很好的温敏性,很好的生物相容性,能做为理想的药物载体[19][20]。

4. 木葡聚糖

木葡聚糖本身无法形

成凝胶[21]。然而,Miyazaki

等人通过部分水解木葡聚

糖,从而使木葡聚糖具有可

逆的温敏性[22]。当35%的

半乳糖被水解掉,木葡聚糖

在稀释的水溶液中显现出可逆的温敏性,并且有相对较高的储存模量。木葡聚糖也被用于药物载体方面的应用[22-26]。

四.存在的问题

虽然天然高分子药物缓释系统得到了广泛的研究和应用,但是目前仍然存在诸多问题,如药物包封率及载药量低;制备微球过程中残留溶剂的毒性和如何增加药物稳定性;由于微球形状和体内生物降解等造成的药物非零级释放;如何实现和更有效的使药物释放发生在最合适的时间内;增强药物靶向性减少有毒药物对正常细胞的伤害和提高药物的治疗效果;研究缓释系统内药物的不同释放程序和速度以达到对某些疾病的综合预防和治疗;实现智能化;缓释系统可能会引起机体抗药性的研究和如何简化生产工艺和降低生产成本等。另外,通过载体材料的改性实现药物靶向性的同时,生物相容性仍不容忽视;需要增加对药物缓释机制的研究。表2为天然温敏性高分子与合成温敏性高分子在药物载体方面的一些优缺点对比。总之,这些问题也是其它药物缓释载体材料在应用和推广时所必需解决的。

五.展望

药物剂型发展的重要方向之一是提高药物的靶向性。目前在实现药物微球靶向性的研究中不断出现新的可喜成绩,如:纳米微球、磁性微球以及生物粘附微球和利用抗体介导的微球等。凭借纳粒系统更容易通过胃粘膜、肠粘膜、鼻腔粘膜甚至皮肤的角质层等特点,正在研制的纳米微球;利用磁性而研制的磁性微球;利用脱乙酰壳多糖、聚羧乙烯等粘附性材料制备的生物粘附微球可提高药物在生物粘膜处的吸收;或者使用溶血磷脂等吸收促进剂或蛋白酶抑制剂等来增加消化道粘膜对药物的吸收;利用抗原.抗体的特殊亲和性制备抗体微球均可提高药物的靶向性。

另外,新型天然高分子材料的开发应用也势在必行。如淀粉,我国是淀粉生产和消费大国。淀粉微球作为一种药物载体,无毒、易降解、原料价廉易得因而市场前景非常广阔。而且,淀粉微球的合成工艺过程没有三废排放,微球的生产只需要通用的化工设备,一般的变性淀粉厂家不必用很大的投资即可转产,淀粉微球工业化生产可以较小的投资获得丰厚的经济效益。

药物剂型研究的目的是最终实现药物的高效化、速效化和长效化。随着医学、生物学,特别是材料科学的发展,相信在不远的将来,天然高分子药物载体材料的研究和应用将出现革命性的变化。

参考文献

[1] Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin.

Drug Deliv. 5(10), 1077–1091 (2008).

[2] Bajpai AK, Bajpai J, Saini R, Gupta R. Responsive polymers in biology and technology. Polymer Rev. 51(1), 53–97 (2011).

[3] Schmaljohann D. Thermo- and pHresponsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006).

[4] Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin. Drug Deliv. 8(8), 991–1007 (2011).

[5] Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progr. Polymer Sci. 32(8–9), 962–990 (2007).

[6] Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100(23), 13549–13554 (2003).

[7] Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011).

[8] Chilkoti A, Dreher MR, Meyer DE. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 54(8), 1093–1111 (2002).

[9] Ge X, Filipe CD. Simultaneous phase transition of ELP tagged molecules and free ELP: an efficient and reversible capture system. Biomacromolecules 7(9), 2475–2478 (2006).

[10] Ge X, Hoare T, Filipe CD. Protein-based aqueous-multiphasic systems. Langmuir 26(6), 4087–4094 (2010).

[11] Bessa PC, Machado R, Nürnberger S et al. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J. Control. Release 142(3), 312–318 (2010).

[12] Meyer DE, Chilkoti A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3(2), 357–367 (2002).

[13] McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastinlike polypeptides. Adv. Drug Deliv. Rev. 62(15), 1456–1467 (2010).

[14] Chang Y, Xiao L, Du Y. Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polymer Bull. 63(4), 531–545 (2009).

[15] Chenite A, Chaput C, Wang D et al. Novel injectable neutral solutions of chitosan form

biodegradable gels in situ. Biomaterials 21(21), 2155–2161 (2000).

[16] Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13), 2717–2722 (2002).

[17] Ruel-Gariépy E, Leroux JC. In situforming hydrogels –review of temperaturesensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004).

[18] Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011).

[19] Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J. Appl. Polymer. Sci. 24(4), 1073–1087 (1979).

[20] Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006).

[21] Kang CE, Poon PC, Tator CH, Shoichet MS. A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng. Part A 15(3), 595–604 (2009).

[22] De Freitas RA, Busato AP, Mitchell DA, Silveira JLM. Degalatosylation of xyloglucan: effect on aggregation and conformation, as determined by time dependent static light scattering, HPSEC-MALLS and viscosimetry. Carbohydr. Polymer. 83(4), 1636–1642 (2011).

[23] Miyazaki S, Suisha F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release 56(1–3), 75–83 (1998).

[24] Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 68(1), 34–45 (2008).

[25] Wells LA, Lasowski F, Fitzpatrick SD, Sheardown H. Responding to change: thermo- and photo-responsive polymers as unique biomaterials. Crit. Rev. Biomed. Eng. 38(6), 487–509 (2010).

[26] Itoh K, Tsuruya R, Shimoyama T et al. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Dev. Ind. Pharm. 36(4), 449–455 (2010).

抗肿瘤药物靶向纳米载体的构建及应用研究

抗肿瘤药物靶向纳米载体的构建及应用研究根据肿瘤环境的生理特征,人为构筑具有特定结构与功能的纳米尺度药物载体,使之对肿瘤组织具有特异性靶向、影像诊断并实现多种治疗功能,将成为癌症高效诊断与治疗的关键。将空心-介孔纳米载体的高比表面积以及选择透过性与超顺磁氧化铁纳米颗粒(IONPs)的生物相容性以及多种在体诊断-治疗模式相结合,发展肿瘤的多模态分子影像诊断以及联合治疗策略,将为纳米技术应用于癌症的临床个体化诊疗提供重要的科学依据与方法参考。 本研究主要在新型超顺磁空心-介孔纳米结构的制备方法,及其作为多功能药物载体在肿瘤成像以及光热-化学联合治疗方面开展了相关工作:一、设计合成了具有内部空腔及介孔外壳的二氧化硅纳米管(SNT);以该结构为模板,发展了Fe3O4的高温热分解原位合成方法,获得了 SNT@Fe3O4功能复合载体;该超顺磁纳米管具备良好的阿霉素负载及pH响应释放性能、较大的饱和磁化强度以及磁共振成像(MRI)性能;在其表面包裹透明质酸后,可特异性靶向过表达CD44的肿瘤细胞(如小鼠4T1乳腺癌细胞);静脉注射入小鼠后,药物载体可在受体靶向及磁场靶向共同作用下,显著提高在肿瘤组织内的富集,并实现肿瘤的MRI诊断及化学治疗。二、发展了以功能化氧化硅模板以及氧化铁修饰层原位沉积制备“蛋黄-蛋壳”型多功能药物载体的新策略。 利用氧化铁外壳的介孔特性,实现了对所负载化疗药物的酸响应释放,确保了药物在递送过程中的微量释放以及在肿瘤组织中的特异性释放,以提高其肿瘤治疗效果;利用金纳米棒的光热转换特性,实现药物的温度响应快速释放,即实现药物的外源刺激控制释放。将该多功能药物载体进行表面改性后,实现了对肿瘤

医用高分子材料

医用高分子材料 1

摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着 极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗 一、医用高分子材料的概念及简介 医用高分子材料是依据高分子材料的某些特性及特征,如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求来研制与生物体结构相适应的、在医疗上使用的材 2

药用高分子材料——纳米药物载体技术

纳米药物载体技术 用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体输送过程中的稳定性。用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。 药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。 1 单体聚合制备的聚合物纳米粒子 聚氰基丙烯酸烷基酯( PACA) 在人体极易生物降解, 且对许多组织具有生物相容性。制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。因此聚合反应介质的pH 值通常控制在1.0~ 3.5 围。

纳米药物载体抗肿瘤多药耐药机制的研究进展_赵金香

●综 述● 纳米药物载体抗肿瘤多药耐药机制的研究进展 赵金香1,李耀华2* (1平凉医学高等专科学校,甘肃 平凉,740000;2甘肃省中医学院,甘肃 兰州,730000) 摘要:肿瘤细胞对化疗药物产生多药耐药(multidrug resistance,MDR)是临床化疗失败的一个重要原因,而纳米技术的发展为肿瘤药物的靶向输送提供了新的研究机遇。纳米载体可以通过避免和降低MDR肿瘤细胞的药物外排泵,靶向肿瘤干细胞(cancer stem cells,CSC)克服其复发性,阻断肿瘤细胞的互调及其作用的微环境,以及改变免疫反应等增强细胞对化疗药物的敏感性。本文综述了肿瘤多药耐药的机制,纳米药物载体抗肿瘤多药耐药的机制研究的新进展。 关键词:肿瘤多药耐药;纳米技术;肿瘤干细胞;肿瘤微环境 中图分类号:R730 文献标识码:A 文章编号:2095-1264(2015)03-0174-05 d oi:10.3969/j.issn.2095-1264.2015.035 Research Progress of the Mechanisms of Nanotechnology in the Treatment of Multidrug Resistant Tumors ZHAO Jinxiang1, LI Yaohua2* (1Pingliang Medical College, Pingliang, Gansu, 740000, China; 2Gansu University Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China) Abstract: Multidrug resistance (MDR) is a main reason for the failure of tumor chemotherapy, the development of nanotechnology sheds light on targeted delivery of antitumor drugs. Nanocarriers can not only enhance the sensitivity of tumor cells to chemothera-peutic drugs but also downregulate the invasion and metastasis of tumor. The mechanisms of nanocarriers' anti-tumor effect involve in targeting cancer stem cells to overcome MDR and prevent recurrence, preventing the cross talk between cancer cells and their micro-environment, and modifying the immune response to improve the treatment of MDR cancers. In this review, new research progresses of the mechanisms of multidrug resistance and anti-tumor effects of nanotechnology are reviewed. Key words: Multidrug resistance; Nanotechnology; Cancer stem cells; Tumor microenvironment 前言 2014年的《全球癌症报告》表明,近两年全球癌症的患病和死亡病例都在不断增加,近一半新增癌症病例出现在亚洲,其中大部分在中国,中国新增癌症病例高居世界第一。化疗仍然是治疗癌症的主要手段,但化疗药物的非特异性及肿瘤的多药耐药(MDR)易导致肿瘤复发,MDR已成为肿瘤化疗的最大瓶颈。因此,逆转肿瘤细胞的MDR、提高肿瘤细胞对化疗药物的敏感性对肿瘤的治疗具有重大意义。开发新材料和新药物用于靶向治疗肿瘤及肿瘤多药耐药是目前亟待解决的问题[1]。 随着新兴纳米生物技术的发展,纳米技术已经被应用于影像诊断和治疗、综合化疗、放疗和基因治疗等多个学科,为肿瘤药物的靶向输送提供了新的研究机遇[2]。目前研发的纳米载药微粒包括聚合物胶束[3,4]、脂质体[5]、树状聚合物[6]、纳米乳、纳米金[7,8]或其他金属纳米颗粒[1,9]等。这些纳米载药微粒具有如下优点:①粒径小,粒径分布窄,表面修饰后可以进行靶向特异性定位,达到药物靶向输送的目的;②缓释药物,延长药物作用时间;③保护药物分子,提高其稳定性;④结合外加能量如光、声、磁场等可进行显像和治疗相结合实现肿瘤的诊断和治疗[1,10,11]。基于这些优点,越来越多的研究 作者简介:赵金香,女,讲师,研究方向:肿瘤内科,E-mail:zhaojinxiang0716@https://www.360docs.net/doc/b411207392.html,。*通讯作者:李耀华,男,主治医师,研究方向:内科学,E-mail:yaohuali1980@https://www.360docs.net/doc/b411207392.html,。

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟,20100221276 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文: 一、医用高分子材料的概念及简介:医用高分子材料是依据高分子材料的某些特性及特征, 如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求

医用用高分子材料

医用用高分子材料

医用用高分子材料 壳聚糖 1 甲壳质和壳聚糖的性质 2 甲壳质和壳聚糖的制备 3 甲壳质和壳聚糖的应用 3.1 医用纤维和膜材料 3.2 药物载体 3.3 凝血作用 3.4 抗肿瘤作用 3.5 增强免疫力 3.6 降低脂肪和胆固醇 3.7 其他方面 4 甲壳素、壳聚糖的化学改性及应用4.1 酰化改性及应用 4.2 烷基化改性及应用 4.3 醚化改性及应用 4.4 酯化改性及应用 4.5 Shiff碱反应及应用 4.6 壳聚相季铵盐 4.7 接枝反应及应用 4.8 交联及应用 4.9 其它反应和应用

5 壳聚糖与再狭窄 聚乳酸 1 聚乳酸的基本性质 1.1 物理机械性能 1.2 生物降解性 2 PLA的制备 2.1 直接缩聚法 2.2 丙交酯开环聚合法 3 PLA在医药及医用制品中的应用 3.1 药物控释载体 3.2 医用缝合线 3.3 外科生物植片 4 在预防在狭窄方面的应用 4.1 聚乳酸作为支架涂层 4.2 聚乳酸作为生物可降解性支架 4.3 制备纳米微球用于再狭窄的防治 4.3.1 纳米粒子 4.3.2 纳米粒子在治疗血管再狭窄中的应用 聚羟基乙酸及其共聚物 1 简介 2 聚羟基乙酸的性质

3 聚羟基乙酸的制备 4 羟基乙酸的共聚物 4.1 乙交酯与丙交酯的共聚物(PGA-co-PLA,PLGA) PLGA的制备和性质 4.2 乙交酯与ε-己内酯(ε-CL)的共聚物(PGA-co-PCL) 4.3 乙交酯/丙交酯/己内酯三元共聚物(PGLC) 4.4 聚(羟基乙酸-co-氨基乙酸)和聚酯酰胺(PEA) 4.5 乙交酯与2-氢-2-氧1,3,2-二氧磷杂环己烷的开环共聚物(聚磷酸酯/乙交酯 4.6 其它 5 羟基乙酸均聚物及其共聚物的应用 (1)生物体吸收缝合线 (2)缝合补强材料 (3)骨折固定材料 (4)药物控制释放系统 (5)组织工程 6 PLGA载体的制备方法

医用高分子载体材料

医用高分子载体材料 Medical polymer carrier materials 摘要:药物高分子载体是随着药物学研究、生物材料科学和临床医学的发展而新兴的给药技术。高分子材料优良的生物相容性、生物可降解性、降解速率的可调节性以及良好的可加工性能,都为药物制剂的创新提供了便利和可能。高分子载体材料的合成,高分子材料和所载药物分子的结构关系,提高载药效率,以及药物载体材料的结构,在性能方面,不仅要考虑高分子材料的生物适应性,而且考虑它在体内的分布情况和生物降解性能、降解产物对机体的影响等问题都需要深入研究。本文结合国内有关医用高分子载体材料方面的研究论文, 阐述了医用高分子载体的概念、种类、作用机理、研究现状、应用以及发展前景。 关键词: 医用高分子载体高分子载体药物控制释放肿瘤给药系统应用 Abstract:The development of pharmacology, biomaterials and clinical medicine brings on a new administration method, namely medical polymer carriers. The excellent biocompatibility, bio-degradability, adjusted degradation velocity and processing property of polymer materials facilitate the pharmaceutical preparation. Many problems, such as biocompatibility of polymer materials, in vivo distribution, in vivo degradability, and effect of degradable products, all need further researches in the fields regarding the synthesis of polymer carriers, the correlation between polymer materials and carrying drug molecules, raising the efficiency of drug carrying, the structure and property of the drug carriers. Based on the relevant domestic medical polymer carrier material research papers, expounds the concept of medical polymer carrier, type, function mechanism and research status quo, application and development prospect. Keywords:medical polymer carrier polymer drug carrier control release tumor drug delivery system application 1. 引言 20世纪60年代化学家们提出将高分子材料应用于生物药物领域,制备高分子药物是改善药物最有效的方法之一。高分子载体药物可以通过剂型改变,控制药物释放速度,避免间歇给药使血药浓度呈波形变化,从而使释放到体内的药物浓度比较稳定,还可以通过释放体系使药物送达体内特定部位,而对身体其它部位不起作用。载体药物技术的关键是

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

抗肿瘤纳米药物载体的研究进展

抗肿瘤纳米药物载体的研究进展 1 通讯作者,E 2mail:cba8888@hot m ail .co m 210009 南京 东南大学临床医学院东南大学附属中大医院血液科 蔡晓辉 综述,陈宝安1  审校 【摘 要】 目前在临床广泛应用的抗肿瘤药物多数为非选择性药物,为了提高药物疗效,减少毒副作用,人们对其超微 粒子靶向、控释体系进行探索。载体材料必须是可生物降解的聚合物,包括天然和合成两类,可以为抗肿瘤药物治疗提供新的具有靶向功能的药物。本文就近年来抗肿瘤纳米药物载体的研究进展作一综述。 【关键词】 肿瘤; 纳米技术; 药物载体中图分类号:R730151 文献标识码:A 文章编号:1009-0460(2010)01-0090-05 Progressi on of an ti 2tu m or drug carr i er by nano m eter technology CA I X iao 2hui,CHEN B ao 2an .D epa rt m en t of He m atology,the A ffiliated Zhongda Hospital to S outheast U niver 2 sity,C linical College of Southeast U niversity,N anjing 210009,China Correspond ing author :CHEN B ao 2an,E 2m a il:cba 8888@hot m ail .co m 【Abstract 】 A t the p resent ti m e,the drugs t o the tu mors used in clinic mostly are not selective in vivo .Peop le have started t o do many researches on the targeting ultrastructure and the syste m s of contr olling release for i m p r oving the drug 2efficiencies and decrea 2sing the side 2effects .And the carrier materials must be res olvable which include the natural category and the synthetics .A ll these may be able t o p r ovide a ne w kind of medicine having targeting functi on .The research advance ment of drug 2nanoparticles πcarrying agents in recent years will be su mmarized in this article . 【Key W ords 】 Tu mor; Nanometer technol ogy; D rug carrier 目前在临床广泛应用的抗肿瘤药物还多数为非选择性药物,体内分布广泛。为了提高药物疗效,减少毒副作用,人们对其超微粒子靶向、控释体系进行探索,将它负载于脂质体、纳米微粒、聚合物结合体和聚合物胶束等一系列药物载体系统。 控释体系所用的载体材料必须是可生物降解的聚合物,包括天然和合成两类。较早应用的血清蛋白、血红蛋白骨胶原、明胶等天然可生物降解的高分子材料,生物相容性好,但制备困难,成本高,质量无法控制,不能大规模生产。近年,研究转向了合成类的可生物降解聚合物,如脂肪族聚酯、聚氰基丙烯酸烷基酯、聚原酸酯、聚氨基酸等。这些超微载体一方面可对药物起到缓释、控释作用,另一方面,可对病变部位靶向给药,同时还有载药量大的特点,有望提高药物治疗效果,降低药物对正常组织的毒副作用。本文就近年来抗肿瘤纳米药物载体的研究进展作一综述。 1 天然载体系统 111 脂质体微球 脂质体的主要成分是磷脂,磷脂分子中 含磷酸基团的部分具有强烈极性(亲水性),而两个长碳氢键具有非极性(疏水性)。脂质体这种典型的亲水、疏水分子特性,使其具有亲油、亲水性,在水溶液中形成单层或多层囊泡,可以作为药物载体包裹多种药物。脂质体用作药物载体具有以下优点:(1)主要由天然磷脂和胆固醇组成,进入体内被生物降解不会积累在体内,免疫原性小。(2)水溶性和脂溶性药物都可包埋运载,药物从脂质体中缓慢释放,药物持续时间长。(3)通过细胞内吞和融合作用,脂质体可直接将药物送入细胞内,避免使用高浓度游离药物从而降低不良反应。 早期脂质体的应用受到稳定性差、药物易渗漏、储存期短、组织靶向性差和易被网状内皮系统(RES )迅速清除等的限制。脂质体表面包裹高分子修饰,通过聚乙二醇、甲基聚唑啉、聚乙烯吡咯酮和神经节苷脂(G M 21)修饰解决了普通脂质体易从体循环中被肝、脾巨噬细胞迅速清除的缺点,可以使脂质体在血液中保留较长时间,增加了药物的被动靶向功能。维生素E 是一有效的抗氧化剂,被认为是通过与类脂过氧化自由基反应并淬灭单一态的氧分子和对类脂双分子

医用高分子材料的结构与性能

目录 摘要 (1) 1 前言 (2) 2 医用高分子材料的分类 (2) 2.1 来源 (2) 2.2 降解性 (3) 2.3 应用方向 (4) 2.3.1 人工脏器 (4) 2.3.2 人工组织 (4) 2.3.3 护理和医疗用具相关的医用材料 (4) 2.3.4 药用高分子 (5) 3 医用高分子的性质 (5) 3.1 生物功能性 (5) 3.2 生物相容性 (5) 4 医用高分子的表面改性方法 (6) 4.1 物理方法 (6) 4.1.1 表面涂层 (6) 4.1.2 物理共混 (7) 4.2 化学方法——表面接枝法 (7) 4.2.1 表面接枝改性 (7) 4.2.2 等离子体表面改性 (8) 4.2.3 光化学固定法 (8)

4.3 表面仿生化改性 (9) 4.3.1 表面肝素化 (9) 4.3.2 表面磷脂化 (9) 4.3.3 表面内皮化——内皮细胞固定法 (9) 5 总结与展望 (10) 参考文献 (11)

摘要 由于其良好的生物相容性,医用高分子材料是现阶段最为安全的一类医用材料。同时,合成加工的简便,来源的广泛,使得医用高分子材料的功能性越来越多,应用范围也越来越广泛。但由于结构的限制,医用高分子材料在人体中的相容性还未达非常理想地到人们要求。因此,也就产生了以表面改性为主的一系列增进其相容性的改性方法。本文通过对医用高分子材料的定义、分类、性质以及表面改性方法的介绍,体现了医用高分子材料的优越和不足之处,同时也对医用高分子材料的未来进行了展望。 关键词:医用高分子;生物相容性;表面改性

1 前言 医用高分子材料(medical polymer)是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料,是生物医用材料的重要组成之一[1]。医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[2]。 生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能,具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的复杂的形态[3]。 随着近代医学及材料科学的发展,对生物医用高分子材料的需求越来越大。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%-20%的速度增长。以美国为例,每年有数以百万计的人患有各种组织、器官的丧失或功能障碍,需进行800万次手术进行修复,年耗资超过400亿美元,器官衰竭和组织缺损所需治疗费占整个医疗费用的一半[4]。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2 医用高分子材料的分类 2.1 来源 按照来源,可将医用高分子材料分为合成医用高分子材料和天然高分子材料。 常见的合成医用高分子材料包括PE(polyethylene,聚乙烯)、PP (polypropylene,聚丙烯)、PC(polycarbonate,聚碳酸酯)、PLA(polylactic acid,聚乳酸)及其衍生物、有机硅橡胶等。其优点是工艺成熟,机械性能相对较好,加工性能较好,能够同时表现多种功能性[5]。 常见的天然医用高分子材料包括壳聚糖、明胶、海藻酸盐类、纤维素等。天

医用用高分子材料(精)

医用用高分子材料 壳聚糖 1 甲壳质和壳聚糖的性质 2 甲壳质和壳聚糖的制备 3 甲壳质和壳聚糖的应用 3.1 医用纤维和膜材料 3.2 药物载体 3.3 凝血作用 3.4 抗肿瘤作用 3.5 增强免疫力 3.6 降低脂肪和胆固醇 3.7 其他方面 4 甲壳素、壳聚糖的化学改性及应用4.1 酰化改性及应用 4.2 烷基化改性及应用 4.3 醚化改性及应用 4.4 酯化改性及应用 4.5 Shiff碱反应及应用 4.6 壳聚相季铵盐 4.7 接枝反应及应用 4.8 交联及应用 4.9 其它反应和应用 5 壳聚糖与再狭窄 聚乳酸 1 聚乳酸的基本性质 1.1 物理机械性能 1.2 生物降解性 2 PLA的制备 2.1 直接缩聚法 2.2 丙交酯开环聚合法 3 PLA在医药及医用制品中的应用 3.1 药物控释载体 3.2 医用缝合线 3.3 外科生物植片 4 在预防在狭窄方面的应用 4.1 聚乳酸作为支架涂层 4.2 聚乳酸作为生物可降解性支架 4.3 制备纳米微球用于再狭窄的防治 4.3.1 纳米粒子 4.3.2 纳米粒子在治疗血管再狭窄中的应用 聚羟基乙酸及其共聚物 1 简介 2 聚羟基乙酸的性质

3 聚羟基乙酸的制备 4 羟基乙酸的共聚物 4.1 乙交酯与丙交酯的共聚物(PGA-co-PLA,PLGA) PLGA的制备和性质 4.2 乙交酯与ε-己内酯(ε-CL)的共聚物(PGA-co-PCL) 4.3 乙交酯/丙交酯/己内酯三元共聚物(PGLC) 4.4 聚(羟基乙酸-co-氨基乙酸)和聚酯酰胺(PEA) 4.5 乙交酯与2-氢-2-氧1,3,2-二氧磷杂环己烷的开环共聚物(聚磷酸酯/乙交酯 4.6 其它 5 羟基乙酸均聚物及其共聚物的应用 (1)生物体吸收缝合线 (2)缝合补强材料 (3)骨折固定材料 (4)药物控制释放系统 (5)组织工程 6 PLGA载体的制备方法 6.1 微球 (l)溶剂挥发法 (2)复乳法 (3)相分离法 (4)喷雾干燥法 (5)超临界流体新技术 6.2 纳米球 6.3 植入剂 脂质体 1 脂质体发展 2 脂质体的基本性质 2.1 脂质体结构及性质 2.2 脂质体的作用特点 (1)脂质体的靶向作用 (2)脂质体提高被包封药物的稳定性 (3)脂质体降低药物毒性 (4)脂质体的长效作用 3 脂质体的制备 3.1 薄膜分散法 3.2 注入法 3.3 超声波分散法 3.4 冷冻干燥法 3.5 冻融法 3.6 逆相蒸发法 3.7 复乳法 3.8 熔融法 3.9 表面活性剂处理法

我国医用高分子材料的发展现状

我国医用高分子材料的发展现状 摘要: 对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词: 医用高分子材料;相容性;组织工程 前言: 现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料[1]是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 1、医用高分子材料的目前需求 人的健康长寿依赖于医学的发展。现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。目前全球大量用于医疗器械的生物医学材料主要有20种,其中医用高分子12种,金属4种,陶瓷2种,其他2种[2]。利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。近年来,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长[3],而国内也以20%左右的速度迅速增长。随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

高分子载体材料

高分子载体材料 载体是指能载带微量物质共同参与某种化学或物理过程的常量物质。高分子载体则是以高分子聚合物来充当反应中此类常量物质。随着科技飞速发展高分子载体日益备受关注,广泛应用于医药载体、载体催化剂、固相组合合成技术、固相萃取等领域。 高分子载体材料十分广泛, 按来源可分为天然高分子材料、半合成高分子材料、合成高分子材料。常用的天然高分子载体材料稳定、无毒、成膜性较好, 特别是适合作为药物载体材料。其中主要包括胶原、阿拉伯树胶、海藻酸盐、蛋白类、淀粉衍生物。近年来研究较多的是壳聚糖、海藻酸盐, 而源于蚕丝的丝素蛋白则显示出巨大的潜力[ 2]。半合成高分子包括羧甲基纤维素、邻苯二甲酸纤维素、甲基纤维素、乙基纤维素、羟丙甲纤维素、丁酸醋酸纤维素、琥珀酸醋酸纤维素等, 其特点是毒性小、粘度大、成盐后溶解度增大, 由于易水解, 故不宜高温处理, 需临时现用现配《资料》。合成高分子材料如聚碳酯、聚氨基酸、聚乳酸、聚丙烯酸树脂、聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚氰基丙烯酸烷酯、乙交酯一丙交酯共聚物、聚乳酸一聚乙二醇嵌段共聚物,e一己内酯与丙交酯嵌段共聚物、聚合酸酐及羧甲基葡萄糖等,其特点是无毒、化学稳定性高。《资料》 按应用范围来分,可分为药物高分子载体、催化剂高分子载体、固相反应高分子载体及固相萃取高分子载体。 药物高分子载体 高分子载体药物是指将本身没有药理作用、也不与药物发生化学反应的高分子作为药物的载体,依靠二者间微弱的氢键结合形成、或者通过缩聚反应将低分子药物连接到聚合物主链上而得到的一类药物。其中高分子化合物充当低分子药物的传递系统,而发挥药理作用的仍是低分子药物基团。《资料》高分子载体不会在体内长时间积累,可排出或水解后被吸收。《资料》 以高分子作为药物载体的主要目的是为了提高药物的选择性。通常采用三种方法提高高分子药物的选择性:①通过改变小分子药物与高分子载体的连接方式和连接基团,达到有选择性的目的。例如身体某一部位具有亲核性的细胞壁或含有氨基(巯基)等,都可以水解连接小分子药物的酯基,从而可在靶区内把小分子药物从高分子载体上接下来;②给高分子载体装上“导向装置”,从而使高分子药物直接进攻靶区。例如身体正常组织的pH值为7. 2,而某些肿瘤组织的pH值为5.9~6.9。利用这种差别,给高分子药物安上磺胺衍生物侧基,则聚合物在pH≈6. 6时沉淀,从而实现了药物专门进攻靶区的目的;③利用高分子药物的高分子量能引起体内某些细胞对它的特异吸取,使具有活性的高分子在病变区积聚,达到有选择性的目的[3] 《资料》将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。接枝主要分为两种类型:通过偶联将一种聚合物接枝到另一种聚合物表面;将带功能基团的单体接到聚合物表面,然后引发单体聚合(也叫原位聚合)。而工艺方法又可分为:氧化处理(表面涂饰,火焰电晕放电或酸蚀等);等离子固定法;高能辐射法;光化学方法等。《资料》} 催化剂高分子载体 均相催化剂的固载化是催化剂研究的方向之一,将具有催化活性的低分子负载于高分子上可制成固载化催化剂.与一般低分子催化剂相比,具有以下优点:(1)对设备无腐蚀性; (2)催化剂容易处理和储存;(3)反应后易与反应液分离;(4)易实现生产的连续化;(5)可消除废酸的环境污染;(6)稳定性良好,能够重复使用.因此,在有机合成中日益受到人们的关注.高分子载体Lewis酸催化剂具有催化活性高、性能稳定、使用方便、无污染、制备简便、成本低廉、重复使用性能优越、可回收再生等一系列优点,是一类良好的环境友好催化剂,对于资源综合利用和环境友好具有重大意义.高分子载体Lewis酸是将Lewis酸固载于高分子载体上的一种固体酸催化剂,是高分子金属催化剂中的一种,是利用高分子骨架中的不饱和pai键配位的金属高分子催化剂如:三氟化硼型催化剂:聚苯乙烯一三氟化硼复合物

医用高分子材料

刘熙高分子092班 5701109065 生活中的高分子材料 ——医用高分子材料 摘要:我国医用高分子材料的研究起步较早、发展较快。医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官,具有延长病人生命、提高病人生存质量等作用。 关键词:生物医用高分子材料 科技关爱健康,医用高分子材料的应运而生是医疗技术发展史上的一次飞跃。高分子材料充分体现了人类智慧,是人类科学技术的重要科技进步成果之一。高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 而医用高分子材料是一类可对有机体组织进行修复、替代与再生, 具有特殊功能作用的合成高分子材料, 可以利用聚合的方法进行制备, 是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质, 以满足不同的需求, 耐生物老化, 作为长期植入材料具有良好的生物稳定性和物理、机械性能, 易加工成型, 原料易得, 便于消毒灭菌, 因此受到人们普遍关注, 已成为生物材料中用途最广、用量最大的品种, 近年来发展需求量增长十分迅速。目前全世界应用的90多个品种, 西方国家消耗的医用高分子材料每年以10%~20%的速度增长。以美国为例, 每年有数以百万计的人患有各种组织、器官的丧失或功能障碍, 需进800万次手术进行修复, 年耗资超过400亿美元, 器官衰竭和组织缺损所需治疗费占整个医疗费用的一半。随着人民生活水平的提高和对生命质量的追求, 我国对医用高分子材料的需求也会不断增加。

相关文档
最新文档