应用随机过程 第四次作业答案

应用随机过程 第四次作业答案
应用随机过程 第四次作业答案

第四次作业

1,设{(),0}N t t ≥是参数为λ的泊松过程,求(|())()k E S N t n k n =≤ 答案:设~[0,]i U U t ,1,2,...,i n =,则其顺序统计量与12,,...,n S S S 在()N t n =的条件下的分布相同。故()(|())()()1k k kt E S N t n E U k n n ===≤+ 2,设{(),0}N t t ≥为时齐泊松过程,12,,...,,...n S S S 为事件相继发生的时刻。

(1) 给定()N t n =,试问1211,,...,n n S S S S S ---是否条件独立?是否同分

布?试证明你的猜想。

(2) 求1[|()]E S N t 的分布律;

(3) 利用(1)及(2),求(|())k E S N t 的分布律;

(4) 求在()N t n =下i S 与(1)k S i k n ≤<≤的条件联合概率密度。 答案:

(1)1211,,...,n n S S S S S ---同分布但不是条件独立。

(2)当0n =时

1[|()0]

(()|()0)

(())

1

E S N t E W t t N t t E W t t λ

==+==+=+ 当1n ≥时 1(1)(|())()1t E S N t n E U n ===

+ (3)当n k ≤时

12(|())(()|())k k k n k n E S N t n E x x x W t t N t n t λ-+-==+++++==+

当n k ≥时 ()(|())()1k k kt E S N t n E U n ===

+ (4)与()(),i k U U 的联合分布相同,可用微元法或积分得到。

3,设{(),0}N t t ≥是参数为λ的时齐泊松过程,00S =,n S 为第n 个事件发生的时刻。求:

(1)25(,)S S 的联合概率密度函数;

(2)1(|()1)E S N t =;

(3)12(,)S S 在()1N t =下的条件概率密度函数。

答案:(1)

252

02

022()2

052(,)

(,)lim (()1,()()1,()()2,()()1)lim ()2lim ()2

h h h x h y x h he h y

P x S x h y S y h f x y h P N x N x h N x N y N x h N y h N y h y x h xe he e h x y x e λλλλλλλλλλ-→→-----→-<≤+<≤+==+-=-+=+-==--=-=

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

应用随机过程答题(2)

--------------------------------------装----------------------------------------订 ---------------------------------------线-------------------------------------- 第 - 1 - 页 共 -3- 页 2005-2006学年秋季学期《 随机分析 》课程期末考试试题B 说明:学生必须将答案全部写在答题纸上,凡写在试题上的一律无效。学生可随身携带计算器。 一、填空题(每小题3分,共计10×3=30分) 1)随机变量()2~,X N μδ,则其矩母函数()=t g 。 2)(){}0,≥t t N 为以参数2=λ的Possion 过程,则()()}{=2211=且=N N P 。 3)设Poisson 过程(){}0,≥t t N 的强度为3,n X 表示过程第1-n 次与第n 次事件的 时间间隔,则}{=n X E , }{=n X D 。 4)设某刊物邮购部的顾客数是平均速率为6的Poisson 过程,订阅1年、2年、3年的概率分别21, 31和6 1,且相互独立。订阅一年时,可得1元手续费。以()t X 记在[]t ,0得到的总手续费。则()}{=t X E = ,()}{= t X D = 。 5)考虑状态0,1,2的一个Markov 链{}0,≥n X n ,其一步转移概率矩阵为 ????? ??=1.08.01.04.02.04.06.03.01.0P ,初始分布为2.0,5.0,3.0210===p p p ,则 ()====1,0,1210X X X P 。 6)已知状态为1,2,3,4的齐次Markov 链{}0,≥n X n 及其一步转移概率矩阵为

a第7讲-第8讲第3章 泊松过程

一.假定某天文台观察到的流星流是一个泊松过程, 据以往资料统计为每小时平均观察到 3 颗流星.试求: ( 1 ) 在上午 8 点到 12 点期间, 该天文台没有观察到流星的概率 . ( 2 ) 下午( 12 点以后)该天文台观察到第一颗流星的时间的分布函数 . 二.设电话总机在] X是具有强度 ,0(t内接到电话呼叫数) (t λ的泊松过程,求 (每分钟)2 = (1)两分钟内接到2次呼叫的概率; (2)“第二分钟内收到第2次呼叫”的概率。

维纳过程 如果它满足 给定实随机过程,}0),({≥t t W ; )2(是平稳的独立增量过程;0)),(,0()()( ,0 )3(2 >??≥>σσ且~增量 对任意的s t N s W t W s t . 0)0()1(=W 则称此过程为维纳过程.

3. 维纳过程的特征 ). ,min(),(),(2t s t s R t s B W W σ==; 0),,0()( 2>σσ且~t N t W ). ,min()]()()(()([(2 a t a s a W s W a W s W E ??=??σ, ,0+∞<<≤?t s a (1)(2))] ()())(()([(a W t W a W s W E ??, t s <令))]()()()())(()([(a W s W s W t W a W s W E ?+??=))] ()())(()([(s W t W a W s W E ??=))]()())(()([(a W s W a W s W E ??+).(2a s ?=σ

五.平稳过程 定义2.12,,,,,21T t t t N n n ∈∈L )) (,),(),((21n t X t X t X n L 变量维随机)) (,),(),((21h t X h t X h t X n +++L 和具有相同的分布函数, 则称随机过程}),({T t t X ∈具有平稳性, 并同时称此过程为严平稳随机过程,(或狭义平稳过程). 与 常数若对为随机过程设τ?∈,}),({T t t X ,,,,21时当T t t t n ∈+++τττL 严平稳过程的任意有限维概率分布不随时间的推移而改变.

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

《随机过程及其在金融领域中的应用》习题一答案

习题一 1、设人民币存款利率为5%,每年计息一次,那么大约要多少年时间才能使存款额变为原来的4倍?如果利率变为4%,又要多少年? 解:设初始投入资金为Q 元,大约需要n 年,其中的利率为r 。 依题意,可得: 公式计算法:Q ?5%?n =Q 1?Q 【PS: Q 1为存款后的利息+本金,Q 为本金】 1) 当r=5%的时候:Q ?5%?n =4Q ?Q 所以:n =35%=60 2) 当r=4%的时候:Q ?5%?n =4Q ?Q 3) 所以:n =34%=75 答:当利率为5%的时候,大约60年可以达到4倍。 利率为4%的时候,大约75年可以达到4倍。 2、如果利率为年复合利率r ,请给出一个公式,用它来估计要多少年才能使存款额变为原来的3倍。 解:【推导过程】当利率为r ,则一年之后存放余额为Q+rQ=(1+r)Q 之后连本带息存款,二年之后存放余额 Q (1+r )+Q (1+r )r =Q(1+r)2 ······ 依次类推n 年后存款达到Q(1+r)n 依据上述公式和P3的(1—4),可以得到: Q(1+r)n =3Q 且(1+r)n =e nr =>(1+r)n =3且(1+r)n =e nr 且当n 充分大时=>(1+r)n ≈e nr ,则由题意得到Q(1+r)n =3Q =>(1+r )n =3且(1+r )n ≈e nr ,近似e nr ≈3 n ≈ln3r =ln3r 3、考虑期权定价C 问题,设利率为r ,在t=0时刻,某股票价格为100元,在t =1时刻,该股票的价格为200或50,即 100(t =0)↗↘20050 (t =1) 试证明:若C ≠100?50(1+r )?13,则存在一个购买组合,使得在任何情况下都能 带来正的利润现值,即套利发生。【本题默认执行价格为150】

随机过程习题答案

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1 )是齐次马氏链。经过 次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

应用随机过程期末复习资料全

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 :

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中 红球,每隔单位时间从 袋中有一个白球,两个任取一球后放回,对每对应随机变量 一个确定的t ?? ? ? ? = 时取得白球 如果对 时取得红球 如果对 t e t t t X t 3 )( . 维分布函数族 试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

维纳过程及其应用

摘要 0 1. 引言..................................................... 2.. 2. 维纳过程.................................................. 2.. 2.1独立增量过程 (2) 2.2维纳过程的定义 (3) 2.3维纳过程的特点 (3) 2.4维纳过程的性质 (4) 2.5维纳过程在区间[t,S]上加权线性组合 (5) 3. 维纳过程的应用............................................ 6.. 3.1股票价格的行为模式 (6) 3.2维纳过程下四种死力假设的增额寿险精算模型 (10) 4. 结束语................................................... 1.5参考文献 . (16)

维纳过程及其应用 薛翔 南京信息工程大学 摘要:本文叙述了维纳过程的基本定义和概念,并介绍了维纳过程的特点和性质以及与维纳过程有关的在生活中的应用。通过对股票价格的行为模式的理论分析,可以看出维纳过程作为随机过程中的一个具体模型在生活中是有重要意义的。通过对在维纳过程下,四种常用的死力解析形式的分析,可以看出维纳过程对保险实务有一定的理论指导意义。 关键词:维纳过程;随机变量;独立增量;正态分布

The Wiener process and its application Xue Xiang Nanjing University of Information Science and Technology Abstract: This paper describes the Wiener process and the definition of the concept, and introduced the characteristics and the nature of the Wiener process and Wiener process in life application. By means of the theory on stock price behavior pattern analysis, it can be seen that the Wiener process as a stochastic process in a specific model in life is important. Through the analysis of four commonly used to analytical form in the Wiener process, we can see Wiener process for the insurance practice has a certain theoretical significance. Key words : Wiener process; random variable; independent increment; normal distribution

华工应用随机过程试卷及参考答案

华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷) (闭卷时间 120 分钟) 院/系年级 __专业姓名学号 1、设X 是概率空间(Ω,F ,P )且 EX 存在, C 是 F 的子σ-域,定义E (XC )如下:(1)_______________ ; (2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为 λ 的 Poisson 过程,则 N (t )具有_____、 _____增量,且?t >0,h >0充分小,有:P ({N (t + h )? N (t ) = 0})= ________,P ({N (t + h )? N (t ) =1})=_____________; 3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则?t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程); 4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。 二、证明分析题(共 12 分,选做一题) 1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有

指数分布,即:P({X ≤ a}) =1?e?λa ,a >0,其中λ是正常数。设λ是 另一个正常数,定义:Z = λλe?(λ?λ)X ,由下式定义:P(A)=∫A ZdP,?A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函 数:P({X ≤ a}),a>0; 2、设X0~U (0,1),X n+1~U (1?X n,1),n≥1,域流{F n,n≥ 0}满足: F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ?∏ k n=1 1 X?k X ?1 k ,n ≥1, 试证:{Y n ,n ≥ 0}关于域流{F n,n ≥ 0}是鞅! 三、计算证明题(共60 分) 1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

《随机过程》教学大纲

《随机过程》课程教学大纲 课程编号:0806308033 课程名称:随机过程 英文名称:Stochastic Process 课程类型:专业限选课 总学时:32 讲课学时:32 实验学时:0 学分:2 适用对象:信息工程专业本科生 先修课程:高等数学、概率论与数理统计 一、课程性质、目的和任务 《随机过程》是通信与计算机专业的一门必修专业课程,在通信、电子、信号、控制、物理、生物等领域都有广泛的应用,是从事相关领域科学研究必须掌握的理论和方法。 本课程从工程应用的角度讨论随机过程(随机信号)的基本理论、基本分析方法及应用。通过本课程的学习,使学生掌握随机过程的统计特性描述方法,平稳随机过程的统计分析,马尔可夫链的基本理论和应用方法,随机过程通过线性系统的分析,典型随机过程等。 二、教学基本要求 本课程以随机过程的基本概念、泊松过程及维纳过程、马尔可夫链、平稳随过程为研究对象,以基础理论加实际应用的方式,在理解随机过程基本概念的基础上,掌握泊松过程、维纳过程、马尔可夫链的基本性质和统计特性以及平稳随机过程的功率谱密度概念及其性质、线性系统对平稳过程的响应等。学完本课程应达到以下基本要求: 1.了解随机过程的基本概念及统计描述,掌握泊松过程和维纳过程的概念和统计特性。 2.理解马尔可夫链的无后效性,掌握马尔可夫链的概率分布,掌握马尔可夫链多步转移概率的确定方法,理解马尔可夫链的遍历性。 3.理解平稳过程的功率谱密度概念及其性质、线性系统对平稳过程的响应,并会计算有关的相关函数和谱密度。 三、教学内容及要求 1.预备知识 [内容提要] 1.1 概率空间 1.2 随机变量和分布函数 1.3 数字特征,矩母函数与特征函数 1.4 条件概率、条件期望和独立性 [要求与说明] ①复习随机变量、分布函数、分布律和概率密度函数的概念,条件分布,函数的分布 求法,常见的离散型与连续型分布,及多维随机变量的知识;

应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为),0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随机过程的二维分布:T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 随机过程的n 维分布:

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体 样本空间所构成的集合族。符号解释:sup表示上确界,inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分 布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便 用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = in tergral(E(X|Y=y))dFY(y) 。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规 律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s) 均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差t-s有关,r(t) = r(-t) 记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn] - X[T(n-1)]对任意n均相互独立,则称X(t) 是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

随机过程习题及答案

第二章随机过程分析 1.1学习指导 1.1.1要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1.随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2.随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为 F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1) 如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率 称为随机过程?(t )的二维分布函数。如果 存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。如果 存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。 3.随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为 其中,f 1(x ,t )为?(t )的概率密度函数。随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。 随机过程?(t )的方差的定义如下: 随机过程?(t )的方差常记作σ2(t )。随机过程?(t )的方差的另一个常用的公式为 也就是说,方差等于均方值与均值平方之差,它表示随机过程在时刻t ,对于均值a (t )的偏离程度。 随机过程?(t )的相关函数的定义如下: 式中,?(t 1)和?(t 2)分别是在t 1和t 2时刻观测得到的随机变量。R (t 1,t 2)是两个变量t 1和t 2的确定函数。随机过程?(t )的相关函数表示在任意两个时刻上获得的随机变量之间的关联程度。 随机过程?(t )的协方差函数的定义如下: 式中,a (t 1)、a (t 2)分别是在t 1和t 2时刻得到的?(t )的均值;f 2(x 1,x 2;t 1,t 2)是?(t )的二维概率密度函数。 B (t 1,t 2)与R (t 1,t 2)之间有如下关系式: 若a (t 1)=a (t 2)=0,则B(t 1,t 2)=R(t 1,t 2)。 随机过程?(t )和η(t )的互相关函数的定义如下: 4.平稳过程及其性质 平稳过程包括严平稳过程(强平稳过程或狭义平稳过程)和广义平稳过程。如果随机过程?(t )的任意有限维分布函数与时间起点无关,也就是说,对于任意的正整数n 和所有实数?,有 则称该随机过程是严格意义下的平稳随机过程,简称严平稳随机过程。

应用随机过程 第四次作业答案

第四次作业 1,设{(),0}N t t ≥是参数为λ的泊松过程,求(|())()k E S N t n k n =≤ 答案:设~[0,]i U U t ,1,2,...,i n =,则其顺序统计量与12,,...,n S S S 在()N t n =的条件下的分布相同。故()(|())()()1k k kt E S N t n E U k n n ===≤+ 2,设{(),0}N t t ≥为时齐泊松过程,12,,...,,...n S S S 为事件相继发生的时刻。 (1) 给定()N t n =,试问1211,,...,n n S S S S S ---是否条件独立?是否同分 布?试证明你的猜想。 (2) 求1[|()]E S N t 的分布律; (3) 利用(1)及(2),求(|())k E S N t 的分布律; (4) 求在()N t n =下i S 与(1)k S i k n ≤<≤的条件联合概率密度。 答案: (1)1211,,...,n n S S S S S ---同分布但不是条件独立。 (2)当0n =时 1[|()0] (()|()0) (()) 1 E S N t E W t t N t t E W t t λ ==+==+=+ 当1n ≥时 1(1)(|())()1t E S N t n E U n === + (3)当n k ≤时 12(|())(()|())k k k n k n E S N t n E x x x W t t N t n t λ-+-==+++++==+ 当n k ≥时 ()(|())()1k k kt E S N t n E U n === + (4)与()(),i k U U 的联合分布相同,可用微元法或积分得到。 3,设{(),0}N t t ≥是参数为λ的时齐泊松过程,00S =,n S 为第n 个事件发生的时刻。求:

相关文档
最新文档