关于高速铁路GPS控制网测量技术探讨

关于高速铁路GPS控制网测量技术探讨
关于高速铁路GPS控制网测量技术探讨

关于高速铁路GPS控制网测量技术探讨

摘要:文章结合笔者的工作经验和总结,主要阐述了gps网优化设计及优化,在此基础上,针对高速铁路gps控制网测量技术进行了探讨了研究,以供测量人员参考与借鉴。

关键词:高速铁路;gps控制网;优化设计;测量技术

一、gps网优化设计指标

gps控制网优化设计三种指标。1)精度指标。根据gps基线向量所建立法方程,可以得到gps网协因数阵qxx。在gps网设计阶段,可采用协因数阵qxx的迹来衡量gps网精度指标。一般应用协因数阵qxx的特征值最大值最小、特征值的行列式最小、迹最小、迹的平均值最小和最大特征值与最小特征值之间的比值或差值为准则

来实现对整体网精度的优化。2)可靠性指标。gps网的可靠性是指发现或探测观测值粗差的能力和抵抗观测值粗差对平差结果影响

的能力,其中前者被称为内部可靠性,后者被称为外部可靠性。3)费用指标。在gps网建设过程中,经费消耗主要跟网中点的总数和重复设站数有关,重复设站数越多,精度和网的可靠性越高,则建网费用越高。因此权衡三者关系,对gps网进行优化设计,可以实现工程资源和工程质量的最佳配置。

二、gps网优化设计

(1)gps零类优化设计。基线固定点的误差会给基线结果带来一定的误差,因此必须对网的位置基准进行优化设计。gps工程控制网多为约束网,只需要选择国家、地方坐标系或转化为高程抵偿面

D级GPS控制测量技术设计书要点

目录 一、课程设计的目的和任务 (3) 1.1.设计目的 (3) 1.2.任务概述 (3) 二、测区概况 (3) 2.1.测区自然地理概况 (3) 2.2民族种类 (3) 2.3已有资料情况 (3) 2.4测区的范围: (3) 三、设计的依据 (3) 四、主要的技术指标 (4) 4.1GPS测量 (4) 4.2水平角观测 (6) 4.2.1水平距离的观测 (6) 4.2.2导线网 (6) 五、坐标系统的选择 (7) 六、设计方案 (7) 6.1布网的原则 (7) 6.1.1.GPS网型网型方案设计 6.2.图上展绘已知点(或图上查找已知点) (7) 6.3按点位要求与测区情况在图上选点布网 (8) 6.4.判断和检查点间的通视(主要点间) (9) 6.5.外业选点埋石 (10) 6.5.1选点 (10) 6.5.2标志埋设 (10) 六、仪器设备的选择 (11) 七、外野实测方案设计 (11) 7.1. GPS外业工作的原则 (11) 7.2安置天线要求 (12) 7.2.1对仪器设备的要求 (12) 7.3观测方法 (13) 7.3.1 GPS 观测方法 (13) 7.4 地籍勘丈 (13) 7.4.1 、地籍勘丈的方法: (13) 7.4.2. 宗地图编号 (13) 7.4.3. 地籍图的规格及分幅 (13) 7.4.4 地籍勘丈的基本精度 (14) 7.4.5界址点的施测方法 (14) 7.4.6 界址点边长的检核: (14)

7.4.7 地籍图的表示原则: (15) 7.4.8 宗地图 (15) 7.4.9面积量算与汇总统计 (15) 7.4.10提交成果 (15) 7.5数据的记录 (15) 八、数据处理的方法与要求 (17) 8.1.外业观测数据处理 (17) 8.2外业观测数据质量检核 (17) 8.3数据处理和平差计算 (18) 8.3.1数据处理 (18) 8.3.1无约束平差 (19) 8.3.2约束平差 (19) 8.4 GPS 高程拟合 (19) 七、提交成果 (19) 八、参考文献 (20)

高速铁路道控制网

高速铁路轨道控制网 客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。把客运专线铁路精密工程测量控制网简称“精测网”。 客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。 一、客运专线精测网特点 1.传统的铁路工程测量方法 初测:初测导线、初测水准; 定测:交点、直线、曲线控制桩(五大桩); 线下程施工测量:以定测控制作为施工测量基准; 铺轨测量:穿线法、弦线支距法或偏角法测量。 2传统的铁路测量方法的缺点 (l)平而坐标系投影误差大; (2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线; (3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复; (4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改; (5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。 由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点 (1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一; (2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则; (3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系; (4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式; (5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级; (6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。 二、客运专线精测网的建立 l测量基本工作流程

高速铁路精密控制测量技术

地理空间信息 GEOSPATIAL INFORMATION 收稿日期:2009-08-19 2007年,中国首条长度达100km 高速铁路京津城际轨道交通完成铺轨。2009年,全长1000km ,时速350km 的武汉至广州客运专线建设完成并开通运行,标志着我国将全面跨入高速铁路时代。 按照中国《中长期铁路网规划》,在今后几年时间 内,我国通过建设高速铁路客运专线、发展城际客运轨道交通和既有线提速改造,形成以“四纵四横”高速铁路客运专线为骨干,以及三个城际快速客运系统,连接全国主要大中城市的高速铁路客运网络。 m_gisBas.gisPrjByIndexGetTypeAreaObj (viewport,Convert.ToInt16(layArr [i ]),out TypeAreaObj ); switch (TypeAreaObj.getAreaType ()){case AreaTypeEnum.aPnt://点 ((MpPntArea )TypeAreaObj ).pArea.pMpAtt.ClearLst (); //调用组件接口的矩形查询函数:gisSearchByRect m_gisSearch.gisSearchByRect (viewport,(MpPntArea )TypeAreaObj,rect,out m_nCount,out m_AreapLst ); break;... 5结语 WebGIS 是GIS 发展的必然趋势。组件式WebGIS 的二次开发不仅降低了应用系统的复杂程度,而且降低了开发成本,增强了系统的易维护性和可扩展性;. NET 框架解决了跨语言、跨平台和对开放互联网标准和协议的支持,使用户可以更快、更好地开发出适合互联网特点的WebGIS 。因此,采用组件技术和.NET 构架实现WebGIS 的应用是一个比较好的解决方案。 参考文献 [1]吴信才.WebGIS 地理信息系统参考手册[M ].武汉:中国地质大学,2001 [2]刘南,刘仁义.WebGIS 原理及其应用-主要WebGIS 平台开发示例[M ].北京:科学出版社,2004[3]蒋泰,邓一星.基于Map GIS-IMS 的WebGIS 应用研究[J ].计算机应用研究,2004(12):196-197 [4] 潘爱民.COM 原理与应用[M ].北京:清华大学出版社,2001[5]谢忠,胡虹雨,李越.基于ASP 组件技术的WebGIS 解决方案[J ].中国图象图形学报,2001,6(A 版)(8):795-799[7] James Liu.组件式GIS 与MapX [EB/OL ].https://www.360docs.net/doc/b416422123.html,/forum/dispbbs.asp?boardID =4&ID=802,2006-05-20第一作者简介:李均,助理工程师,研究方向为GIS 、GPS 理 论及应用。

高铁控制测量技术方案(090629)

新建铁路 贵阳至广州线工程措施加强后精密控制测量技术方案 中国中铁二院工程集团有限责任公司工程勘察证书甲级编号220011-kj 工程设计证书甲级编号220011-sj 中铁第四勘察设计院集团有限公司工程勘察证书甲级编号170010-kj 工程设计证书甲级编号170010-sj

二○○九年六月成都

新建铁路 贵阳至广州线工程措施加强后精密控制测量技术方案 中铁二院工程集团有限责任公司 二〇〇九年六月成都

文件编制单位: 中铁二院工程集团有限责任公司 中铁第四勘察设计院集团有限公司 中铁二院项目编制人员名单: 总体设计负责人:陈亮 编写:梅熙 复核:王智 审定:卢建康 铁四院项目编制人员名单: 编写: 朱雪峰 复核:周芳洪 审定:郭良浩

文件分发单位表

目录 1 概述 (1) 1.1编制依据 (1) 1.2工作范围及内容 (1) 1.3线路的地理位置和地形气候特点 (3) 2 既有精密控制网情况 (4) 3精密控制网改造方案 (6) 4技术要求 (8) 4.1执行的标准及规范 (8) 4.2坐标与高程系统 (8) 4.3布网原则 (9) 4.4平面控制网要求 (10) 4.5高程控制网要求 (11) 5 平面控制网测量 (12) 5.1GPS框架网(CP0)测量 (12) 5.2CPI控制网测量 (17) 5.3隧道外CPⅡ控制网测量 (20) 5.4隧道内CPⅡ控制网测量 (23) 6高程控制网测量 (24) 7 CPⅢ控制网测量 (28) 7.1CPIII平面控制测量 (28) 7.2CPIII高程测量 (29) 8 控制网维护与复测 (29) 9工程措施加强后工作量估算 (30) 9.1贵阳至贺州段工作量估算 (30) 9.2贺州至广州段工作量估算 (31) 10 提交的成果资料 (32) 附录A 控制点标志及埋石要求 (34) 附表 (38)

高速铁路精测控制网的布设和测量

高速铁路精测控制网的布设和测量 1、高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为 (82.5〃),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 、长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5〃)。设AB为900米,则Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所

高速铁路测量方案

目录 1、编制依据............................................................ 错误!未定义书签。 2、工程概况............................................................ 错误!未定义书签。 2.1工程规模简介................................................ 错误!未定义书签。 2.2路线平面布置................................................ 错误!未定义书签。 2.3地形地貌........................................................ 错误!未定义书签。 3、测量方案............................................................ 错误!未定义书签。 3.1本工程测量的特点........................................ 错误!未定义书签。 3.2控制测量方案设计........................................ 错误!未定义书签。 3.2.1接桩和复测....................................... 错误!未定义书签。 3.2.2地面导线控制测量 ............................ 错误!未定义书签。 3.2.3地面高程控制测量 ............................ 错误!未定义书签。 3.3施工放样及测量............................................ 错误!未定义书签。 4、测量人员和仪器的配置 ................................... 错误!未定义书签。 5、测量技术保证措施 ........................................... 错误!未定义书签。 6、附:全站仪检定证书 ....................................... 错误!未定义书签。 7、附:水准仪检定证书 ....................................... 错误!未定义书签。 8、附:钢尺检定证书 ........................................... 错误!未定义书签。

一级GPS控制测量技术设计书知识讲解

G P S 控制测量设计书

1.工作大纲 ____________________________________________ 0 1.1任务来源___________________________________________ 0 1.2工作内容及任务______________________________________ 0 2. 技术设计方案_______________________________________ 0 2.1概述_________________________________________________ 0 2.1.1项目区概况_________________________________________________ 0 2.1.2已有资料及其利用情况_______________________________________ 0 2.2技术标准和要求______________________________________ 1 2.3技术路线和技术方案 ___________________________________ 1 2.3.1控制测量设计原则___________________________________________ 1 3.项目目组织实施计划和进度安排 _______________________ 4 3.1项目组织机构 _________________________________________ 4 3.1.1组织机构设置计划本项目组织机构设置计划如下图所示___________ 4 3.1.2各部分的具体职责___________________________________________ 4 3.1.3项目设备资源配置计划_______________________________________ 4 3.2项目进度安排 _________________________________________________ 4 4.质量管理措施、进度控制措施、生产安全保障措施_______ 5 4.1质量保证措施 _________________________________________________ 5 4.2项目进度控制 _________________________________________________ 5 4.3生产及资料安全保障措施 _______________________________________ 5 5. 提交成果资料_______________________________________ 6 6附录 ________________________________________________ 7 6.1GPS点之迹 ____________________________________________ 7

GPS静态控制测量技术设计指南备课讲稿

GPS静态控制测量实施指南 一、综述 GPS网建立过程分3个阶段:设计准备、施工作业、数据处理1.设计准备 该阶段的主要工作项目:项目规划、方案设计、施工设计、测绘资料收集、选点埋石、仪器检测。 1.1项目规划 ①位置及范围:测区的地理位置、覆盖范围及控制网的控制 面积 ②用途及精度等级:控制网的具体用途、所要求达到的精度 或等级。(各级GPS网采用中误差作为精度指标,以2倍中误差作为 极限误差。) C级网用途:三等大地控制网、区域、城市及工程测量的基本控制网; D 级网用途:四等大地控制网; E 级网用途:中小城市、城镇及测图、地籍、土地信息、建筑施工 等。 (由于本基坑工程跨距较长,基坑深距大,暂定C、D级测量精度 GPS测量相邻点间基线长度的精度用下面公式表示:

σ为基线向量的弦长中误差,单位mm,a为固定误差,单位mm,b为比例误差系数,单位1 X 10-6 ,d为相邻点间距离,单位为km。 城市GPS测量精度指标:(本工程选用四等) GPS高程拟合板块: D、E级网点按四等水准测量方法进行高程联测, GPS点需要高程联测时,可采用使GPS点与水准点重合,平原、微丘地形联测点的数量不宜少于6个,必须大于3个,联测点的间距不宜大于20km,且均匀分布;重丘、山岭地形联测点的数量不宜少于10个。 各级GPS控制网的高程联测应不低于四等水准测量的精度。 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层的修正;当大于20KM时,每时段应于始、中、终个观测一次气象元素,并采用标准模型加入对流层和电离层的修正。 为GPS控制网点的正常高,先利用已联测高程的GPS点正常高和经GPS控制网平差得到的大地高,求其高程异常值,然后采用拟合或插值等方法求其他高程异常值和正常高。 ③点位分布及数量:控制网点的分布、数量及密度要求。 (GPS网点应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。依据城市测量规范三等基线平均距离为5km,四等为2km,鉴于平时土方开挖收方测量需要5km左右设置一控制观测点。

高速铁路精测控制网的布设和测量

1 高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。设AB为900米,则 Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示: 控制网级别测量方法测量等级点间距备注 CPⅠGPS B级≥1000m≤4㎞一对点 CPⅡ GPS C级 800~1000m 导线四等

(完整)高铁CP3控制网测量作业指导书

CPⅢ控制网测量作业指导书 学院: 班级: 姓名: 学号:

新建合肥至福州铁路(闽赣段) CPⅢ控制网测量作业指导书 1.1CPⅢ控制网测量的准备工作 1.1.1线下工程沉降和变形评估 无砟轨道对线下基础工程的工后沉降要求非常严格,CPⅢ控制网测量应在线下工程沉降和变形满足规范要求且通过沉降评估(以沉降评估单位出具的线下工程沉降评估报告为准)后开展。 1.1.2CPⅡ控制网加密 为了高效、准确地建立CPⅢ轨道控制网,一般情况下都需要加密CP Ⅱ控制网。CPⅡ加密的主要目地是为了方便轨道控制网CPⅢ的观测,以及弥补被损毁的和无法利用的CPⅡ点。在路基、桥梁地段CPⅡ加密可采用GPS测量在原精密平面控制网基础上按同精度内插方式加密;隧道地段应根据隧道长度布设相应精度要求的洞内CPⅡ控制网。 1.1.3精测网全面复测 按《高速铁路工程测量规范》要求, CPⅢ建网前应对精测网(CPI、CPⅡ及二等高程控制网)进行复测,并采用复测合格的精测网(CPI、CP Ⅱ及二等高程控制网)成果进行CPⅢ轨道控制网测设。 (1)采用GPS复测CPⅠ、CPⅡ控制点时,复测与原测成果较差应满足表1.2-1、表1.2-2的规定。

注:表中坐标较差限差指X 、Y 坐标分量较差。 表1.2-2 GPS 复测相邻点间坐标差之差的相对精度限差 注:表中相邻点间坐标差之差的相对精度按式1.2.3计算 ()s Z Y X 2ij 2ij 2ij ?+?+?=s d s 式1.2.3 式中:△Xij=(Xj –Xi )复 –(Xj –Xi )原 △Yij=(Yj –Yi )复 –(Yj –Yi )原 △Zij=(Zj –Zi )复 –(Zj –Zi )原 s---相邻点间的二维平面距离或三维空间距离; △Xij ,△Yij — 相邻点i 与j 间二维坐标差之差(m ); △Zij — 相邻点i 与j 间Z 方向坐标差之差,当只统计二维坐标差之差的相对精 度时该值为零(m )。 (2)采用导线复测CP Ⅱ控制点时,满足相应等级规定后,应进行水平角、边长和平面点位较差的分析比较,较差应符合表1.2-3的规定: 表1.2-3 导线复测CP Ⅱ控制点精度要求 (3)水准点间的复测高差与原测高差之较差限差为±L 6。 2 技术依据 (1)《高速铁路工程测量规范》(TB10601-2009); (2) 《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号); (3)《关于进一步规范铁路工程测量控制网管理工作的通知》(铁建设[2009]20号);

高速铁路轨道控制网CPIII测量方案

XX高速铁路XXXX-X标段X工区CPⅢ控制网测量方案 审批: 校核: 编制: XXXXXXXX高速铁路土建工程X标段 项目经理部X工区 X零XX年X月

目录 1编制依据 (3) 2 工程概况 (3) 2.1工程概况 (3) 2.2地理环境 (4) 2.3坐标高程系统 (4) 2.4既有精测网情况 (4) 2.5 CPⅢ轨道控制网测量主要内容 (5) 3 CPⅢ网测量前准备工作 (6) 3.1线下工程沉降和变形评估 (6) 3.2 CPⅢ网测量工装准备 (6) 3.3人员培训 (8) 4 CPⅢ网测量标志选用和埋设 (8) 4.1 CPⅢ网点测量标志选择 (8) 5. CPⅢ点号编制原则 (10) 6 CPⅡ控制网加密测量 (10) 6.1.桥梁CPⅡ控制网加密测量 (10) 6.2高程测量 (12) 7 CPⅢ点的埋标与布设 (15) 7.1 CPⅢ标志 (15) 7.2 CPⅢ点和自由设站编号 (20) 7.3CPⅢ点的布设 (21) 8 CPⅢ网测量与数据处理 (22) 8.1CPⅢ网网形 (23) 8.2 CPⅢ网平面测量 (26) 8.3CPⅢ网高程测量 (33) 9数据整理归档 (38) 10 CPⅢ网的复测与维护 (39) 10.1CPⅢ网的复测 (39) 10.2CPⅢ网的维护 (39)

七工区CPⅢ控制网测量方案 1编制依据 《客运专线无砟轨道铁路工程测量暂行规定》(铁建设[2006]189号)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号) 《精密工程测量规范》(GB/T15314-94) 《国家一、二等水准测量规范》(GB12897-2006) 《全球定位系统(GPS)铁路测量规程》(TB10054-1997) 《全球定位系统(GPS)测量规范》(GB/T18314-2001) 铁道部2008[42]、2008 [80]、2008 [246]、2009[20]号文。 《京沪高速铁路CPIII网测量作业指导书》(试行版) 2 工程概况 2.1工程概况 XX高速铁路土建工程XXXX-X标段X工区施工作业段起点为XXX桥,正线起点里程DKXXX+112.1,终点XX特大桥里程为DKXXX+229.73,全长10117.62 m,路基全长4407.14米;桥梁5座,总长5320.49米;隧道1座390米。工程内容包括XX隧道390米(DKXXX+880-DKXXX+270)、XX 大桥332.24米(DKXXX+423.35-DKXXX+755.59)、XX大桥118.2米(DKXXX+164.07-DKXXX+282.27)、XX大桥201.42米(DKXXX+570.15-DKXXX+771.57)、XX村大桥168.63米(DKXXX+226.35-DKXXX+394.98)、XX特大桥4500米(DKXXX+729.73-DK

完整word版GPS控制测量技术设计书

GPS控制测量技术设计书概述 本次实习的目的是了解控制测量作业的全过程,掌握GPS静态测量数据处理的基本知识,巩固课堂学习的理论知识,将理论与实践有机结合,提高理论水平与外业操作能力。 测量依据、原则 CH 2001-92《全球定位系统(GPS)测量规范》 CJJ 73-97《全球定位系统城市测量技术规程》 CH 1002-95《测绘产品检查验收规定》 CH 1003-95《测绘产品质量评定标准》 CJJ 8-85《城市测量规范》 本工程《技术设计书》 2 测区情况 2.1 测区范围及任务 本测区位于东经108°57'、北纬34°13'附近。位于长安大学校本部东院,测区北临育才路,东至雁塔路,测区内为教学区,地势平坦,建筑物以及树木较多,通视条件较差。本次实习在测区内布设7个GPS控制点,构建一个D级GPS网,满足实习需要。 2.2已有资料 测区如有已知的国家高等级三角点,可考虑联测国家高等级点,将GPS网点的坐标转换到国家坐标系中。如测区无已知的国家高等级三角点,采用测区独立坐标系。 控制网起算数据3.2. 本次实习GPS控制网可考虑利用国家等级点2个,国家等级点必须有西安1980坐标系坐标或1954北京坐标系坐标,作为本次实习GPS网的起算数据。如无已知的国家高等级三角点,则采用测区中任意两点的独立坐标作为本次实习GPS 控制网的起算数据,独立坐标系可选用已已建成的地方独立坐标系,也可以在实习是自己建立。 2.4坐标系统、高程系统和时间系统 GPS基线向量为WGS-84坐标系,GPS网平面平差成果为西安1980坐标系坐标或1954北京坐标系坐标,并转换为测区相应的坐标系。 高程系统采用1985国家高程基准或1956黄海高程系统。 时间系统采用北京时间或UTC时间系统。 2.5GPS网的布设 采用三台GPS接受机,按边连式的布网形式布设GPS控制网,等级为D级。 2.6GPS网的选点 GPS点位的选择应符合技术要求,有利于使用其他测量方法进行联测;点位的基础应坚定稳固,易于长期保存,并有利于安全作业; 点位应便于安置接收设备和操作,视野开阔,被测卫星的地平高度角应大于15。;点位应远离大功率无线点发射源(如电视台、微波站等),其距离不得小于200m,并应远离高压输电线,其距离不得小于50m;点位附近不应有强烈干扰接收卫星信号的物体 GPS静态测量外业观测及观测数据资料的处理 3.1GPS外业观测 本次实习的GPS控制网采用GPS技术静态观测方法施测。

高速铁路二等高程控制网施工复测(可编辑修改word版)

高速铁路二等高程控制网施工复测 1.一般规定 1.1工程开工前,施工单位应会同设计单位参加由业主组织并有监理单位参与的控制桩和测量成果资料交接工作。 1.2施工单位应对设计单位交付的高程控制网进行同精度复测。 1.3为确保高速铁路轨道的线性,相邻施工标段、相邻施工单位之间应共同协商并现场确认交界处附近的同一个水准点作为搭接和公共点进行复测。双方应签订共用控制点协议并使用满足精度要求的相同高程成果。 1.4线下工程开工前或至迟在结构工程施工前应完成二等水准点的复测工作。 1.5高程复测应采用几何水准测量。 1.6高程控制网布网要求应按表1.6 规定执行。 表 1.6 控制网布网要求 1.8测量仪器的配置应符合下列规定。 水准仪标称精度应不低于DS1并应配相应的因瓦尺。 L 1.9当复测的水准基点间高差不符值二等超过6 时应再次测量确认;当核实复测精度符合相应等级要求后,应将复测成果报设计单位认定。满足精度要求时,应采用设计成果。 2.高程控制网复测 2.1二等水准基点的复测和加密测量可采用几何水准同时进行。 2.2高程控制网复测宜优先使用满足精度要求的电子水准仪。若采用补偿式自动安平水准仪时,其补偿误差△α不应超过0.2″,并应符合《国家一、二等水准测量规范》(GB/T 12897-2006)、《新建铁路工程测量规范》的相关规定。二等水准测量的主要技术标准应符

合表2.2-1 的规定。水准测量作业的主要技术要求应符合表 5.2-2 的规定。观测的读数限差应符合表5.2-3 规定。 表 2.2-1 水准测量主要技术标准 注:L 为往返测段、附合或环线的水准路线长度,单位为km。 表 2.2-2 水准测量作业的主要技术要求 2.3二等水准测量应进行测段往返观测。测站观测宜采用下列观测顺序: 往测:奇数站采用“后-前-前-后”,偶数站采用“前-后-后-前”。 返测:奇数站采用“前-后-后-前”,偶数站采用“后-前-前-后”。 由往测转向返测时,两根标尺应互换位置。 2.4二等水准测量观测读数和记录的数字取位: 表2.4.1 二等水准测量读数取位 仪器读数取位(mm) DS05 0.05 DS1 0.1 数字水准仪0.01 表 5.4.2 二等水准测量计算取位

高铁CPIII控制网测量

高铁CPIII控制网测量 摘要:本文针对客运专线,对CPIII控制网的构成,布网要求,观测方法等进行简单的阐述,对测量过程中的重点和难点进行探究,对较大缓和曲线测量要领进行分析,进一步明确了CPIII控制网的重要性。 关键词:高铁;CPIII控制网;布网要求;测量; Abstract:Based on the passenger dedicated line, the CPIII control network structure, network requirements, observation method, this paper briefly discusses the measuring process, the key point and difficulty in the study of larger, transition curve measurement methods were analyzed, further clarified the importance of CPIII control network Key words: High-speed railCPIII control networkNet requirements Measurement 概述 CPIII控制网又名基桩控制网,是高速铁路测量最基本的控制网,在高速铁路的修建过程中,从线路的中线放样、底座混凝土钢模放样方案、轨道板调整到钢轨精调系统都会用到CPIII控制网,CPIII控制网在施工中显得极为重要。CPIII 网具有测量精度高、点位分布密集、外业观测工作量大、使用周期长等特点。目前,我国客运专线无砟轨道CPIII网控制测量方法采用从德国引进的方法,国内铁路施工技术人员有必要在消化、吸收国外CPIII测量经验的基础上进行进一步探讨,形成符合我国无砟轨道施工实际需求的作业方法与技术标准,以满足当前国内客运专线无砟轨道施工测量的要求。 1 高速铁路控制网的构成 精密测量是建设高质量高速铁路最重要、最基本的条件之一,必须严格按照相关规定,适时建立“四网合一”的控制测量网络。 高速铁路平面控制网一般由四级构成,分别为CP0框架基准网、CPI基础平面控制网、CPⅡ线路控制网和CPIII控制网。 2CPⅢ布网要求 CPⅢ控制点距离布置一般为60m左右,且不应大于80m 离线路中线3-4m,且应成对布设。CPⅢ控制点布设高度应比轨道面高度高30cm左右。

e级gps控制测量技术设计书

E 级GPS 控制测量技术设计书 XXX建筑工程设计院 二0 一四年二月 目录 1、作业技术流程 2、技术要点 准备工作 技术设计 选点埋石 野外观测 数据处理 平差计算 质量检查与自检报告 技术报告 成果整理与提交 3、范例 1、作业技术流程 E级GPS空制测量在地形测量、地籍测量中一般是测区的首级平面控制,控制网的精 度保证是后续其它工序的基础。E级GPS空制测量工作时一般按下列流程进行工作:准备工作一技术设计一选点埋石一野外观测一数据处理一平差计算一质量检查与自 检报告一技术报告一成果整理与提交。 2、技术要点 准备工作 E级GPS空制测量的准备工作主要有:熟悉工程的合同或协议,了解委托单位对工程 的特殊要求。收集与测区有关的高等级控制点成果及相关资料,收集需用的地形图资料、 技术标准,按规范或委托单位的要求制作标石,对参加施工的仪器设备按要求进行检验或校验。进行现场踏勘了解测区现状和已知高等级控制点的保存情况,为技术设计做好准备。准备施工的其它后勤保障工作。

选点埋石 选点 1 ?选点人员应由熟悉GPS测量技术及地质技术的人员承担。选点前必须充分研究专业设计书;充分认知测区的地理、地质、水文、气象、验潮等环境信息;熟悉可利用的各种设施、位置环境、交通、水电等信息。 2. 选点人员应收集测区地质资料,实地勘察选定点位。同时考察卫星通视环境与电磁干扰环境,确定可用标石类型、记录点之记有关内容,实地树立标志牌、拍摄照片等。选点(埋石)所占用的土地,应得到土地使用者或管理者的同意。 3.点位应选择在稳定坚实的基岩、岩石、土层、建筑物顶部等能长期保存、满足观测条件的地点,并做好选点标记。点位尽可能位于地面,城区内应尽量选在楼顶上,以便于保存和通视。点位应尽量选在交通便利,方便观测的位置。 4.选点时应避开环境变化大,测量标志难以永久保存的地点,如易受水淹的河床、低地、靠近铁路、公路、已规划的易受施工影响有剧烈震动的地点。点位离开铁路的距离应不小于100m离公路不小于50m 5. 选点时应避开地质环境不稳定的地区,如断裂破碎带边缘、易发生洪水、滑坡、岩崩区、局部沉降区,有大量物质搬移的矿区、采石场、大量取土、地下水剧烈变化的地点。 6.选点时应远离发射功率强大的无线发射源、微波信道、高压线等,距离不小于200 米,应远离高压输电线和微波无线电传送通道,其距离不得小于50 米。并应实地了解发射源和电磁波影响状况,标注在点之记环视图上。 7.选点时应避开多路径环境影响,避免靠近水面、树冠、高大建筑物、低洼潮湿等地点,应保证15°以上无遮挡。50米以内的各种固定与变化反射体应标注在点之记环视图上。 8?选点时应设计水准联测路线,对于要联测等级水准的GPS空制点,尤其是当点位 处于河流、湖泊、水库的边缘时,在其位置选择上一定要考虑其水准联测的可能性。 9.选点完成后提交工作总结;及其它相关资料,包括点之记信息、本点与相邻点网图、实地选点方案等。 10.选点结束后,实地选点方案必须经过业主或质检部门检查验收,合格后方可进 入埋石阶段 埋石 1. 标石类型:地面采用GB/T 18314-2001《全球定位系统(GPS测量规范》中的混 凝土普通标石(i ),楼顶采用建筑物上标石(j )。标石尺寸如下:

高速铁路控制测量方法及精度优化措施研究

高速铁路控制测量方法及精度优化措施研究 摘要:近年来,我国的交通行业有了很大进展,高速铁路工程建设越来越多。 基于高速铁路项目施工中精密工程测量的特殊性及复杂性,将三维数字测量技术 应用其中尤为重要,但我国三维数字测量技术相对还不够成熟。文章通过高速铁 路精密工程控制测量精度进行分析研究,并提出相关的优化措施与参考建议,为 日后相关工作的进一步开展奠定坚实基础。 关键词:高速铁路;控制测量;问题 引言 铁路不仅属于一种重要的交通方式,而且还与一个国家的经济发展有着极为 紧密的关系。近几年,随着我国社会经济的蓬勃发展,我国铁路建设也步入了一 定的发展阶段,特别是高速铁路成功建设与通行,更是促使我国交通运输进入了 世界先进发展之列。高速铁路的一大主要特点就是效率高、速度快,同一般铁路 不同,高速铁路对于基础控制测绘工作与轨道工程精度的要求更为严格。传统的 测量方法已经不能很好地满足当前时代的发展需求,而且之前的铁路控制网也存 在装点密度不足与精度低等诸多问题,所以,建立一套轨道铁路精密测量控制网 也就显得尤为关键。 1高速铁路控制测量方法 1.1选择适用的测量方法及技术 首先,可以采用三维可视测量分析法,对其桥梁承台进行三维测绘,并将图 像及影像进行保存,通过计算机及精度测绘软件对其测量数值进行核准。其次, 采用数字测量技术通过卫星定位对其地理“数据”、结构“数据”进行采集,并通过 其后测算得出最终结果。最后,可以将二者测量结果进行比对,对存在的差异性 进行汇总分析,其后得出最终精准数值。因此,在测量精度控制中其方法、技术 的采用尤为重要。方法技术的采用主要依照以下条件:1)项目工程的结构性及结 合性,通过对精密项目的掌握了解及影响因素排查,才能起到实质性测量精度控 制目的。2)测量技术的保障性与效果性,测量技术及相关仪器的效果保障尤为 重要,所以一定要对测量仪器、设备等进行有效维护,并对传统技术、滞后技术 进行相应创新,以保障测量技术、设备仪器的质量、效率性。综上所述,针对不 同精度工程应采取不同测量技术及方法应用。 1.2在控制加密测量中的应用 通常情况下,高速铁路工程控制点需要设置在高速线路中线两侧,而在实际 施工中控制点极易被破坏,且工程测量精度要求比较严格,相关人员需要做好控 制点加密工作。传统的控制测量方法需要控制点之间通视,需要消耗大量的人力、时间,无法确保测量精度,而GPS静态测量技术无需点与点之间通视,但需要先 进行外业测量再处理内业数据,无法及时获取定位结果,测量效率相对较低。GPS-RTK技术的测量效率、测量精度相对较高,满足了各项高速铁路工程对精度 的要求,适用于高速铁路工程中的控制加密测量工作。 1.3基于相对测量原理的矢矩法 当轨道平顺性和轨道几何参数较好时,既有线控制网测量一般采用相对测量 的方法进行调整优化。与卫星定位测量绝对坐标相比,基于相对测量原理的矢矩 法更加方便快捷,便于实际施工作业时灵活运用。相对测量控制桩测量包括测量 控制桩到基准轨的支距(横向偏距)和高差(垂向偏距),确定轨道相对于控制桩的相 对坐标,建立相对坐标网。控制桩的位置可以灵活设置,无需绝对坐标。测量时,

完整高铁CP3控制网测量作业指导书

CPⅢ控制网测量 作业指导书 学院: 班级: 姓名: 学号:

新建合肥至福州铁路(闽赣段) CPⅢ控制网测量作业指导书 1.1CPⅢ控制网测量的准备工作 1.1.1线下工程沉降和变形评估 无砟轨道对线下基础工程的工后沉降要求非常严格,CPⅢ控制网测量应在线下工程沉降和变形满足规范要求且通过沉降评估(以沉降评估单位出具的线下工程沉降评估报告为准)后开展。 1.1.2CPⅡ控制网加密 为了高效、准确地建立CPⅢ轨道控制网,一般情况下都需要加密CPⅡ控制网。CPⅡ加密的主要目地是为了方便轨道控制网CPⅢ的观测,以及弥补被损毁的和无法利用的CPⅡ点。在路基、桥梁地段CPⅡ加密可采用GPS 测量在原精密平面控制网基础上按同精度内插方式加密;隧道地段应根据隧道长度布设相应精度要求的洞内CPⅡ控制网。 1.1.3精测网全面复测 按《高速铁路工程测量规范》要求, CPⅢ建网前应对精测网(CPI、CPⅡ及二等高程控制网)进行复测,并采用复测合格的精测网(CPI、CPⅡ及二等高程控制网)成果进行CPⅢ轨道控制网测设。 (1)采用GPS复测CPⅠ、CPⅡ控制点时,复测与原测成果较差应满足表1.2-1、表1.2-2的规定。 表1.2.-1 CPI、CPⅡ控制点复测坐标较差限差要求单位:mm

、Y坐标分量较差。注:表中坐标较差限差指X 计算注:表中相邻点间坐标差之差的相对精度按式1.2.3??222Z?????XY d ijijij s?1.2.3 式s s–Xi)复–(Xj –Xi)原式中:△Xij=(Xj Yj –Yi)原Yj △Yij=(–Yi)复–()复△Zij=(Zj –Zi –(Zj –Zi)原 相邻点间的二维平面距离或三维空间距离;s---);与j间二维坐标差之差(m△Xij,△Yij—相邻点i方向坐标差之差,当只统计二维坐标差之差的相对精间Zi与jZij△—相邻点)。度时该值为零(mⅡ控制点时,满足相应等级规定后,应进行水CP2()采用导线复测的规定:平角、边长和平面点位较差的分析比较,较差应符合表1.2-3Ⅱ控制点精度要求导线复测CP 表1.2-3 6L。(3)水准点间的复测高差与原测高差之较差限差为±2技术依据(1)《高速铁路工程测量规范》(TB10601-2009); (2)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号); (3)《关于进一步规范铁路工程测量控制网管理工作的通知》(铁号);[2009]20建设 (4)《关于进一步加强客运专线建设质量管理的指导意见》(铁建设[2008] 246号); (5)铁道部其他相关规定。

相关文档
最新文档