手性分析

手性分析
手性分析

手性分析经验谈

关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。

手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。

手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。

一、手性柱

手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报导。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ 和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、IB和IC,其中IA对应AD-H,IB 对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。

关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。

二、样品前处理

说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。

样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反相样品稀释的时候需要尽量使用流动相做稀释剂,且稀释剂里水含量要尽量高一些,这个要求对于手性分析同样适用,正相的手性分析要求样品稀释溶剂尽量要求

和流动相所采用的溶剂种类一致,且起洗脱作用的醇类溶剂含量尽量要低,最好不要超过流动相里醇类的含量,否则会导致有些样品的分离度降低,使原本能达到基线分离的样品不能基线分离,严重的甚至使样品峰分叉甚至不成峰,因为在手性分离里起洗脱作用的醇类能够促进样品在管路里的扩散,我做过一个化合物,手性分析的时候只能用正己烷做稀释剂,只要稀释样品添加了醇类的溶剂样品就不能达到基线分离。有时候我们从实验室拿到的样品是溶液,使用的可能是DMF、甲苯、二氯甲烷或者乙酸乙酯等常见的溶剂,这些溶剂对于涂覆型的填料都不能使用,即使含量很低也会对固定相造成伤害,这样的样品必须除掉溶剂。有时候样品不溶于流动相,我们又不得不使用这些溶剂,可以先用少量这类溶剂超声将样品溶掉,再加流动相稀释,对于键合相手性柱这样做完全没有问题,但有时我们不得以将此方法用到涂覆型手性柱上,就要牺牲手性柱寿命来换分离。

很多时候我们拿到手的样品比较难溶,毕竟乙醇和异丙醇不是非常好的溶剂,即便是二氯甲烷、四氢呋喃、DMF或者DMAC也会遇到溶解性比较差的样品,通常此类样品分子式都相对比较复杂,分子量偏大,结构中含有带N的显碱性基团和显酸性基团,此类样品可以通过稀释样品时加酸或者碱来促进其溶解,但是加入的酸或碱含量不宜太高,浓度不宜过大。

很多化合物为了增加其稳定性,都要做成盐来保存和转移,常见的包括盐酸盐、三氟乙酸盐、甲基磺酸盐、酒石酸盐以及其它更复杂的盐,这些盐类也是可以直接拿来做手性分析的,无论是正相还是反相都可以,只要样品能用合适的稀释剂溶解,当然样品游离出来做手性分析会更好。

再有就是很多样品因为液相没有紫外吸收、气相不能气化而不能直接做手性分析,这时就要衍生,衍生最多的样品可能就是氨基酸了。氨基酸衍生方法可以是给氨基上衍生CBZ 做液相,或者是用HCl(HBr)的乙醇(甲醇、异丙醇)溶液加三氟乙酸酐将羧基衍生成酯,氨基衍生成酰胺来做气相。最近比较流行的氨基酸衍生方法是用苯异硫氰酸酯(也叫异硫氰酸苯酯)衍生氨基来做手性分析,此方法当然也可以用来做普通的氨基酸液相纯度分析,这个衍生方法要求化合物分子结构中的N原子上至少连接有一个H,所以只要是分子结构中含有带有至少一个H原子的N结构,化合物都可以用此方法衍生。需要指出的是,做手性分析的原则是能不衍生就不衍生,因为衍生有可能会引起样品手性纯度下降,即消旋。

总结一下,手性分析中使用的消旋体纯度一定要好,最好能配合DAD检测器或者是旋光检测器来做分析方法开发。样品在稀释时尽量用流动相相同种类的溶剂做稀释剂,稀释剂中醇类的含量不宜超过流动相中醇类的含量,难溶的样品尽量不要用其它的溶剂,一方面可能会伤害柱子,另一方面容易导致峰形变差,但实际操作过程中很多时候为了达到分析目的,还不得不牺牲柱子的寿命,而且即便是使用纯的乙醇或者是异丙醇做稀释剂也不是不可以,只要是稀释剂和流动相能够互溶就行。

三、流动相

手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差

别不是太大。

流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。

一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。有些样品只添加碱或者酸效果不好,可以尝试在样品里同时添加酸或者碱,这样的样品我曾经遇到过,只添加酸或碱样品都拖尾,不能达到基线分离,这种情况下通过酸碱同时加入,最后获得了非常漂亮的峰形和良好的分离度。实际操作中有些样品碱性太强,进样以后根本不成峰,低波长下细看似乎能感觉到基线一直在漂,开始时怀疑样品浓度不够,加大样品浓度以后仍看不到样品峰,流动相加入二乙胺或三乙胺以后再进样,得到比较漂亮的样品峰。

流动相里添加酸或者碱以后,基本上不会提供额外的选择性,但是却能提高分离度,因为峰形好了,相同的保留时间两个峰之间的分离度自然就好了。但是流动相里添加酸或者碱以后,会在柱子上残留,即使长时间用中性流动相冲洗也不会有什么效果,这一点在键合相手性柱上表现的尤为明显。有时我们发现原来用中性流动相分离很好的一个偏酸性的样品,柱子用过碱性流动相以后再用中性流动相去做,发现样品峰不能达到基线分离,拖尾严重,甚至不成峰,这时可以往流动相里添加一滴酸,或者柱子用酸性流动相冲洗一下再用中性的流动相,一切又正常了,同理,用过酸性流动相的柱子去做弱碱性的样品会有一样的问题。残留在柱子上的酸或碱最好是用碱或酸性的流动相来清洗,有条件的话尽量固定一只柱子只用酸性流动相或只用碱性流动相。

还见过一些国外客户提供的正相手性分析方法,需要在流动相里加入0.5%的水,估计是用来改变流动相的选择性,但是据说加水以后方法重复性不好,且水对固定相有伤害,我本人没有开发过这样的分析方法,也不做推荐,这份客户分析方法拿到我手里的时候最终还是被我改了。

四、方法优化

做手性分析时我一般选用两只柱子:AD-H和IC,基本上这两只柱子可以解决我遇到的所有的手性化合物,AD-H是早期我们一直在使用的,后来的IC可以使用更多的溶剂从而提供了更多的选择性,但是我还是习惯先用AD-H做手性分析方法开发,因为这个型号的柱子我们买了好多只。手性分析基本上都用恒流来做,溶剂一般也都是提前混合好再放到仪器上用,主要是因为正相溶剂在仪器上混合效果不好。

如前边所述,一般情况下拿到一个样品,我首先选择的是用正己烷和乙醇做流动相,根据化合物分子结构式来判断其极性的大小,进而来选择流动相的比例,极性大的选择使用的乙醇比例大一点,极性小的选择使用的乙醇比例小一点,乙醇比例一般是从大到小,根据分离情况以5%或10%的比例递减,一般要求第一针至少能把样品在相对较短的时间内从柱子上洗脱下来,然后再去做调整,如果开始的时候醇的比例选的过小,样品可能在柱子上一

两个小时都洗不下来。消旋体出峰以后如果是一个峰,可以将峰放大,观察有没有分叉的迹象,有的话,可以通过适当的降低醇类的比例来进一步提高分离度,如果分得太开,可以适当的提高醇类的比例来缩短分析时间,通过对流动相比例的调整,使分析时间和分离度都能满足手性分析的要求。如果样品在使用一种醇类时没有选择性,即无论怎样减小醇的比例样品都没有分离的迹象,可以换一种醇来试,通常乙醇和异丙醇会有不同的选择性,很多样品乙醇分不开,异丙醇能分离的很好。异丙醇也不行的时候可以尝试在乙醇或者异丙醇里加入合适浓度的叔丁醇或者是甲醇,对于IC色谱柱可以尝试其它如二氯甲烷、乙酸乙酯和甲苯等其它溶剂,每一种溶剂都能为手性分析提供独特的选择性,一般除了乙醇、异丙醇之外我使用最多的还是叔丁醇,其次是甲醇,叔丁醇可以单独和正己烷做流动相,甲醇必须结合乙醇或异丙醇混合使用。需要着重强调的是,更换醇的种类,有可能会导致对映异构体出峰顺序的改变,使用乙醇的流动相,如果R构型先出峰,更换为异丙醇以后,有可能(不是一定)R 构型会后出峰,S构型跑到前边去了。

虽然提高柱温能够使峰形变窄变细,但是会降低分离度,而且大赛璐的手性柱温度上限就是40度(这一点在超临界流体色谱应用上受限尤为明显),所以优化分析方法时很少有人在柱温上下功夫。另外手性柱分析样品的保留时间受室温变化的影响特别大,通常大家都习惯用消旋体图谱计算对映异构体相对保留时间的方法根据主峰的保留时间来计算异构体的出峰位置。

五、写在最后

大赛璐的手性色谱柱还包括反相的系列,同时键合相的手性柱正相和反相都能用,只是要求在正相和反相流动相之间进行切换的时候要用异丙醇小流速的过渡,因为大赛璐手性柱压力都不能超过100bar,另外需要注意的是键合相手性柱的记忆效应,即流动相使用不同种类的溶剂切换时,柱效可能会下降,解决方法就是用DMF做溶剂对色谱柱进行清洗。我感觉做反相的手性分离时,我们可以更多的当作使用一只比较特殊的柱子做普通的样品一样来看待,仔细的阅读一下柱子的说明书就好,其它的和最常用的反相液相都一样。反相常用的溶剂包括水、甲醇、乙腈和乙醇,每种溶剂都为样品分离提供了独特的选择性。

大赛璐还有其它一些手性色谱柱,他们的手册上说是要用这些色谱柱才能分离的样品我遇到过很多,用手头的AD-H也都解决了。其它公司也有做手性柱,我们手头也有几只,但是使用不多,没觉得有什么优点。

总的来讲,我感觉做手性样品分析没有什么葵花宝典,让人看上几眼就能所向披靡,更多的还要自己去试,动手多了,及时总结,多积累点经验,才能做到事半功倍。

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。

在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。

迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。

根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系:

第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。

第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。

第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。

第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。

第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。

但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种:

刷(Brush)型或称为Prikle型

纤维素(Cellulose)型

环糊精(Cyclodextrin)型

大环抗生素(Macrocyclic antibiotics)型

蛋白质(Protein)型

配位交换(|Ligand exchange)型

冠醚(Crown ethers)型

刷型:

刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle 将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。

刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类中的第一种类型。

刷型手性固定相分为π电子接受型和π电子提供型两类。最常见的π电子接受型固定相是由(R)-N-3,5-二硝基苯甲酰苯基甘氨酸键合到γ-氨丙基硅胶上的制成。此类刷型手性色谱柱可以分离许多可提供π电子的芳香族化合物,或用氯化萘酚等对化合物进行衍生化后进行手性分离。

π电子供给型固定相常见的是共价结合到硅胶上的萘基氨基酸衍生物,这种固定相要求被分析物具有π电子接受基团,例如二硝基苯甲酰基。醇类、羧酸类、胺类等,可以用氯化

二硝基苯甲酰、异腈酸盐、或二硝基苯胺等进行衍生化后,用π电子供给型固定相达到手性分离。

刷型固定相的优势在于其易于合成。合成方法在Bill Prikle的著作中有详细的说明。另外,刷型固定相具有高的容量因子,因此具有高的选择因子。它的不利之处在于它仅对芳香族化合物有效,有时不得不进行衍生化反应。但值得一提的是,这种衍生化反应是非手性衍生反应,所以不存在手性衍生的问题。刷型手性色谱使用的流动相基本是极性弱的有机溶剂,这对于制备色谱来讲未必是缺点。

近来,刷型固定相出现了π电子供给和接受基因的混合固定相。如:WHELK-O和BLAMO,及α-BURKE-Ⅱ固定相。α-BURKE-Ⅱ相十分适用于β-阻断剂的手性分离。典型的流动相为二氯甲烷-乙醇-甲醇混合物,比例为85:10:5。加入10mM醋酸铵可以调整保留时间。SS BLAMO Ⅱ,同时具有π电子供体区和受体区,形成手性裂缝,因此对于某些分子具有很高选择性。

纤维素型:

纤维素型手性色谱柱的分离作用包括相互吸引的作用及形成包埋复合物。它们属于Wainer分类中的第2种类型。市售的手性色谱柱为微晶三醋酸基、三安息香酸基、三苯基氨基酸盐纤维素固定相。很多化合物可通过此类型的色谱柱得到分离。这种类型的手性色谱柱种类也很齐全。流动相使用低极性溶剂,典型的流动相为乙醇-己烷混合物。但特别要注意由于氯可以使纤维素从硅胶上脱落,因此要确保流动相中无含氯溶剂。

这种类型的手性色谱柱主要的制造商之一是日本的Daicel公司,他们生产的纤维素酯和氨基甲酸纤维素柱可以分离多种生物碱和药物。特别值得一提的是OD柱。在某手性化合物异构体的分离中,分离度超过了25,这意味着载样量可以很高,对于制备十分有利。

纤维素固定相的每个单元都为螺旋型,而且这种螺旋结构还存在极性作用、π-π作用及形成包埋复合物等手性分离因素。淀粉代替纤维素制成的此类手性柱显示了和纤维素柱不同的选择性,但是稳定性较差。因为淀粉是水溶性的,因此流动相中必须绝对无水才能保证柱子寿命。目前此类型的柱子能分离80%左右可能面临到的所有手性化合物。此类柱子通常用于正相系统,用正己烷-乙醇,正己烷-异丙醇混合溶剂为流动相。OD柱也可用于反相的情况,但流动相必须含有高浓度的高氯酸盐缓冲液,以防止固定相溶解。即使这样,使用较长时间以后色谱柱也难免要受到损害,但是在某些情况下使用反相系统分离效果要优于使用正相系统。

环糊精型:

环糊精是通过Bacillus Macerans 淀粉酶或环糊精糖基转移酶水解淀粉得到的环型低聚糖。通过控制环糊精转移酶的水解反应条件可得到不同尺寸的环糊精。市售的环糊精主要是α、β、γ三种类型,分别含6、7、8个吡喃葡萄糖单元。环糊精分子成锥筒型,构成一个洞穴,洞穴的孔径由构成环糊精的吡喃葡萄糖的数目决定。环糊精类型及洞穴的孔径等见下表:

环糊精糖元数目洞穴孔径可进入洞穴的分子类型手性中心数目

α 6 4.5-6.0 5-6元环的芳香族化合物30

β7 6.0-8.0 联苯或萘35

γ8 8.0-10.0 取代芘和类固醇40

2,3位仲羟基分布在环糊精洞口,6位伯羟基在环糊精分子的外部,这意味着洞穴内部是相对疏水的区域。用环糊精手性固定相产生手性识别要求被拆分物的疏水部分能嵌入环糊精洞穴中,形成可逆的、稳定性不同的包合物,环糊精洞口的羟基和被拆分物的极性基团相互作用。

由于形成包合物速度较慢,因此可能导致色谱峰峰形较差,同样也影响了其在制备色谱

中的应用。环糊精固定相的选择性取决分析物的分子大小;α-环糊精只能允许单苯基或萘基进入,β-环糊精允许萘基及多取代的苯基进入,γ-环糊精仅用于大分子萜类。β-环糊精手性固定相应用范围最广。Ibuprofen通过β- 环糊精色谱柱得到分离,说明了pH值对氢键的影响。当流动相的pH=7时,观察不到拆分的迹象。pH=4时,可达到好的分离效果。通常分离氨基酸时,常采用低的pH值,以抑制酸性基团的离子化,同时也增强氨基的质子化。磷酸三乙胺盐、乙酸三乙胺盐证明对β-环糊精色谱柱来说是很好的缓冲液。通常缓冲液是0.1%三乙胺溶液,用磷酸或醋酸调节到合适的pH值。高的流速会降低形成复合物的能力,低流速分离效果较好,0.5-1ml/min的流速最好。另外,增加缓冲液的浓度可以克服流速的影响,因为它可以增加环糊精洞穴和流动相的吸引力

常用缓冲液及其使用浓度如下表所示:

缓冲液浓度目的

TEAA(乙酸三乙胺盐) 0.01-2%

NH4NO3 10-500mM (用于减小包埋)

柠檬酸盐10-200mM (特别适合于酸性化合物)

醋酸铵10-200mM

pH值选择见下表:

醇和胺pH4(加强NH的离子化)

酸pH7

优化手性分离条件要考虑的方面有:pH值对分离度的影响;流速对分离度的影响;柱温、有机相比例、缓冲盐浓度对分离度的影响。

环糊精的修饰:最近,对环糊精的修饰使环糊精型手性色谱柱可以分离更多的化合物,并可用于气相手性色谱分离。衍生化是通过将不同的基因键合到环糊精洞穴表面的羟基上。衍生化反应包括乙基化、S-羟基丙基化、生成S或R-萘基乙基氨基甲酸盐、3,5二甲基苯基氨基甲酸盐和环状对甲苯酰酯。这些新型的环糊精固定相有许多优点,它们可以分离更多化合物,价格上也有竞争力,由于改进了手性识别能力使其更适用于制备色谱。

配位交换型:

手性配位交换色谱(Chiral Ligand Exchange Chromatography,CLEC)由Davankov发明,是通过形成光学活性的金属络合物而达到手性分离,属于Irving Wainer分类中的第4类手性固定相,主要用于分离氨基酸类。

由于此类固定相是由手性氨基酸—铜离子络合物键合到硅胶或聚合物上形成,因此流动相中必须含有铜离子以保证手性固定相上的铜离子不至流失。其它的过渡金属元素也已用于手性配位交换色谱,但铜离子应用最广。形成络合物的过程十分缓慢,因此有时需提高柱温,最佳温度约50℃。

手性配位交换色谱仅对α- 氨基酸和其类似物有效。β- 氨基酸很难用手性配位交换色谱得以分离。手性配位交换色谱可用于制备,由于流动相中存在铜离子,虽然铜离子能用离子交换柱除去,但增加了样品处理的困难。

大环抗生素型:

大环抗生素型手性色谱柱是最近发展起来的,通过将大环抗生素键合到硅胶上制成的新型手性色谱柱。大环抗生素型手性色谱柱的出现归功于Dan Armstrong的贡献。此类色谱柱常用的大环抗生素主要由三种:利福霉素(Rifamycin),万古霉素(Vancomycin),替考拉宁(Ticoplanin)。利福霉素作为手性添加剂在毛细管电泳分离手性化合物方面得到了成功运用。万古霉素和替考拉宁分子结构中存在“杯”状结构区和糖“平面”结构区。此类色谱柱性质稳定,可用于多种分离模式。手性分离基于氢键、π-π作用、形成包合物、离子作用和肽键等。

替考拉宁分子量为1885,结构中存在20个手性中心,3个糖基和4个环。酸性基团在多肽“杯”/ “裂层”的一端,碱性基团在它的另一端。酸性基团和碱性基团提供了离子作用点。糖基在三个平面上,可折叠起来将化合物分子包埋在多肽“杯”中。

万古霉素分子量为1449,结构中存在18个手性中心,3个环。万古霉素具有“篮状”结构,它的附近还有一个可弯曲的糖平面,可将分析物分子包埋在“篮子”中。羧基和仲氨基分布在“篮子”的边缘,参与和分析物分子产生离子作用。万古霉素手性色谱柱可用于反相模式、正相模式和极性模式。万古霉素手性色谱柱可以分离胺类、中性酰胺、脂类。但对于酸性化合物选择性较低。在反相模式中,有机相常用四氢呋喃、乙腈和甲醇。水相常用三乙胺-乙酸缓冲液。色谱柱适用的pH范围为4-7。通常优化碱性化合物手性分离条件时,选择pH=7 为起点比较好。另外四氢呋喃、乙腈有最好的选择性。有时采用纯的甲醇和乙醇作流动相也可达到好的分离效果。万古霉素手性色谱柱也可用正相模式,采用正己烷/乙醇为流动相。

万古霉素手性色谱柱载样量可以很大,非常适用于制备色谱。

蛋白质型:

蛋白质型手性色谱柱属于第5种类型。分离依赖于疏水相互作用和极性相互作用。已经有多种蛋白质用于此类手性色谱柱。目前使用较多的是α-酸性糖蛋白(α-Acid Glycoprotein,AGP),人血清白蛋白(Human Serum Albumin,HSA),牛血清白蛋白(Bovine Serum Albumin,BSA)和卵类粘蛋白(Ovomucoid,OV)。

α-酸性糖蛋白分子由181个氨基酸残基和40个唾液酸(sialic acid) 残基构成。α-酸性糖蛋白分子偏酸性,等电点为2.7。含有两个二硫键,性质很稳定。α-酸性糖蛋白分子可以共价键合到硅胶上,制成手性色谱柱,可以分离许多化合物。

α- 酸性糖蛋白手性色谱柱使用的流动相通常为pH 4-7的磷酸盐缓冲液和很小比例的有机相。有机相首选异丙醇,如达不到分离要求,可以尝试乙腈,乙醇,甲醇或四氢呋喃。有机相的改变导致蛋白结构发生暂时的改变。色谱柱的负载量至关重要,典型的负载量为0.02mg/ml的浓度样品,进样20μl。pH 的改变对手性选择性起关键作用,尤其是胺类化合物。pH降低导致蛋白质负电荷的降低,引起胺类化合物保留时间减小,然而这意味着可以减小有机相比例,使选择性增加,峰形改善。

通过调节有机相比例仍无法达到分离效果时,有时需用电荷调节剂。但这可能引起蛋白结构的永久改变,这些电荷调节剂包括丁酸、辛酸、癸酸和二甲基辛胺。有时也用到1,2 亚乙基二醇,1,2丁醇和氯化钠。温度对分离也有影响,温度增加保留时间,减小分离因子。

人血清白蛋白(HSA)分子量为69,000,等电点为4.8。蛋白中认为存在两个药物结合位点:华法令-氮杂普鲁帕宗(warfarin- azapropazone)和苯基二氮杂-吲哚(benzodiazapine-indole)结合位点。流动相中加入辛酸,采用人血清白蛋白手性色谱柱可以有效分离benzodiazapine。Warfarin 和oxazepam也用人血清白蛋白手性色谱柱得到了分离,流动相组成为:100mM磷酸缓冲液pH7:乙腈:异丙醇= 84:10:6。

牛血清白蛋白(BSA)为球型蛋白,分子量为66,000,等电点为4.7。此蛋白为一个单氨基酸链,通过17个二硫键形成9个双环。许多化合物通过牛血清白蛋白手性色谱柱得到分离。牛血清白蛋白不如α-酸性糖蛋白稳定,一些有机溶剂(如乙腈、甲醇)可使蛋白变性,因此使用起来要特别注意。

卵类粘蛋白由蛋清中提取,分子量为55,000。它可分离大量的胺类和酸类化合物。

蛋白手性色谱柱的载样量均较小。影响了蛋白手性色谱柱在制备色谱中的应用。

蛋白手性色谱柱在所有手性色谱柱中是应用最广的色谱柱,但并不是效果最好的色谱柱。

冠醚型:

冠醚类固定相用于分离一级胺,一级胺必须质子化方能达到分离。因此必须使用酸性流动相,如高氯酸。最常用的是冠醚类固定相是18-冠-6,已有商品化产品,由Daicel公司制造。无论(+)或(-)型均可达到有效分离,并可通过变化(+)(-)类型而改变分析物出峰顺序。冠醚作为添加剂也用于核磁共振和电泳,但由于其毒性较大,有致癌性,使其应用受到限制。

实验经历

最近分析室的手性样品比较多,可能现在合成部门迷恋上了手性成分了。所以我们也开始了双峰时代。

从开始的无从下手到现在的稍微有一点门路,里面经历了很多失败和教训。现在就几个开始做过几个手性样品的案例大家分享一下,希望对刚刚接触手性分析的同仁们有所帮助,专家级的大佬们也能指点一下。

第一个做的样品是合成室的同事需要检测的,当时说是可能有两个物质,主产物中有一个手性的杂质,需要分开。两个物质的结构在这就不方便公开了。

先想看看物质的纯度如何,所以先用普通的C18色谱柱检测了一下纯度。

色谱条件:

色谱柱:MP-C18 4.6*250mm 5um 100A

流动相:乙腈:水=40:60

柱温:40℃

检测波长:210nm

流速:1.0ml/min

出现了一个比较好看的峰,比较干净,心想要是不是手性的时候咋没一下子就出个比较好看的峰呢。看来果然前人的经验是对的,反相估计是没什么戏的,一点分叉的迹象也没有。

这时候实验室还没有一根手性柱,所以进行手性柱的申请,上报。其中的曲折就不谈了。

实验也不能闲着啊,合成部的一天催着几十遍。于是乎到了其他色谱柱的注意。正好实验室有一根比较特殊的柱子。Venusil HILIC,就是亲水正相作用的色谱柱。当时工程师说这个柱子不是普通的C18色谱柱,是什么丙烯酰胺的柱子,可以当正相反相用,说什么可以用于分离异构体。想着这会不会一下子就分开呢,(请原谅我当时的理论和经验不足)反正催的比较紧,先试试再说。

色谱条件:

色谱柱:HILIC 4.6*250mm 5um 100A

流动相:0.1%TFA水溶液:0.1%TFA乙腈溶液=90:10

流速:0.8ml/min

柱温:40℃

实验惊奇的发现,竟然有一个小的杂质峰出现,而且两个峰的峰型和理论塔板数都相当的高。开始买柱子的时候以为工程师忽悠我们,这样看来还真是那么回事。

重复进养,进空白样品等一系列实验确定前面的小杂质峰是手性异构体杂质。后将实验结果给合成的同事,后经过合成的同事确定是手性异构体,但是合成的同事这回又提意见了,说可能还有一个杂质,应该可能是三个杂质。我的个神啊,那咱就接着再分呗。于是乎,就在这根柱子上进行改进的实验,加过甲醇,异丙醇,叔丁醇等等,倒是将这两个杂质分离度提高了,可是还是没有看到第三个杂质的影子。

后来我们的手性柱也到了,一下到了三根不同型号的。Chiral AD-H,OJ-H,OD-H。文献和说上都说这三款柱子能够分离大部分的手性化合物,基本上手性物质换柱子比换条件更为实用。

所以先试一试Chiral OD-H。

色谱柱:Chiral OD-H 4.6*250mm 5um 1000A

流动相:甲醇:异丙醇:正己烷=5:30:65

流速:0.8ml/min

柱温:40℃

出来的图谱和Venusil HILIC的图谱和分离区别不大,这也进一步证明了之前的结果是正确的。

后来调整了流动相得比例,加了酸碱,也没有三个峰的迹象。所以换柱子

试一试Chiral OJ-H。

色谱柱:Chiral OJ-H 4.6*250mm 5um 1000A

流动相:异丙醇:正己烷=5:95

流速:1.0ml/min

柱温:40℃

还只是柱子上来了,只用了普通的正己烷和异丙醇,还没有调整流动相,这下子一下出来了三个峰,并且经过验证的确是样品中的物质不是系统杂质。云开见日的感觉啊。

将图谱和数据交给合成同事,确定是他们要的东西。

实验成功!!

实验总结:

1、有些物质可能不用手性柱子也可以分离,所以先可以试一试例如HILIC这样的柱子,毕竟手性柱还是比较贵的,要是实验室有这样的柱子,先试一试也不费什么事情的。

楼主分开了一个小的东西,我觉得是非对映异构体的存在造成的,如果只有一对手性中心的话,非手性柱子是分不开的。所以这样的事情并不是每次都可以的。

正解,分开的应该是非手性对应异构或者是其它杂质,分离手性物质必须有手性固定相或者是流动相里添加手性添加剂。

2、手性物质的分离柱子的选择还是比较重要的,分离的提高,换柱子比换流动相更快捷一些。

正解,大赛璐的四大金刚一般都能解决,我推荐筛选柱子的顺序:AD-H、IC、OD-H,基本上前两只柱子足以对付98%以上的一般小分子手性化合物(我的经验)。

3、一定要样品较为纯净,这样才能判断分离出来的是杂质,还是手性异构体。或者使用DAD的检测器。

有些时候杂质是很难避免的,关键是把消旋体的谱图做好,后面可以很好的对应。用DAD可以更直观。

样品越纯越好,但是判断手性异构体最可靠的是异构体标准品,或者消旋体,DAD也不是绝对的,同系物可能也有相同或相近的紫外吸收。

4、有时候向流动相中加酸或者碱,或者两种都加对分离会有一定的帮助。酸碱的量不能过大,不然对柱子的寿命会有影响。

酸碱是可以帮助分离,但是使用前最好向合成人员询问下,在酸碱情况下该手性化合物是否会发生消旋,这个很重要!!!要不,即便做成了很好的选择性,到头来也难发现问题的所在。

流动相里的酸碱导致样品消旋的情况我从来没有遇到过,这个基本上不用考虑,一般的酸碱添加量都在0.1%以内(主要考虑柱子填料的耐受能力),添加酸碱更多的是考虑样品本身的酸碱性、抑制样品解离以后与填料硅羟基之间的相互作用导致的拖尾,而且酸碱可以增加额外的选择性,有些样品用不加酸碱的流动相没有分离趋势,但是添加酸碱以后可以分离的很好,甚至有些情况下需要即加酸又加碱,否则就不能达到基线分离。

5、向溶剂中加甲醇、叔丁醇会对分离有一定的改善。

这个会不会和样品的结构和溶解度更相关呢?

手性流动相中起洗脱作用的一般是醇类(乙醇、异丙醇)正己烷正庚烷用以调节洗脱能力的大小,甲醇与正己烷正庚烷不互溶,但是在乙醇异丙醇大量存在的情况下可以少量添加,叔丁醇熔点高(室温稍低就是固体),不好直接用,一般也是结合乙醇异丙醇使用,但是每种醇都能提供独特的选择性,没有手性选择性就不可能使样品分离。溶解度是前提条件,但不是必要条件。

6、温度也是一个关键因素,不妨将温度调高一些,这样可能有利于分离。

这是一条很好的建议!

提高温度可能使峰形更窄更对称,但是会降低手性的选择性,而且大赛璐柱子的温度上限就是40度,一般手性分离在温度上可以下的功夫很小,最主要还是考虑流动相。

7、有时候加少量的水对峰型与一定的帮助,尤其对于强保留物质。但是这个要注重,除非你是在没招了才能这样做。因为水对柱子的寿命有很大的影响,(涂布的手性柱)以寿命换分离。

少量的加水可以作为最后的尝试,注意要小于0.1%的量,但是一般还是不推荐使用,其实流动相比例和组成有很多种考虑因素,你一定还有更多更好的方法可以尝试

手性色谱分析..

1 手手性性高高效效液液相相色色谱谱法法 **手手性性药药物物分分析析的的概概念念 **常常用用手手性性高高效效液液相相色色谱谱法法 手手性性衍衍生生化化试试剂剂法法 手手性性固固定定相相法法 手手性性流流动动相相添添加加法法 2 手手性性的的概概念念::一一种种镜镜像像反反射射的的对对称称性性

3 手性分子:组成相同但空间结构上互成镜像的分子,称之为对映异构体。 分子结构中含有不对称碳原子是最常见的手性结构。 根据对偏振光的作用不同可分为R、S体,两者的等量混合物称之为消旋体。 OH COOH H CH 3 OH COOH H CH 3 4 Mirror Mirror

手手性性异异构构体体在在药药理理学学效效应应上上的的差差异异 ● Pfeiffer 规则: ● 对映异构体之间的生物活性存在着差异; ● 不同的对映体之间活性的差异是不同的; 当手性药物的有效剂量越低,即药效强度越高时,则对映体之间的药理作用的差别越大。 外消旋体和其两种单一对映体是不同的3种实体! 5 对对映映体体与与生生物物大大分分子子的的三三点点作作用用 c a b d a b d c α γβ α β γ 手性分子的a 、b 、c 结合,是高活性对映体(优映体)。 手性分子的a 、b 、c 三个基团中只有a 和b 与受体分子的活性作用点 6 在未研究清楚两种单一对映体之间的生物学差异时,以消旋体给

药往往会影响药物质量,甚至会严重损害人体健康。 “反应停”(Thalidomide)作为人工合成药,当时投入使用时是两种 对映体的混合物。 7 反应停:五十年恩怨 发展趋势: 劣映体本身或其代谢物产生毒副作用,不再使用外消旋体。外消旋体转换成单一对映体,不仅提高质量,还延长药物寿命。 如:氧氟沙星的左旋异构体活性更强,左旋氧氟沙星临床使用剂量是消旋体的一半。

手性药物分析概述-20180806

目前,国际上手性和手性药物的研究正处于方兴未艾的阶段,手性制药是医药行业的前沿领域。临床上使用的手性药物大都以消旋体给药, 而由于体内蛋白质、酶和受体对两个对映体分子处理的差异, 结果会导致对映体疗效和毒性不同。因此, 单一对映体给药已成为一种趋势。建立对映体药物的手性拆分方法, 在药品质量控制及药物药理、药动学研究领域中日益突出了其重要作用。 高效液相色谱(HPLC)、气相色谱(GC)、超临界流体色谱(SFC)和高效毛细管电泳(HPCE)是手性拆分的主要手段。截止目前,HPLC被认为是测定对应异构体纯度和分离制备光学单一对应异构体的最好方法。它适用范围广,操作条件温和,不会发生分离物构型变化或生物活性被破坏等现象。 为适应临床对单需求我公司研发中心决定开展黄酮类和洛尔类手性药物研发,现阶段研究结果如下: 一、黄酮类药物手性分析 黄酮类化合物在抗氧化、抗肿瘤、抗癌、抗菌、抗炎、抗衰老等方面有很强的药理活性,前期共合成了9对结构全新的黄酮类对映体,这些对映体的手性分析是这类药物研发的攻克难点。我们首先采用反相高效液相色谱法,以β-环糊精等多种手性流动相添加剂进行手性拆分,通过改变手性添加剂的用量调整分离效果,但是试验结果表明手性流动相添加剂法不适用这9对黄酮类对映体的分离分析。同时,我们购买了不同填料的手性固定相色谱柱,采用正相高效液相色谱进行拆分试验,通过大量的试验摸索,试验数据表明,纤维素Chiralcel OZ-H 手性柱对这9对黄酮类对映体显示了不同的拆分效果,且流动相中有机添加剂醇的比例和种类对于这两种柱的手性识别均有一定程度的影响。直链淀粉Chiralpak AD -H 柱对于流动相中醇的种类变化更敏感,不同醇流动相的拆分结果(分离度Rs)差别较大; 而纤维素Chiralcel OZ -H 手性柱对此的差别小。两种手性柱均对二氢黄酮类化合物表现出良好的手性选择性,但手性柱Chiralcel OZ -H 显示了更好的适用性。最终摸索出这9个黄酮类对映体的最佳分析条件,为此类手性药物研发提供强大的技术支持。 二、洛尔类手性药物分析 洛尔类手性药物主要应用于高血压、心律失常、心绞痛等临床病文献资料表明,S-对映体的活性更高,因此对此类药物的手性分析有较大的应用前景。我公

手性超材料研究进展

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

手性色谱柱知识介绍

手性色谱柱知识介绍 手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong 教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。 第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。 但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种: 刷(Brush)型或称为Prikle型 纤维素(Cellulose)型 环糊精(Cyclodextrin)型 大环抗生素(Macrocyclic antibiotics)型 蛋白质(Protein)型 配位交换(|Ligand exchange)型 冠醚(Crown ethers)型 刷型: 刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应

液相色谱手性制备分离过程中的问题探讨

液相色谱手性制备分离过程中的问题探讨 本文拟通过一些具体实例来介绍多糖类手性固定相在高效液相色谱法分离对映异构体中的应用。对多糖类手性固定相类型、手性识别机理、影响手性拆分能力的因素以及制备分离过程中的样品溶解度问题等做了较为详实的阐述与讨论。 现实需求:手性药物的不同对映体往往显示出不同的药理学、毒理学及药代动力学性质,出于用药安全性考虑,药品监管部门要求对潜在手性药物的各自对映体必需进行分离和活性(毒性)测试。因此,单一构型手性化合物的获得对于药理和毒理实验的开展是极其重要的。一般可以通过手性合成和手性拆分两种途径来获取单一异构体。各种手性拆分技术中,色谱法因其快速、高效、经济等优势而得到广泛应用。(手性合成方面,请参考相关专著。) 案例分析:mg-50g级的单一构型手性化合物各自纯品(即两种构型都需要)。其中之一很可能就是安全有效的候选药物。为了尽快获得各异构体以尽早开展药理、毒理试验,药物发现阶段,许多制药公司都暂缓在不对称合成上的投入,而是敏锐快捷地转向手性色谱分离,迅速地从不太贵的消旋体混合物中分离出高纯度的对映体。手性药物早期开发阶段,不差钱!这时候最要紧的是时间和对映体纯度。时间就是金钱,早期占得先机,后来财源滚滚! 解决方案:药物发现阶段,由于手性化合物需求量少(mg-50g级,相对于后期公斤级全面开发及吨位级生产来讲,小巫见大巫。。。),为尽快尽早获得单一光学纯物质,采用手性色谱制备分离策略。 具体方法:拟采用多糖类手性固定相高效液相色谱法(PreparativeChiralHPLC) 方法步骤:手性HPLC制备分离对映体,对于某一个具体样品,如何开始chiralHPLC方法建立?对映体在手头上已有商品柱上能否直接分离,是否可以放大等? 对于液相色谱法手性制备拆分对映体,其步骤大致如下:1)、了解待分离化合物样品结构信息;2)、选择合适的手性固定相(手性分析柱);3)、对所选的分析柱进行筛选,优化色谱条件;4)将分析条件转移到制备柱上,并对放大分离条件做最后的调整(analyticalchiralHPLC→preparativechiralHPLC);5)、开始制备拆分,若条件允许的话,可以自动进样;6)去除溶剂,回收产品。具体操作起来,可以这么考虑: 1)、了解待分离化合物样品结构信息:手性方法建立的第一步为检查待测物的化学结构,尽可能地

手性色谱柱

手性色谱柱是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。 要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 对于新的实验室要开展手性方面的研究,但不知怎么配置手性柱才能最好的,最大范围的对目标化合物取得较好的分析结果,下面我们来给您一些建议吧。 (加个表情或者箭头) 我把常用手性柱分成了五类,具体情况如下,建议每一类选择其中一种。

第一类:AD-H和IG,两个型号分离范围都比较广,区别是AD-H是涂敷型的,只能用于正相体系,IG是键合型的,正反相体系都适用。相对而言,AD-H这个型号是所有手性柱中的明星柱,所以建议选择AD-H型号。 AD-H IG 第二类:OD-H和IC,同理,OD-H是涂敷型的,只能用于正相体系,IC是键合型的,正反相体系都适用。其中IC对于含有羧基的酸性手性化合物分离性能更优异一些,并且第一类选择了涂敷型,所以这个建议选择键合型IC型号。 OD-H IC 第三类:IBN-5和AS-H,AS-H是四大金刚柱之一,比较经典,IBN-5是最近两年上市的,他跟其他型号互补性较强,当然这样也造成其应用范围比较窄的缺点,比如:有100种消旋体,AS-H或者AD-H能分离其中的85种,但对于剩下的15种分离效果不是很好,IBN-5可能对剩下的15种分离效果不错。所以这一类如果整体考虑,可以选择IBN-5,如果单独考

手性化合物色谱分析方法开发(一)

手性化合物色谱分析方法开发(一) 1、概述 首先,这里所说的手性化合物是指含有一个或多个不对称碳手性中心的对映或者非对映异构体,而不包含氮磷等含有孤电子对的手性中心化合物。不对称性碳原子,需要具有四个不同的取代基,空间上形成不对称四面体,对映异构体之间形成镜面对称,就像人的左右手一样,不能够完全重合,如下图1所示。 Fig.1Diagram for enantiomers 对映异构体具有不同的使偏振光旋转的能力,据此对映异构体可以分为左旋与右旋。在非手性环境下,对映异构体具有相同的化学性质(化学反应特性),相同的物理性质(如溶解度、熔点、沸点、熵焓等)以及同样的色谱保留行为等。但在手性环境中对映异构体之间的某些性质则表现出不同,这也是手性化合物进行拆分的基础。 对映异构体需要对内消旋体与外消旋体进行区分,如下图2所示。左右两个示意化合物结构的相同点在于均具有两个手性中心,不同点则在于左图的两个手性碳原子之间不存在对称平面或轴,而右图则存在对称平面。因此在左图中,1S,2R与1R,2S为外消旋体;右图中1S,2R与1R,2S为内消旋体。

Fig.2Name and distinguish between mesomer and racemate 对于手性化合物的拆分,规模比较大的时候,可使用其他手性试剂(如酒石酸钠)与待拆分的化合物形成非对映异构体,然后根据非对映异构体之间具有不同的物理化学性质,进行相应的分离单元操作。而在分析实验室中,一般是采用色谱法进行拆分,其中包括使用手性固定相法以及在流动相中添加手性流动相形成手性拆分环境的方式。其中手性固定相拆分法包括气相色谱以及液相色谱。 对于气相色谱拆分手性化合物,其拆分选择性主要取决于所使用的手性固定相的种类以及色谱分离的温度。一般气相用于低沸点的手性化合物的拆分,对于有机酸碱等极性手性化合物的拆分,一般需要先进行柱前衍生化处理,使之形成相应的酯或者酰胺。用于气相手性拆分的手性固定相均为环糊精衍生物类,包括β以及γ环糊精,α环糊精比较少;其最高耐受温度不会超过220℃,而且分离温度超过120℃的时候,固定相的手性选择性开始降低;超过200℃的时候,固定相的手性选择性几近与无。 对于液相色谱而言,起主要拆分选择性作用的既包括手性固定相也包括流动相的选择,而且液相色谱可以使用正相洗脱模式,反相洗脱模式,也可以使用极性洗脱以及极性离子洗脱模式;可以等度也可以梯度。最重要的是,色谱柱的类型要比气相色谱手性固定相多的多,其中就包括多糖类衍生物类手性固定相、环糊精及其衍生物类手性固定相、糖蛋白类手性固定相以及大环内酯抗生素类以及冠醚类手性固定相等。此外,液相色谱拆分法可以对样品进行回收而且也可以用于对映异构体的制备,气相色谱法则不能方便的对对映异构体进行制备。

手性金属有机框架材料的合成

分类号: 学校代码:11460 学号:0910431 南京晓庄学院本科生毕业论文手性金属有机框架材料的合成及热力学性质研究 Synthesis and Thermodynamic Properties of Chiral Metal-Organic Framework Materials (MOFs) 所在院(系):生物化工与环境工程学院 学生姓名:张德宽 指导教师:段海宝 研究起止日期:二○一三年一月至二○一三年五月 二○一三年五月

学位论文独创性声明 本人郑重声明: 1.坚持以“求实、创新”的科学精神从事研究工作。 2.本论文是我个人在导师指导下进行的研究工作和取得的研究成果。 3.本论文中除引文外,所有实验、数据和有关材料均是真实的。 4.本论文中除引文和致谢的内容外,不包含其他人或其它机构已经发表或 撰写过的研究成果。 5.其他同志对本研究所做的贡献均已在论文中作了声明并表示了谢意。 作者签名: 日期:

手性金属有机框架材料的合成及热力学性质研究 学生姓名:张德宽 指导教师:段海宝 摘要:手性金属有机框架材料一直以来都是科学工作者的重点,尤其是在药物和生物体中的应用方面。手性金属有机框架材料(MOFs)具有迷人的拓扑结构和潜在的应用价值,受到了广泛关注。本实验通过镉与联苯二羧酸配位得到MOF材料。从X射线粉末衍射分析得到晶系为正交晶系;空间群为I212121;晶胞参数为a(?)=8.207(5);b(?)=27.618(5);c(?)=28.692(5);α(o)=90;β(o)=90;γ(o)=90 关键词:手性金属有机框架材料(MOFs)、模板、不对称催化 Synthesis and Thermodynamic Properties of Chiral Metal-Organic Framework Materials (MOFs) Abstract: Scientific workers have put the emphasis on the chiral material for a long time ,especially in drugs and application of organisms .Chiral metal-organic framework materials(MOFs) have attracted significant attention because of not only their enormous variety of interesting structural topologies but also their wide potential applications. In this experiment, cadmium and 4,4'-Biphenyldicarboxylic acid ligand MOF material obtained. From X-ray powder diffraction analysis crystal system is orthorhombic; The compound I212121space https://www.360docs.net/doc/b417297533.html,ttice parameters a(?)=8.207(5);b(?)=27.618(5);c(?)=28.692(5);α(o)=90;β(o)=90;γ(o)=90. Keywords:chiral metal-organic framework materials (MOFs);template;asymmetric catalysis

大赛路手性柱Q&A及手性分离经验

优化手性化合物的分离方法时,如何增加分离选择性? 正相手性色谱柱上增加分离度的方法有:降低流动相中醇的含量、降低柱温、更换流动相中醇的种类、更换手性柱。 建立手性化合物的分离方法时,选定了正相手性柱之后,如何选择流动相? 流动相首选正己烷和异丙醇的混合溶液,根据样品的酸碱性决定是否添加酸碱性添加剂。如果是中性样品则不需要添加添加剂,如果是酸性样品需要添加三氟乙酸或乙酸,如果是碱性样品需要添加二乙胺,添加剂的量一般为0.1 %。流动相中醇的含量一开始可以使用30%,根据样品出峰的快慢和分离度再调整醇的含量。流动相中醇的种类一般使用异丙醇,也可以使用乙醇。 建立手性化合物的分离方法时,如何选择手性柱? 根据文献或者参考大赛璐公司的《应用指南》中结构类似物的分离方法,选择手性柱;另外可以寄少量消旋品,大赛璐公司能免费为您选择分离最佳的手性柱。 手性柱使用完了之后如何清洗保存? 正相手性色谱柱如果使用正己烷和醇类的混合流动相之后,只需要用正己烷/异丙醇=90/10(v/v)的保存溶液冲洗30 min即可。反相手性色谱柱如果使用了水溶液和乙腈的混合流动相之后,只需要用水/乙腈=70/30(v/v)的保存溶液冲洗30 min即可。 CROWNPAK? CR(+)柱流动相中甲醇含量有要求吗? CROWNPAK? CR(+)柱流动相中甲醇含量为0%-15%,甲醇的含量一旦超过15%,CROWNPAK? CR(+)柱会被损害。 正相手性柱进了水后,柱子会不会损坏? 正相手性色谱柱(例如AD-H、AS-H、OD-H、OJ-H)一旦进了水,柱压会升高,但是只要柱压不超过柱压上限,柱子就不会损坏。只需用无水乙醇低流速(0.1-0.2 ml/min)将水全部充分置换出来,再用正相流动相低流速(0.1-0.2 ml/min)将乙醇全部置换出来就能继续使用该正相手性色谱柱。 样品的保留时间漂移,可能是哪些原因,如何解决? 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定。 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等。 3、柱子未平衡好,需对柱子进行更长时间的平衡。该情况在MA(+)柱上出现较多。 4、酸碱性的样品,有时在中性条件下能分开,峰形尚可,但保留时间会漂移;加入相应的酸碱添加剂即可。 5、流动相污染。溶于流动相中的少量污染物可能慢慢富集到色谱柱上,从而造成保留时间的漂移。需清洗色谱柱,流动相和样品溶液尽量现用现配。 (小极性样品的溶解)正相方法分析布洛芬时,有时峰形难看甚至达不到基线分离,什么原因?如何解决? 该方法为Hexane/IPA=99/1,极性很小;若样品不是溶解在流动相中,则结果很可能达不到基线

高效液相色谱手性固定相研究进展

收稿日期:2003-05-25 作者简介:寿崇琦(1963-),男,山东省济南市人,济南大学化学化工学院教授,硕士研究生导师,中国科学院兰州化学物理研究所博士研究生。 高效液相色谱手性固定相研究进展 寿崇琦1,张志良2,赵春宾2,邢希学2,李关宾1,陈立仁1 (11中国科学院兰州化学物理研究所,甘肃兰州 730000; 21济南大学化学化工学院,山东济南 250022) 摘要:对近年来高效液相色谱手性固定相的研究进行了综述。重点介绍了手性固定相的分类、拆分机理 和应用的新进展。讨论了各类手性固定相优缺点,提出了目前存在的问题、今后的研究方向和重点。 关键词:高效液相色谱;手性固定相;拆分机理中图分类号:O658 文献标识码:A 文章编号:1004-4280(2004)01-0069-05 随着生物工程和生物科学的发展,手性拆分和测定引起了人们的普遍关注。尽管对映体间物理化学性质几乎完全相同,但它们的生化和药理作用却往往不同。这是因为生物本身内部的核酸、蛋白质及多糖都具有与其功能相适应的结构,它们常常对扬长避短一化合物的两种对映体表现出不同的响应。例如具有镇静作用的反应停(thalidomide ,酞胺哌啶酮),其有效成分是R 构型,而S 构型则具有致畸作用[1]。据统计,常用的200种药物中,大约有120种至少含有一个手性中心。而这些手性药物中有80%~90%以外消旋体形式在市场销售,存在巨大的潜在危险性[2]。因此,对映体的拆分与识别对于生命科学和药物化学研究以及人类的健康具有十分重要的意义。 目前用于手性分离的方法主要有毛细管电泳法、薄层色谱法、亚临界及超临界流体色谱法、气相色谱法和液相色谱法[3]。近年来,高效液相色谱法取得了令人瞩目的进展,已成为对映体拆分强有力的手段之一。而其中所用的手性固定相的是能否进行手性分离的关键。1 手性固定相的分类 虽然液相色谱常被分为不同的分离模式,但实质上所有的分离模式都基于两个最基本的因素:即固定相的结构和组成,以及决定分离机理的固定相与流动相相互作用的性质。因而手性固定相(CSP )的制备则是手性分离的关键。目前所研究的HP LC -CSP 主要可分为下列几类[4]: 1.1 蛋白质手性亲和固定相 多数蛋白质CSP 的分离机理目前尚不十分清楚,但是蛋白质CSP 的手性识别能力可以归结为它们独特的空间立体结构特征[4]。尤其是在对映体的手性识别过程中,三级结构所造成 第18卷第1期 2004年3月山 东 轻 工 业 学 院 学 报JOURNA L OF SHANDONG INSTIT UTE OF LIGHT INDUSTRY Vol.18No.1Mar.2004

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

高效液相色谱法 药典

高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵人装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注人的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9?4.6 mm,填充剂粒径为3?10μm。超高效液相色谱仪是适应小粒径(约2μm) 填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1) 色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提髙色谱柱的温度,但一般不宜超过60°C。残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

分子的手性与旋光性

分子的手性和旋光性 【摘要】长久以来,分子的手性和旋光性都受到了人们的密切关注。这些性质既带给了人们便利,也给人们造成了伤害。本文讲述了手性和旋光性的基本信息,详细阐述了它们的判断方法,着重说明了它们的应用领域和对人类生活的影响,文章的最后还提出了一些手性分子的合成方法。 【关键词】手性;旋光性;判断方法;应用;合成 1.分子的手性 1.1分子手性的概念 手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理和化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形就像镜子里和镜子外的物体那样,看上去互为对应,可是由于是三维结构,它们不管怎样旋转都不会重合,就如同人们的左手和右手。这两种分子具有手性,所以叫手性分子。由于这两种分子互为同分异构体,所以这种异构的形式称为手性异构,有R型和S型两类。 1.2发展历史 在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr通过细心研究发现了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对应异构体的概念。人们在研究对应异构体时发现,在左旋和右旋两种对应异构体的分子中,原子在空间的排列是不重合的实物和镜像关系,这与左受和右手互为不能重合的实物和镜像关系类似,从而引入了手性及手性分子的概念。 1.3分子手性的判断方法 物质分子凡在结构上具有对称面和对称中心的,就不具有手性。反之,在结构上既不具有对称面,也不具有对称中心的,这种分子就有手性。具有手性的分子称为手性分子。 1.3.1对称轴 这种轴是通过物体或分子的一条直线,以这条直线为轴旋转一定的角度,得到的物体或分子的形象和原来的形象完全相同,这种轴称为对称轴。n指绕轴一周,有n个形象与原形象相同。

手性分析之经验谈

手性分析经验谈 关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。 手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。 手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。 一、手性柱 手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。 关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。 二、样品前处理 说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。 样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

手性色谱柱的知识

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。 这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。 在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。 根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系: 第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。 第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。 第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。 第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。

北大考博辅导:北京大学地理学(环境地理学)考博难度解析及经验分享

北大考博辅导:北京大学地理学(环境地理学)考博难度解析及经验 分享 2018-2019年考研时,地理学专业考研学校排名是广大考研学子十分关心的问题,2017年12月28日,教育部学位与研究生教育发展中心发布了最新第四轮地理学学科评估结果,是目前比较权威的排名数据。 从榜单中我们可以看出,全国共有43所开设地理学类专业的大学参与了排名,其中排名第一的是北京大学,排名第二的是北京师范大学,排名第三的是华东师范大学。 下面是启道考博整理的关于北大地理学(环境地理学)考博相关内容。 一、专业介绍 资源与环境地理系环境地理学教研室是国内最早研究环境问题的单位之一,陈静生、关伯仁等老一辈教授是中国环境科学的主要开拓者,自五十年代初以来一直从事环境地理学和环境生物地球化学方面的研究。随着技术手段和研究水平的不断提高,先后取得了大量理论科研成果,并在解决实际环境问题方面发挥了重要作用。通过211以及985计划等的支持,本学科点在科研人才、设备、科研成果等方面在国内已经具有了一定优势,在若干领域也取得了一系列高水平研究成果。 目前,国外研究的热点是探索微量污染物在多介质环境中的归趋、如污染水平、空间分布、动态变化、来源解析、界面迁移、多介质模拟、生物吸收、生态效应和健康危害等。本教研室目前研究重点包括两个方面。一是重点研究持久性有机污染物的区域环境过程和对生物吸收的有效性。二是重点研究有毒有害化学物质(包括内分泌干扰物质,持久性有机污染物质和新出现的环境污染物质), 在食物链中的传递规律与机制、生态健康危害机理和风险评价。 近5年来,本教研室承担了包括1项国家自然科学基金创新群体科研项目、2项国家自然科学基金重点项目、1项973课题、多项国际合作项目、2项国家杰出青年基金项目、1项教育部跨世纪人才基金项目、1项教育部中国高等学校优秀青年教师教学科研奖励计划资助项目、多项国家自然科学基金面上项目、多个攻关项目及其他有关项目。在近年的研究工作中,随着实验室技术手段和研究水平的不断提高,先后取得了大量理论科研成果,并在解决实际环境问题方面发挥了重要作用,目前已经成为我国环境地学领域学术水平最高的科研基地之一,拥有一流的研究设备,形成了以中青年骨干为主的学术团队和浓厚的学术氛围,

相关文档
最新文档