高考磁场题整理(精选.)

高考磁场题整理(精选.)
高考磁场题整理(精选.)

1、在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求:

(1)M、N两点间的电势差UMN;

(2)粒子在磁场中运动的轨道半径r;

(3)粒子从M点运动到P点的总时间t

2、图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ,不计重力.求:

(1)离子速度的大小.

(2)离子的质量.

3、(2010全国卷Ⅰ)26.如图,在03x a ≤≤区域内存在与xy 平面垂直的匀强磁场,磁

感应强度的大小为B 。在t=0 时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知沿y 轴正方向发射的粒子在t=0t 时刻刚好从磁场边界上P(3a ,a)点离开磁场。求:

(1)粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m;

(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围; (3)从粒子发射到全部粒子离开磁场所用的时间. 【答案】⑴233R a = 0

23q m Bt π

=

4.(21分)图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为0B ,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。

(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3

4

a 。求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

5、如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与 撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求:

⑴粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; ⑵M 点的横坐标x M .

O h y

P R 0 M x

6.(22分)如图所示,在坐标系xoy 中,过原点的直线OC 与x 轴正向的夹角φ120°,在OC 右侧有一匀强电场:在第二、三象限内有一心强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直抵面向里。一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求

(1)粒子经过A 点时速度的方向和A 点到x 轴的距离; (2)匀强电场的大小和方向;

(3)粒子从第二次离开磁场到再次进入电场时所用的时间。 7、(17分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴 向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂 直于纸面向外.有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场. 质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d .接着, 质点进入磁场,并垂直于OC 飞离磁场.不计重力影响.若OC 与x 轴的夹角为φ,求: ⑴粒子在磁场中运动速度的大小;

⑵匀强电场的场强大小.

y E A

O x B

C

v φ φ

8.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U 。加速过程中不考虑相对论效应和重力作用。

(1) 求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2) 求粒子从静止开始加速到出口处所需的时间t ; (3) 实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞。

9. (18分)如图,在宽度分别为1l 和2l

的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。

10.(18分)

如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l ,l OQ 32=。不计重力。求 (1)M 点与坐标原点O 间的距离; (2)粒子从P 点运动到M 点所用的时间。

11.(18分)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ.不计空气阻力,重力加速度为g,求 (1) 电场强度E 的大小和方向;

(2) 小球从A 点抛出时初速度v 0的大小; (3) A 点到x 轴的高度h.

12.(18分)如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。位于极板左侧的粒子源沿x 轴间右连接发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子在0~3t 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t 0时,刻经极板边缘射入磁场。上述m 、q 、l 、l 0、B 为已知量。(不考虑粒子间相互影响及返回板间的情况)

(1)求电压U 的大小。

(2)求

1

2

时进入两板间的带电粒子在磁场中做圆周运动的半径。 (3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

13.(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。在xOy 平面内与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q(q >0)和初速度v 的带电微粒。发射时,这束带电微粒分布在0<y <2R 的区间内。已知重力加速度大小为g 。 (1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向。

(2)请指出这束带电微粒与x 轴相交的区域,并说明理由。 (3)在这束带电磁微粒初速度变为2V 0,那么它们与x 轴相交的区域又在哪里?并说明理由。

x

y

R O /

O

v

点微粒发射装置

C

0v 图甲 图乙

14.(19分)如题25图,离子源A 产生的初速为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场。已知HO =d ,HS =2d ,MNQ ∠=90°。(忽略粒子所受重力)

(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ; (2)求质量为m 的离子在磁场中做圆周运动的半径;

(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处。求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围。

15.(16分)如图1所示,宽度为d 的竖直狭长区域内(边界为

12

L L 、),存在垂直纸面向里

的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,

0E >表示电场方向竖直向上。0t =时,一带正电、质量为m 的微粒从左边界上的

1

N 点以水平速

度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的

2

N 点。Q 为线段

12

N N 的中点,重力加速度为g 。上述d 、

E 、m 、v 、g 为已知量。

(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;

(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。

16、(15分)如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场。一束同位素离子流从狭缝S 1射入速度选择器,能够沿直线通过速度选择器并从狭缝S 2射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E 的偏转电场,最后打在照相底片D 上。已知同位素离子的电荷量为q (q >0),速度选择器内部存在着相互垂直的场强大小为E 0的匀强电场和磁感应强度大小为B 0的匀强磁场,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响。

⑴求从狭缝S 2射出的离子速度v 0的大小;

⑵若打在照相底片上的离子在偏转电场中沿速度v 0方向飞行的距离为x ,求出x 与离子质量

m 之间的关系式(用E 0、B 0、E 、q 、m 、L 示)。

17.(18分)(2010?山东)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量+q 、重力不计的带电粒子,以初速度v 1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求 (1)粒子第一次经过电场的过程中电场力所做的功W 1. (2)粒子第n 次经过电场时电场强度的大小E n . (3)粒子第n 次经过电场所用的时间t n .

(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).

+ +

+ S 1

S 2 E 0

B 0

E

L

x

v 0

速度选择器

D

如图所示,电源电动势015E V =内阻01r =Ω,电阻1230,60R R =Ω=Ω。间距

0.2d m =的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度1B T =的匀强磁场。闭合开关S ,板间电场视为匀强电场,将一带正电的小球以初速度0.1/m s υ=沿

两板间中线水平射入板间。设滑动变阻器接入电路的阻值为1R ,忽略空气对小球的作用,取2

10/g m s =。

(1) 当129R =Ω时,电阻2R 消耗的电功率是多大?

(2) 若小球进入板间做匀速度圆周运动并与板相碰,碰时速度与初速度的夹角为60?,则1R 是多少?

19、(19分)如图,与水平面成45°角的平面MN 将空间分成Ⅰ和Ⅱ两个区域.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从平面MN 上的P 0点水平向右射入Ⅰ区.粒子在Ⅰ区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在Ⅱ区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里.求粒子首次从Ⅱ区离开时到出发点P 0的距离.粒子的重力可以忽略.

利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要应用。

如图所示的矩形区域ACDG (AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集。整个装置内部为真空。 已知被加速的两种正离子的质量分别是

1

m 和

2

m (

1m >

2

m ),电荷量均为q 。加速电场的电

势差为U ,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。 (1)求质量为

1

m 的离子进入磁场时的速率

1

v ;

(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;

(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离。

设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处,离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场。为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度。

21.(16分)如图所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里。一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出。

⑴求电场强度的大小和方向。

⑵若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 0/2时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。

⑶若仅撤去电场,带电粒子仍从O 点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。

狭缝G D

22.(18分)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图Ⅰ、Ⅱ两处的条形均强磁场区边界竖直,相距为L,磁场方向相反且垂直干扰面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间

电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角

(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平

方向夹角也为,求B0及粒子在Ⅰ区运动的时间t0

(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h

(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件

(4)若,且已保证了粒子能从Ⅱ区右边界射出。为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B1、B2、L1、、L2、之间应满足的关系式。

23、(2011广东理综·35)(18分)如图19(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。

⑴已知粒子从外圆上以速度υ1射出,求粒子在A点的初速度υ0的大小

⑵若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度υ2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间

⑶在图19(b)中,若粒子从A点进入磁场,速度大小为υ3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?

24.(20分)如图所示:正方形绝缘光滑水平台面WXYZ边长l=1.8m,距地面h=0.8m。平行

板电容器的极板CD间距d=0.1m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相

交处有一小孔。电容器外的台面区域内有磁感应强度B=1T、方向竖直向上的匀强磁场。电

荷量q=5×10-13C的微粒静止于W处,在CD间加上恒定电压U=2.5V,板间微粒经电场加速后

由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面。在微粒离开

台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之

相遇。假定微粒在真空中运动、极板间电场视为匀强电场,滑块视为质点,滑块与地面间的

动摩擦因数 =0.2,取g=10m/s2

(1)求微粒在极板间所受电场力的大小并说明两板的极性;

(2)求由XY边界离开台面的微粒的质量范围;

(3)若微粒质量m o=1×10-13kg,求滑块开始运动时所获得的速度。

25.(18分)

如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,

在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为R

5

3

。现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。

A

X Y

Z

W

C D

d

B

h

l

26.(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1

S 、

2

S ,

两极板间电压的变化规律如图乙所示,正反向电压的大小均为0

U ,周期为

T 。在0t =时

刻将一个质量为m 、电量为q -(0q >)的粒子由

1

S 静止释放,粒子在电场力的作用下向

右运动,在0

2T t =

时刻通过2S 垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外

的电场)

(1)求粒子到达

2

S 时的速度大小v 和极板距离d (2)为使粒子不与极板相撞,求磁感应

强度的大小应满足的条件。

(3)若已保证了粒子未与极板相撞,为使粒子在

3t T =时刻再次到达

2

S ,且速度恰好为

零,求该过程中粒子在磁场内运动的时间和磁感强度的大小

27.(20分)对铀235的进一步研究在核能的开发和利用中具有重要意义。如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直与磁场方向进入磁感应强度为B 的均强磁场中,做半径为R 的匀速圆周运动,离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流I 。不考虑离子重力及离子间的相互作用。 (1)求加速电场的电压U ;

(2)求出在离子被收集的过程中任意间t 内收集到离子的质量M ;

(3)实际上加速电压的大小会在U±ΔU 范围内微小变化。若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,U

U

?应小于多少?(结果用百分数表示,保留两位有效数字)

28.(20分)如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴。调节电源电压至

U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂

直打在下板的M 点。

(1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;

(3)现保持喷口方向不变,使其竖直下移到两板中间的位置。为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ',则B '的大小为多少?

S 2

S 1 U

B

A

29.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外的匀强磁场。一束比荷(电荷量与质量之比)均为1

k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线为O ′O 进入

两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板。重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间相互作用。求:

(1)电场强度E 的大小; (2)磁感应强度B 的大小;

(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离。

30.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q ( q > 0)、质最为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O '。球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(2/0πθ<<)。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。重力加速度为g 。

O ’ 金属极板

+ + + + + + - - - - - - + + - - M N Q

P

2d 3d

金属极板

带电 颗粒

发射源

l 收 集 板

O

31.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与

AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该

匀强磁场的磁感强度B 的大小.

32..如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L ,ab 间和

bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 和2B 。质量为m ,带电量为q

的粒子沿垂直于界面a 的方向射入磁场区域,不计重力,为使粒子能从界面c 射出磁场,粒子的初速度大小应满足什么条件?

33.如图所示,PR 是一长为L =0.64m 的绝缘平板,固定在水平地面上,挡板R 固定在平板的右端。整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一垂直于纸面向里的匀强磁场,磁场的宽度d =0.32m.一个质量m =0.50×10-3kg 、带电荷量为q =5.0×10-2C 的小物体,从板的P 端由静止开始向右做匀加速运动,从D 点进入磁场后恰能做匀速直线运动.当物体碰到挡板R 后被弹回,若在碰撞瞬间撤去电场(不计撤去电场对原磁场的影响),物体返回时在磁场中仍作匀速运动,离开磁场后做减速运动,停在C 点,PC=L /4.若物体与平板间的动摩擦因数μ=0.20,g 取10m/s 2.

⑴判断电场的方向及物体带正电还是带正电;

⑵求磁感应强度B 的大小;

⑶求物体与挡板碰撞过程中损失的机械能.

A

C

最新文件仅供参考已改成word文本。方便更改

电磁场金典高考试题专题训练详细答案

电磁场金典高考试题专题训练详细答案 1、(2007山东25 18分)飞行时间质谱仪可以对气体分子进行分析。如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的初速度。 (1)当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2,使离子到达探测器。请导出离子的全部飞行时间与比荷K (K=ne/m )的关系式。 (2)去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁场,磁感应强度B ,若进入a 、b 间所有离子质量均为m ,要使所有的离子均能通过控制区从右侧飞出,a 、b 间的加速电压U 1至少为多少? (1)由动能定理:neU1=1/2mv2 n 价正离子在a 、b 间的加速度a1=neU1/md 在a 、b 间运动的时间t1=v/a1=1 2neU m d 在MN 间运动的时间:t2=L/v 离子到达探测器的时间:t =t1+t2= 1 22KU L d (2)假定n 价正离子在磁场中向N 板偏转,洛仑兹力充当向心力,设轨迹半径为R ,由牛顿第二定律nevB =mv2/R 离子刚好从N 板右侧边缘穿出时,由几何关系:R2=L2+(R -L/2)2 由以上各式得:U1=25neL2B2/32m 当n =1时U1取最小值Umin =25eL2B2/32m 2、(2008山东25 18分)两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0,两板间距h=10π2mE 0qB 02 (l)求位子在0~t 0时间内的位移大小与极板间距h 的比值。 (2)求粒子在极板间做圆周运动的最大半径(用h 表示)。 (3)若板间电场强度E 随时间的变化仍如图l 所示,磁场的变化改为如图3所示.试画出粒子在板间运动的轨迹图(不必写计算过程)。 解法一:( l )设粒子在0~t0时间内运动的位移大小为s1

高三物理《电场和磁场》测试题及答案.doc

高三物理《电场和磁场》测试题及答案 一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的 或不答的得0分) 1. 一个电子穿过某一空间而未发生偏转,则此空间( ) A.一定不存在磁场 B.可能只存在电场 C.可能存在方向重合的电场和磁场 D.可能存在正交的磁场和电场 2. 据报道,我国第21次南极科考队于2005年在南极考查时观察到了 美丽的极光,极光是由来自太阳的高能量带电粒子流高速冲进高空稀 薄大气层时,被地球磁场俘获的,从而改变原有运动方向,向两极做 螺旋运动,如图1所示,这些高能粒子在运动过程中与大气分子或原子剧烈碰撞或摩擦从而激发大气分子或原子,使其发出有一定特征的各种颜色的光,由于地磁场的存在,使多数宇宙粒子不能达到地面而向人烟稀少的两极偏移,为地球生命的诞生和维持提供了天然的屏障,科学家发现并证实,向两极做螺旋运动的这些高能粒子的旋转半径是不断减少的,这主要与下列哪些因素有关( ) A.洛伦兹力对粒子做负功,使其动能减小 B.空气阻力做负功,使其动能减小 C.向南北两极磁感应强度不断增强 D.太阳对粒子的引力做负功 3..一个质子在匀强磁场和匀强电场中运动时,动能保持不变,已知磁场方向水平向右,则质子的运动方向和电场方向可能是(质子的重力不计)( ) A.质子向右运动,电场方向竖直向上 B.质子向右运动,电场方向竖直向下 C.质子向上运动,电场方向垂直纸面向里 D.质子向上运动,电场方向垂直面向外 4. 如图2所示,一带电粒子以水平初速度0v (0E v B <)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为1W ;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度0v 穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为2W ,比较1W 和2W ,有( ) A.一定是12W W > B.一定是12W W = C.一定是1W W < D.可能是1W W <,也可能是12W W >

(完整版)高中高考物理专题复习专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 山东 贾玉兵 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

磁场高考试题汇编

2016年磁场高考试题汇编 一、选择题 1.(全国新课标I 卷,15)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( ) A. 11 B. 12 C. 121 D. 144 【答案】D 【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得: 21 02qU mv =- 得 2qU v m = ① 在磁场中应满足 2 v qvB m r = ② 由题意, 由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同. 由①②式联立求解得 匀速圆周运动的半径12mU r B q = ,由于加速电压不变, 故 1212212111 r B m q r B m q =??= 其中211212B B q q ==,,可得1 2 1 144m m =

故一价正离子与质子的质量比约为144 2.(全国新课标II 卷,18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁 场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔.筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30?角.当筒转过90?时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为 A . 3B ω B . 2B ω C . B ω D . 2B ω 【答案】A 【解析】如图所示,由几何关系可知粒子的运动轨迹圆心为'O ,''30MO N ∠= 由粒子在磁场中的运动规律可知 2 2πF m r T ?? = ??? 向 ① =F F qvB =向合 ② 由①②得2m T Bq π= 即比荷2q m BT π = ③ 由圆周运动与几何关系可知

2019届高考物理专题三电场和磁场18年真题汇编

考点十一 磁场 1.(2018·全国卷II ·T20)如图,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。已知a 、b 两点的磁感应强度大小分别为13B 0和1 2 B 0,方向也垂直于纸面向外。则( ) A.流经L 1的电流在b 点产生的磁感应强度大小为 0127 B B.流经L 1的电流在a 点产生的磁感应强度大小为0121 B C.流经L 2的电流在b 点产生的磁感应强度大小为01 12B D.流经L 2的电流在a 点产生的磁感应强度大小为07 12 B 【命题意图】本题意在考查右手螺旋定则的应用和磁场叠加的规律。 【解析】选A 、C 。设L 1在a 、b 两点产生的磁感应强度大小为B 1,设L 2在a 、b 两点产生的磁感应强度大小为B 2,根据右手螺旋定则,结合题意B 0-(B 1+B 2)=13B 0,B 0+B 2-B 1=1 2 B 0, 联立可得B 1= 712B 0,B 2=1 12 B 0,选项A 、 C 正确。 2.(2018·北京高考·T6)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定 初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是 ( ) A.磁场和电场的方向 B.磁场和电场的强弱 C.粒子的电性和电量 D.粒子入射时的速度 【解析】选C 。由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB ,则v= E B ,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB 可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C 。 3.(2018·全国卷I ·T25) 如图,在y>0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。一个氕核11H 和一个氘核21H 先后从y 轴上y=h 点以相同的动能射出,速度方向沿x 轴正方向。已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场。11H 的质量为m ,电荷量为q 。不计重力。求

高考物理压轴题电磁场汇编

1、在半径为R 的半圆形区域中有一匀强磁场,磁 场的方向垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁 场 ( 不 计 重 力 影 响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O /Q =R / 。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- A O O

2、(17分) 如图所示,在xOy 平面的第一象限有一匀 强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度 的大小为B ,方向垂直于纸面向外。有一质量为m , 带有电荷量+q 的质点由电场左侧平行于x 轴射入 电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin = ; 由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移 221tan 2t m qE d h ??== φ,由以上各式可得 3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐 标原点O 离开磁场。粒子在磁场中的运动轨迹与y 轴交于M 点。已知OP=l ,l OQ 32=。不计重力。求

高考考前冲刺电场与磁场计算题

1页 y x 0y A C B D 高考考前冲刺——电场与磁场计算题 2008 1.如图所示,A 和B 是两个相同的带电小球,可视为质点,质量均为m ,电荷量均为q ,A 固定在绝缘地面上,B 放在它的正上方很远距离的一块绝缘板上,现手持绝缘板使B 从静止起以恒定的加速度a (a

电场、磁场及复合场大题 高考复习

专题五 电场、磁场及复合场 1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠= ,粒子重力可忽略不计。求: (1)粒子在电场中加速的时间; (2)匀强磁场的磁感应强度B 的大小。 2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.m qB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。[来源学科网Z|X|X|K] (1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0; (2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。 3.如图,直线MN 上方有平行于纸面且与MN 成45°的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。若该粒子从O 点出发记为第一次经

电场、磁场和电磁感应高考题目

29.(16分)如图所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A /之间会产生电热差,这种现象称为霍尔效应,实验表明,当磁场不太强时,电热差U 、电流I 和B 的关系为:d IB K U =,式中的比例系数K 称为霍尔系数。 霍尔效应可解释如下:外部磁场的洛仑兹力运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛仓兹力方向相反的静电力,当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。 设电流I 是由电子定向流动形成的,电子的平均定向速度为v ,电量为e 回答下列问题: (1)达到稳定状态时,导体板上侧面A 的电势_____下侧面A 的电势(填高于、低于或等于) (2)电子所受的洛仑兹力的大小为______。 (3)当导体板上下两侧之间的电差为U 时,电子所受静电力的大小为_____。 (4)由静电力和洛仑兹力平衡的条件,证明霍尔系数为ne K 1 =其中h 代表导体板单位体积中电子的个数。 解析:(1)低于 (2)evB (3))(evB h U e 或 (4)电子受到横向静电力与洛仑兹力的作用,两力平衡,有 evB h U e 得:U=hvB ……① 通过导体的电流密度I=nev ·d ·h ……② 由 d IB K U =,有 d h d neuB k huB ??? = 得 ne K 1 = ……③ 30.(18分)如图所示,直角三角形的斜边倾角为30°,底边BC 长为2L ,处在水平位置,斜边AC 是光滑绝缘的,在底边中点O 处放置一正电荷Q ,一个质量为m ,电量为q 的带负电的质点从斜面顶端A 沿斜边滑下,滑到斜边上的垂足D 时速度为v 。 (将(1),(2)题正确选项前的标号填在题后括号内) (1)在质点的从D 点向C 点运动的过程中不发生变化的是 ①动能 ②电势能与重力势能之和 ③动能与重力势能之和 ④动能、电势能、热能三者之和 ( ) (2)质点从D 点向C 点的运动是 A 、匀加速运动 B 、匀减速运动 C 、先匀加速后匀减速的运动 D 、加速度随时间变化的运动 ( )

2018高考物理磁场大题汇编

2018高考物理磁场大题汇编 十一章磁场 题组一 一、选择题 1.(贵州省黔西一中2015届高三第三次月考试题)如图所示,一束正离子从s点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E和磁场B的方向可能是(不计离子重力及其间相互作用力) () A.E向下,B向上 B.E向下,B向下 C.E向上,B向下 D.E向上,B向上 答案1.答案A,解析:离子打在第Ⅲ象限,相对于原点O向下运动和向左运动,所以E向下,B向上。所以A正确。

2.(黑龙江哈九中2015届高三上学期期末考试物理试题全解全析)等离子气流由左方连续以v0射入Pl和P2两板间的匀强磁场中,ab直导线与Pl、P2相连接,线圈A与直导线cd 连接.线圈A内有随图乙所示的变化磁场.且磁场B的正方向规定为向左,如图甲所示,则下列说法正确的是 () A.0~ls内ab、cd导线互相排斥 B.1~2s内ab、cd导线互相排斥 C.2~3s内ab、cd导线互相排斥 D.3~4s内ab、cd导线互相排斥 【答案】CD; 【解析】等离子气流由左方连续以v0射入Pl和P2两板间的匀强磁场中时,由于洛伦兹力作用正离子向上偏转,负离子向下偏转,使得直导线ab中产生了向下的电流.在0~ls 内线圈A内有向右的磁场且正在减小,根据楞次定律故线圈中产生了感应电流的磁场向右,由安培定则,cd导线中产生了向下的电流,从而导致ab、cd导线互相吸引;同理可以判

断1~2s内ab、cd导线互相吸引,2~3s内ab、cd导线互相排斥,3~4s内ab、cd导线互相排斥. 【考点】磁场. 3.(黑龙江哈九中2015届高三上学期期末考试物理试题全解全析)如图,一个质量为m、带电量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中。现给圆环一个水平向右的初速度v0,在以后的运动中下列说法正确的是 () A.圆环可能做匀减速运动 B.圆环不可能做匀速直线运动 C.圆环克服摩擦力所做的功一定为 D.圆环克服摩擦力所做的功可能为 【答案】D; 【解析】带电圆环向右滑动过程中,受到向上的洛伦兹力,

高考物理压轴题电磁场汇编

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。一质量为m ,带有电量q 的粒子以一 定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁 场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高考物理专题复习《电场与磁场》典型题精选

专题三 电场与磁场 第一讲电场的基本性质 考点一 电场强度的理解与计算 1.[考查点电荷的电场强度、电场的叠加] 如图所示,直角坐标系中x 轴上在x =-r 处固定有带电荷量为+9Q 的正点电荷,在x =r 处固定有带电荷量为-Q 的负点电荷,y 轴上a 、b 两点的坐标分别为y a =r 和y b =-r ,c 、d 、e 点都在x 轴上,d 点的坐标为x d =2r ,r E e B .a 、b 两点的电势相等 C .d 点场强为零 D .a 、b 两点的场强相同 解析:选D cd 点间距与de 点间距相等,根据电场线的分布情况知,c 处电场线密,场强大,故A 正确;由电场分布的对称性可知,a 、b 两点的电势相 等,故B 正确;+9Q 在d 点产生的场强大小E 1=k 9Q (3r )2=k Q r 2,方向水平向右,-Q 在d 点产生的场强大小E 2=k Q r 2,方向水平向左,所以由电场的叠加原理可 知,d 点场强为零,故C 正确;根据电场线分布的对称性可知,a 、b 两点场强的大小相等,但方向不同,则a 、b 两点的场强不相同,故D 错误。 2.[考查匀强电场的电场强度计算] 如图所示,梯形abdc 位于某匀强电场所在平面内,两 底角分别为60°、30°,cd =2ab =4 cm ,已知a 、b 两点的电 势分别为4 V 、0,将电荷量q =1.6×10-3 C 的正电荷由a 点移动到c 点,克服电场力做功6.4×10-3 J ,则下列关于电场强度的说法中正确的是( ) A .垂直ab 向上,大小为400 V/m

电场磁场高考题精选

电场磁场高考题精选 1(2009·北京)某静电场的电场线分布如图所示,图中P、Q两点的电场强度的大小分别为E P和E Q,电势分别为φP和φQ,则( ) >E Q,φP>φQ >E Q,φP<φQ φQ 0)的小物块在与金属板A相距l处静止,若某 一时刻在金属板A、B间加一电压U AB=-3μmgd 2q,小物块与金属板只发生了一次碰撞,碰 撞后电荷量变为-1 2q,并以与碰撞前大小相等的速度反方向弹回.已知小物块与绝缘平板间 的动摩擦因数为μ,若不计小物块电荷量对电场的影响和碰撞时间.则 (1)小物块与金属板A碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置?

高考物理新电磁学知识点之磁场真题汇编及答案解析(1)

高考物理新电磁学知识点之磁场真题汇编及答案解析(1) 一、选择题 1.航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间() A.两个金属环都向左运动 B.两个金属环都向右运动 C.从左侧向右看,铝环中感应电流沿顺时针方向 D.铜环受到的安培力小于铝环受到的安培力 2.科学实验证明,足够长通电直导线周围某点的磁感应强度大小 I B k l ,式中常量 k>0,I为电流强度,l为该点与导线的距离。如图所示,两根足够长平行直导线分别通有电流3I和I(方向已在图中标出),其中a、b为两根足够长直导线连线的三等分点,O为两根足够长直导线连线的中点,下列说法正确的是( ) A.a点和b点的磁感应强度方向相同 B.a点的磁感应强度比O点的磁感应强度小 C.b点的磁感应强度比O点的磁感应强度大 D.a点和b点的磁感应强度大小之比为5:7 3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是() A.M带正电,N带负电 B.M的速率大于N的速率 C.洛伦磁力对M、N做正功 D.M的运行时间大于N的运行时间 4.对磁感应强度的理解,下列说法错误的是() A.磁感应强度与磁场力F成正比,与检验电流元IL成反比 B.磁感应强度的方向也就是该处磁感线的切线方向

C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关 D.磁感线越密,磁感应强度越大 5.如图甲所示,静止在水平面上的等边三角形金属线框,匝数n=20,总电阻R=2.5Ω,边长L=0.3m,处在两个半径均为r=0.1m的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合,磁感应强度B1垂直水平面向外;B2垂直水平面向里,B1、B2随时间t的变化如图乙所示,线框一直处于静止状态,计算过程中取π3 ,下列说法正确的是() A.线框具有向左的运动趋势 B.t=0时刻穿过线框的磁通量为0.5Wb C.t=0.4s时刻线框中感应电动势为1.5V D.0-0.6s内通过线框横截面电荷量为0.018C 6.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平 面(未画出)。一群比荷为q m 的负离子以相同速率v0(较大),由P点在纸平面内向不同 方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是() A.离子在磁场中的运动轨迹半径可能不相等 B.由Q点飞出的离子在磁场中运动的时间最长 C.离子在磁场中运动时间一定相等 D.沿PQ方向射入的离子飞出时偏转角最大 7.如图所示,回旋加速器是用来加速带电粒子使它获得很大动能的装置。其核心部分是两个D形金属盒,置于匀强磁场中,两盒分别与高频电源相连。则下列说法正确的是 () A.带电粒子从磁场中获得能量 B.带电粒子加速所获得的最大动能与加速电压的大小有关

高考物理试卷分类汇编物理带电粒子在磁场中的运动(及答案)含解析

高考物理试卷分类汇编物理带电粒子在磁场中的运动(及答案)含解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为 510/q C kg m =的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求: (1)两金属极板间的电压U 是多大? (2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置. (3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件. 【答案】(1)100V (2)t=5210s π-?,射出点在AB 间离O 点0.042m (3)5010s 3 T π -

可能从AB间射出 如图,由几何关系可得临界时 要不从AB边界射出,应满足 得 考点:本题考查带电粒子在磁场中的运动 2.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r。一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。己知粒子运动轨迹经过圆心O,不计重力。求 (1)粒子在磁场中做圆周运动的半径; (2)粒子第一次在圆形区域内运动所用的时间。 【答案】(1)(2) 【解析】 【分析】 本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。 【详解】 (1)找圆心,画轨迹,求半径。

高考物理压轴题电磁场汇编

高考物理压轴题电磁场 汇编 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方 向垂直于纸面,磁感应强度为B 。一质量为m ,带有 电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速 度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O /Q =R /。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-=+- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电 场,电场的方向平行于y 轴向下;在x 轴和第四象限的射 线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速 度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁 /

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 例2.(调研)电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0υ=80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲 为它的示意图。它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 例5.(高考题)如图甲所示,图的右侧MN 为一竖直放置的荧光屏, O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的 左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的 直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作 用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相 同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 =,求它的横坐标的数值。 例6.如图所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: v 0 d a b c · e B B E L d O y l N x A E O O O ′ M 甲 乙

高考磁场题整理(精选.)

1、在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求: (1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t 2、图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里.图中右边有一半径为R、圆心为O 的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ,不计重力.求: (1)离子速度的大小. (2)离子的质量.

3、(2010全国卷Ⅰ)26.如图,在03x a ≤≤区域内存在与xy 平面垂直的匀强磁场,磁 感应强度的大小为B 。在t=0 时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知沿y 轴正方向发射的粒子在t=0t 时刻刚好从磁场边界上P(3a ,a)点离开磁场。求: (1)粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m; (2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围; (3)从粒子发射到全部粒子离开磁场所用的时间. 【答案】⑴233R a = 0 23q m Bt π = 4.(21分)图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为0B ,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3 4 a 。求离子乙的质量。

相关文档
最新文档