电化学发光检测项目及其临床应用

电化学发光检测项目及其临床应用
电化学发光检测项目及其临床应用

电化学发光检测项目及其临床应用

一、甲状腺功能

甲腺原氨酸(T3, triiodothyronine)

T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(NTI),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。

甲状腺素(T4, thyroxine)

T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。

游离T3(FT3- free triiodothyronine)

三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T-upt ake,TBG)。

游离T4(FT4- free thyroxine)

四碘甲腺原氨酸(T4)是甲状腺生理调节系统的一部分。对总代谢有作用,绝大多数的T4与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT4是T4的生理活性形式。fT4测定是临床常规诊断的重要部分。当怀疑甲状腺功能紊乱时,fT4和TSH常常一起测定。fT4也适合用作甲状腺抑制治疗的监测手段。fT4测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T-uptake,TBG)。

甲状腺素结合力测定(T-Uptake)

甲状腺素(T4)是甲状腺调节系统的组成部分,参于机体的整体代谢活动。测定甲状腺素含量是鉴别甲状腺功能正常与否的重要实验室手段。由于甲状腺素的大部分与其运载蛋白质(TBG,前白蛋白和白蛋白)结合,因此仅在血清甲状腺素结合力正常的情况下,测定总甲状腺素才能提供有价值的信息。血中游离的甲状腺素与结合的甲状腺素

处于平衡状态。尽管游离的甲状腺素可能在正常范围,但TBG含量的变化仍可导致总甲状腺素测定值的改变。甲状腺素结合力(亦称甲状腺素吸收量)测定可了解甲状腺素的结合位点数(测定结果称为甲状腺素结合指数,TBI)。总甲状腺素T4和TBI的商得出的游离甲状腺素指数(fT4I),反映了TBG含量以及甲状腺素含量这两种变化因素。

促甲状腺激素(TSH, Thyrotropin)

TSH是一种分子量为30kD的蛋白质,由二种亚单位组成。β亚单位携带TSH特异的免疫学和生物学信息;α亚单位携带种族特异性信息,与LH、FSH和hCG的α链上的某些氨基酸组成的肽段有一致性。TSH在垂体前叶的特异性嗜碱细胞内生成。垂体释放TSH是机体发挥甲状腺素生理作用的中枢调节机制,刺激甲状腺素的生成和分泌,并有增生效应。TSH检测是查明甲状腺功能的初筛试验。游离甲状腺浓度的微小变化就会带来TSH浓度向反方向的显著调整。因此,TSH是测试甲状腺攻能的非常敏感的特异性参数,特别适合于早期检测或排除下丘脑-垂体-甲状腺中枢调节环路的功能紊乱。

甲状腺球蛋白(Tg,Thyroglobulin)

甲状腺球蛋白属糖蛋白,分子量约660KD,由二条蛋白链构成。甲状腺球蛋白绝大多数由甲状腺细胞合成并释放进入甲状腺滤泡的残腔中。TSH,甲状腺体内碘缺乏和甲状腺刺激性免疫球蛋白等因素可刺激甲状腺球蛋白的产生。甲状腺球蛋白在外周甲状腺激素T3和T4的合成中起决定作用。它含有约130个酪氨酸残基,在甲状腺过氧化物酶和碘的存在下,一部分可碘化成单-和双-碘酪氨酸(MIT和DIT),并可进一步偶联成T3和T4。甲状腺球蛋白在甲状腺细胞中合成并运输到滤泡的过程中,少量可进入血液。因此,在正常人的血液中可有低浓度的甲状腺球蛋白存在。有低浓度的甲状腺球蛋白存在提示有甲状腺组织的存在。甲状腺全切除术后就不再有甲状腺球蛋白可测出。在先天性甲状腺功能低下患者中,检测甲状腺球蛋白可鉴别甲状腺完全缺损、甲状腺发育不全或其它病理状况。另一方面,甲状腺滤泡壁的损伤可导致大量的甲状腺球蛋白进入血液,因此,甲状腺球蛋白也被认为是甲状腺体形态完整性的特殊标志物。甲状腺球蛋白测定也可用于鉴别亚急性甲状腺炎和假的甲状腺毒症。后者,因TSH的抑制,甲状腺球蛋白含量低。抗甲状腺球蛋白抗体的存在可导致甲状腺球蛋白测定的错误结果。

抗甲状腺过氧化物酶抗体(anti-TPO,Anti-thyroid peroxidase antibody)

甲状腺过氧化物酶(TPO)存在于甲状腺细胞的微粒体中,并表达在细胞的表面。该酶与甲状腺球蛋白(Tg)协同作用将L-酪氨酸碘化,并将一碘酪氨酸和二碘酪氨酸联接成为甲状腺激素T4、T3和rT3。TPO是一潜在的自身抗原。自身免疫性疾病引起的数种甲状腺炎常伴有血中TPO抗体滴度升高。目前仍可经常见到的“抗微粒体抗体”这一名词,从临床角度看,可认为是抗TPO抗体的同义词,因为TPO抗原发现较晚。但是检测方法不同,两者还是有区别的。尽管两种方法在临床诊断敏感性上可以相比较,但由于抗TPO抗体试验采用纯化的过氧化物酶作为抗原,所以在批间的重复性、临床特异性方面均优于抗“微粒体抗体”试验。抗TPO抗体滴度升高可见于90%的慢性桥本甲状腺炎以及70%的突眼性甲状腺肿患者。本试验与其他抗甲状腺抗体测定方法,如抗-TG,抗TSH受体抗体,同时测定可提高敏感性,但阴性不能排除自身免疫病的可能性。高滴

度抗体与疾病的程度无关系。随着病程的延长或是缓解期,抗体滴度可转阴。如在疾病的缓解期再度出现抗体,即有恶化的可能。

二、激素

硫酸脱氢雄甾酮(DHEA-S,Dehydroepiandrosterone sulfate)

DHEA-S属类固醇激素。测定DHEA-S是辅助诊断多毛症和女子男性化的重要手段,此外还可用于androgenisation、高催乳素血症、多囊性卵巢综合征的诊断和排除肾上腺皮质产生雄激素的肿瘤。从7岁起DHEA-S升高,30岁后开始又逐步下降。单纯的DHE A-S升高有临床意义。其它可导致DHEA-S过度产生的因素还有遗传性肾上腺皮质酶缺少、肾上腺皮质增生及产生雄激素的肿瘤。与睾酮一起,DHEA-S测定是了解多毛症患者体内雄激素水平是否升高的初筛试验中值得选择的方法。约84%的患多毛症妇女雄激素升高。该测定的主要目的是排除产生雄激素的肿瘤(来自于肾上腺皮质或卵巢)。在妇女此类肿瘤产生的DHEA-S高于700μg/dl。

睾酮(Testosterone)

检测女性体内睾酮含量有助于诊断雄激素综合征(AGS)、多囊性卵巢。当怀疑卵巢肿瘤、肾上腺肿瘤、肾上腺发育不良或卵巢功能不足时,也可检测睾酮。检测男性体内睾酮含量可用于诊断睾酮产生不足的疾病,如hypogonadism、雌激素治疗、染色体异常(如Klinefelter综合征)和肝硬化。

检测范围:0.069─52.00 nmol/l 或0.020-15.00 ng/ml

雌二醇(Estradiol-E2)

检测雌二醇可用于解释下丘脑-脑垂体-性腺调节功能紊乱、男子女性型乳房、产生雌激素型的卵巢和睾丸肿瘤和肾上腺皮质增生等。另外还可用于生育治疗中的疗效监测以及体外受孕中排卵时间的确定。

人类绒毛膜促性腺激素+β亚单位(Intact human chorionic gonadotropin+the β-subu nit)

检测HCG浓度可在受孕一周后诊断怀孕,在妊娠前三个月测定HCG特别重要,此期间HCG升高提示绒毛膜癌、葡萄胎、多胎妊娠;HCG升高还可见于生殖细胞、卵巢、膀胱、胰腺、胃、肺和肝脏肿瘤病人;含量降低提示流产、宫外孕、妊毒症、死胎。本试剂所用的特异性单克隆抗体可识别完整的HCG、HCG的"nicked”的结构、β核的片断和β亚单位。

促黄体生成激素(LH,Luteinizing hormone)

LH与卵泡刺激素(FSH)一样同属促性腺激素家族,二者协同调节和刺激性腺(卵巢和睾丸)的发育和功能。LH检测对查明下丘脑-垂体-卵巢系统的功能失常有作用。LH和FSH联合检测还可用于查明染色体异常的先天性的疾病(如特纳综合征)、多囊性卵巢(PCO)、闭经的病因、绝经综合征和疑有间质细胞发育不全。ElecsysLH测定方法采用二种LH特异的单克隆抗体,因此与FSH、TSH、hCG、hGH和hPL的交叉反应可忽略不计。

孕酮(Progesterone)

孕酮的浓度与黄体的生长与退化密切相关。在月经周期的卵泡期几乎测不出,在排卵前一天,孕酮浓度升高。在黄体期,孕酮的合成增加,在月经周期的后半期,孕酮的主要降解产物,孕烯二醇,从尿中排出。孕酮可以使子宫粘膜转变成腺体丰富的组织(分泌期)。孕酮测定用于生殖诊断,排卵期的检出和黄体期的估计。

泌乳素(Prolactin)

泌乳素的靶器官是乳腺,负责其成熟、分化。高浓度泌乳素对卵巢的类固醇生成和垂体促性腺激素的产生和分泌有抑制作用。在怀孕期,受雌激素和progesterone产物升高的影响,泌乳素含量升高,其对乳腺的刺激作用有利于产后哺乳。高泌乳素血症(男性和女性)是生殖紊乱的主要原因。泌乳素测定可诊断无排卵性月经周期。当怀疑乳腺癌和垂体肿瘤时,也可检测泌乳素含量。

促卵泡激素(FSH-Follicle stimulating hormone)

促卵泡激素与促黄体生成激素一样同属促性腺激素家族。二者协同调节和刺激性腺(卵巢和睾丸)的发育和功能。对于女性,该激素在下丘脑-垂体-卵巢调节环路中发挥作用,控制月经周期。FSH和LH从垂体的促性腺细胞中阵发性释放。血中的浓度由类固醇类激素通过下丘脑的负反馈机制控制。在卵巢中FSH和LH一起刺激卵泡的成长和成熟,进而刺激卵泡中雌激素的生物合成。FSH水平在月经周期的的中期呈现一高峰,尽管不如LH明显。由于卵巢功能的变化和雌激素水平的下降,绝经期FSH达到高水平。对于男性,FSH起诱导精原细胞发育的作用。FSH检测对查明下丘脑-垂体-卵巢系统的功能失常有作用。FSH和LH检测用于先天性的疾病,如染色体异常的先天性疾病、闭经(病因)、多囊性卵巢(PCO)和绝经期综合征等。男性低促性腺激素见于无精子症。

皮质醇(Cortisol)

皮质醇最重要的的生理机能是升高血糖,抗炎和免疫抑制作用。皮质醇的合成和分泌受下丘脑-垂体-肾上腺皮质轴的负反馈机制的调节。当皮质醇水平下降时,下丘脑分泌促肾上腺皮质激素释放激素(CRH),使垂体分泌促肾上腺皮质激素(ACTH),并由ACTH刺激肾上腺合成并分泌皮质醇。皮质醇本身对垂体和下丘脑起负反馈作用。另外,机体在应急状态下,皮质醇分泌增加。皮质醇在血中的含量呈现昼夜的周期性变化。在清晨含量达到最高峰(700nmol/l或25.4μg/dl),随后在白天含量逐渐下降,到夜间含量降到最低点,大约是峰值的一半。因此,在分析结果时,了解采血时间是很重要的。检测患者血中皮质醇的含量可用于诊断肾上腺、垂体和下丘脑机能紊乱与否。皮质醇含量增高见于库欣综合征,含量降低见于艾迪生病。在对上述疾病进行相应的地塞米松抑制治疗或激素替代治疗中,可利用皮质醇含量进行监测。

三、肿瘤标志

甲胎蛋白(AFP,α1-fetoprotein)

70~95%的原发性肝癌患者的AFP升高,越是晚期,AFP含量越高。但尚未发现AF P含量与肿瘤大小、恶性程度等有关系。AFP含量显著升高一般提示原发性肝细胞癌。在转移性肝癌中,AFP一般低于350-400IU/ml。AFP中度升高也常见于酒精性肝硬化、

急性肝炎以及HBsAg携带者。孕妇血清或羊水AFP升高提示胎儿脊柱裂,无脑症,食管at resia或多胎,AFP降低(结合孕妇年龄)提示未出生的婴儿有Down’s综合征的危险性.

癌胚抗原(CEA,Carcinoembryonic antigen)

在正常成人的血液中CEA很难测出。患有结肠腺癌的病人,CEA含量通常很高。而在20~50%的良性消化系统及肺部疾患中,CEA含量通常不超过10ng/ml。吸烟者也常见

CEA升高。CEA测定主要用于指导结肠癌治疗及随访。

CA125(Cancer Antigen 125)

CA125属肿瘤标志物,其升高可见于卵巢癌患者外,还可见于子宫内膜癌、乳房癌、胃肠道癌和其它恶性肿瘤。各种恶性肿瘤引起的腹水也可见CA125升高。CA125升高也可见于多种妇科良性疾病,如卵巢囊肿、子宫内膜病、宫颈炎及子宫肌瘤等。轻度升高可见于妊娠早期和其它良性疾病,如急、慢性胰腺炎、胃肠道疾病、肾功能衰竭、自身免疫病等。明显升高也可见于肝硬化、肝炎。尽管CA125是非特异的指标,却是迄今为止用于监测卵巢癌病人治疗效果、观察疾病发展的最重要指标。以65U/ml为cut-off值,Elecsys CA125的敏感性是79%,特异性是82%,如cut-off值设为150U/ml,则敏感性是69%,特异性是93%。

CA 15-3

CA15-3的测定可辅助乳腺癌病人的治疗监测。与其他临床和诊断措施相结合,CA15-3动态测定有助于II期和III期乳腺癌病人治疗后复发的早期发现;监测乳腺癌转移病人对治疗的反应性。

CA 19-9

CA19-9测定有助于胰腺癌(敏感性70-87%)的鉴别诊断和病情监测:测定值高低与肿瘤大小无关,但是血清CA19-9水平高于10000U/ml时,几乎均存在外周转移。CA19-9测定不能用于胰腺癌的早期发现。对于肝胆管癌,CA19-9测定值提供5 0-75%诊断敏感性。对于胃癌,建议做CA72-4和CEA联合检测。对于结、直肠癌,少数CEA阴性病例,CA19-9检测能起作用。由于粘蛋白主要从肝脏清除,某些患者轻微的胆汁郁积便可导致血清CA19-9水平明显升高。CA19-9升高也见于胃肠道和肝的多种良性和炎症病变。

CA 72-4

良性疾病:血清CA72-4升高可见于以下几种疾病:胰腺炎,肝硬化,肺病,风湿病,妇科病,卵巢良性疾病,卵巢囊肿,乳腺病和胃肠道良性功能紊乱等。与其它标志物相比,CA72-4最主要的优势是其对良性病变的极高诊断的特异性。胃癌:诊断敏感性为2 8-80%,通常为40-46%。而对良性胃肠疾病的诊断特异性达95%以上。CA72-4升高与疾病的分期有关系。外科手术后,CA72-4水平可迅速下降至正常值。如果肿瘤组织完全切除,CA72-4可持续维持在正常水平。在70%的复发病例中,CA72-4浓度首先升高,或在临床诊断为复发时也已升高。有研究结果提示,术前的CA72-4水平可作为预后判

断的参考值。卵巢癌:诊断敏感性为47-80%。对粘液样卵巢癌的诊断敏感性高于CA12 5。二指标结合起来可使首次诊断敏感性提高到73%(CA125单指标:60%);动态监测的诊断敏感性可提高到67%(CA125单指标:60%)。结直肠癌:诊断敏感性为20-41%。而对良性结肠疾病的诊断特异性是98%。完全切除后CA72-4可显著下降。当体内存留癌组织时CA72-4持续升高。CA72-4与CEA结合起来可使术后监测的诊断敏感性从78%提高到87%。

非小细胞肺癌相关抗原(CYFRA 21-1)

CYFRA21-1主要用于监测非小细胞肺癌(NSCLC)的病程。也可用于监测横纹肌浸润性膀胱癌的病程。CYFRA21-1与良性肺部疾病(肺炎,结核,慢性支气管炎,支气管哮喘,肺气肿)的鉴别特异性比较好。在良性的肝病和肾功能衰竭病人中偶见CYFRA21-1轻微升高(约10ng/ml)。肺部有不明的阴影,CYFRA21-1>30ng/ml提示存在原发性支气管癌的可能性。血中CYFRA21-1水平显著升高提示肿瘤已晚期或预后差。但CYFRA21-1

正常或轻微升高,不能排除肿瘤的存在。治疗效果好,CYFRA21-1的水平会很快下降或恢复到正常水平,如果CYFRA21-1值不变或轻度减低提示肿瘤没有完全去除,或有多发性肿块存在,及相应的疗效和预后。在疾病的发展过程中,CYFRA21-1值的变化常常早于临床症状和影像检查。

神经元特异性烯醇化酶(NSE,Neuron-specific enolase)

支气管癌:NSE被认为是监测小细胞支气管癌的首选标志物。而CYFRA21-1则适合于非小细胞支气管癌的监测。60-81%的小细胞支气管癌患者,NSE升高。NSE与转移部位或者是否为神经系统转移没关系,但与临床分期,即疾病的严重程度,有很好的相关性。化疗期间,首轮治疗开始后24-72小时内,由于肿瘤细胞的分解,NSE呈一过性升高。一周或首轮治疗结束后,NSE含量迅速降低。而治疗无反应者,血中NSE持续升高或不能降到参考范围以下。在缓解期,80-96%的患者NSE含量正常。如NSE升高,提示复发。因此,NSE是监测小细胞支气管癌疗效与病程的有效标志物,并能提供有价值的预后信息:诊断敏感性为93%,阳性预测值为92%。神经母细胞瘤:62%患病的儿童血清NSE水平高于30ng/ml。病理性NSE升高水平与疾病的临床分期有显著的相关性。反之,NSE升高不明显,则预后好。胺前体摄取脱羧细胞瘤(Apudoma):有34%的患者血清NSE升高(>12.5ng/ml)。精原细胞瘤:有68-73%的病人血清NSE水平明显升高。含量与病程有关系。其它肿瘤:22%的非肺源性恶性疾病患者NSE高于25ng/ml。脑肿瘤,如神经胶质瘤、脑膜瘤、神经纤维瘤和神经鞘瘤等,偶尔可伴有NSE升高。原发性脑瘤或脑转移性瘤、恶性黒素瘤和褐色素细胞瘤,CNS中NSE升高。有报道14%的原位性和46%的转移性肾肿瘤患者中,NSE升高,并与病变程度有关系。良性病变:血清N SE升高(<12ng/ml)见于良性肺病和中枢系统疾病。主要在CSF中升高者可见于脑血管脑膜炎、弥散性脑炎、脊髓小脑退化、脑缺血、脑梗塞、脑内血肿、蛛网膜下出血、头部损伤、炎症性脑疾病、器质性癫痫、精神分裂症和克罗伊茨费尔特-雅各布综合征等。总前列腺特异性抗原(total Prostate-specific antigen ,tPSA)

血清tPSA升高一般提示前列腺存在病变(前列腺炎、良性增生或癌症)。由于PSA 也存在于尿道旁和肛门旁腺体,及乳腺组织或乳腺癌,因此,女性血清中也可测出低水平的PSA。前列腺切除后仍可测出PSA。PSA测定主要用于监测前列腺癌患者或接受激素治疗患者的病情及疗效。放疗、激素治疗或外科手术切除前列腺后,PSA快速下降到可测水平以下,提示疗效好。前列腺炎或前列腺创伤(例如尿潴留、直肠检查后、膀胱镜、结肠镜、经尿路活检、激光处理等)可导致PSA不同程度、持续时间不一的升高。游离前列腺特异性抗原(Free prostate-specific antigen , fPSA)

单项的血清总PSA(tPSA)浓度测定不能明确鉴别前列腺癌(PCA)和良性的前列腺增生,因在浓度2-20ng/ml范围内,二组病人有交叉。fPSA和tPSA二者结合起来检测,得出fPSA/tPSA比值有利于鉴别此二组病人。fPSA检测主要适用于未经治疗、tPS A值为2-20ng/ml病人,通过fPSA/tPSA比值达到鉴别前列腺癌或良性的前列腺增生的目的。因此,只有在这些病人中,并且一定与tPSA同时平行测定,fPSA才有诊断价值。等摩尔的tPSA检测是获取可靠fPSA/tPSA比值的前提。tPSA值低于2ng/ml,或者高于20ng/ml时,fPSA/tPSA比值不能用于鉴别前列腺癌或良性的前列腺增生。采用不同厂家的试剂联合检测fPSA和tPSA会导致错误的结果,因为tPSA检测可能采用不同的标准化方法,或者检测fPSA的程度有所不同。

四、心肌标志

肌钙蛋白T(Troponin T, TnT)

心肌来源的肌钙蛋白T(cTnT,分子量39.7kD)是心肌损伤特异的、灵敏的标志。在急性心肌梗死(AMI)、发病后3-4小时,血清cTnT含量升高,并可持续14天之久。检测血清cTnT对心肌缺血性损伤,如AMI和心肌炎的诊断,以及监测不稳定型心绞痛的病程和危险性评价均有重要意义。在30%肾功能衰竭的病人血清中,cTnT可升高。临床资料表明:该类病人患继发性心血管并发症的危险性升高。Elecsys肌钙蛋白T采用两种心肌特异的单克隆抗体.用重组人cTnT作为参考标准品,为第3代TnT测试。

肌红蛋白(Myoglobin)

肌红蛋白是一种细胞浆蛋白质,存在于心脏和骨骼的横纹肌中,具有转运氧气和贮存氧气的功能,分子量17.8kD,由于分子量较小,当肌细胞受损时,肌红蛋白很快被释放进入血循环中。检测血清肌红蛋白是诊断急性心肌梗死,早期再度梗死以及观察溶栓治疗后成功再灌注的重要指标。症状发生后约两小时,肌红蛋白水平即可升高,因此肌红蛋白被认为是心肌梗死很早期的标志物。梗死发生后4-12小时,肌红蛋白的血浓度达到最高值。24小时后恢复到正常值水平。肌红蛋白升高也可见于骨骼肌损伤和肾功能极度衰竭的病人。

肌酸磷酸激酶-MB同功酶(CK-MB)

检测血清CK-MB质量是诊断心肌缺血性损伤的重要指标,如急性心肌梗死、心肌炎等。症状发生3-8小时就可在血中测到CK-MB,并可根据病情维持可测水平至较长一段时间。其它一些临床情况,如横纹肌溶解和中风,CK-MB也可升高。就实验室诊断

而言,检测总CK、TnT和/或肌红蛋白就能够对以上疾病作鉴别诊断。CK-MB检测的敏感度取决于标本采集的时间,因此,系列动态检测具有实际意义。

五、骨标志

N-MID?骨钙素( N-MID?Osteocalcin)

血清(或血浆)中骨钙素的含量与各种骨代谢紊乱中的骨转换率有关。骨钙素含量异常多见于骨质疏松、原发性或继发性甲状旁腺功能亢进以及Paget病等疾病中。目前,骨钙素已被视为骨转换标志物,用于对上述疾病进行抗再吸收治疗效果的监测。完整的骨钙素(氨基酸1-49)及大的N-MID片断(氨基酸1-43)均存在于血液中。完整的骨钙素在外周血中不稳定,羧基端43-44间的氨基酸易被蛋白酶水解,裂解下来的N-MID则稳定得多。Elecsys N-MID骨钙素测定方法采用了针对骨钙素N端片段和N-M ID片段上的决定簇的二株单克隆抗体。因此能够检测血清(或血浆)中稳定的N-MID 片段和尚未被分解的完整的骨钙素。与不稳定的C端片段(氨基酸43-49)没有关系,从而确保在常规实验室条件下获得稳定的检测结果。

甲状旁腺素[Parathyroid hormone,PTH]

有选择地检测完整的甲状旁腺素,可以直接了解甲状旁腺体的分泌活性。PTH与维生素D和降钙素一起,动员骨骼系统的钙和磷酸,增加小肠对钙的吸收和肾脏对磷的排泄。PTH和降钙素的相互作用维持血钙水平的稳定性。血钙升高抑制PTH的分泌,血钙降低则促进PTH的分泌。甲状旁腺体机能紊乱引起的PTH分泌改变,进而导致血钙水平的升高或降低(高钙血症或低钙血症)。检查甲状旁腺机能低下症要求灵敏的试验,以便检测低于正常范围的PTH水平。甲状旁腺机能功能亢进症导致PTH分泌上升,主要由甲状旁腺腺瘤引起。继发性的甲状旁腺机能功能亢进症中,血钙低下,这是由于其它病理状态引起的。目前,对甲状旁腺机能亢进的诊断中,PTH和血钙含量测定更加引起重视,在甲状旁腺腺瘤切除手术前后测定PTH能帮助外科医生了解手术效果,完全切除可使PTH快速下降。

β-胶原特殊序列[β-CrossLaps(β-CTx)]

骨基质的有机成分中,90%是由I型胶原组成的。在正常的骨代谢过程中,骨基质进行着有序的合成与分解。因此,I型胶原在骨中合成,同时也被分解成碎片释放入血流中,并从肾脏排出。通过检测骨吸收指标,可了解骨转换的程度。在生理性或病理性(如年老或骨质疏松症)骨吸收增强时,I型胶原的降解也增高,相应的分解片段在血中的含量随之升高。重要的I型胶原分解片段是C端肽(CTx)。在骨成熟过程中,C端肽的α-天冬氨酸转变成β型(β-CTx)。此C端肽的同分异构体是I型胶原降解所特异的。检测血清C端肽可用于监测骨质疏松症或其它骨疾病的抗吸收治疗,疗效可在几周后反应出来。由于采用了针对β-8AA八肽的两种单克隆抗体,Elecsysβ-CrossLaps/serum能特异检测交联的I型胶原同分异构体片段及含有此八肽双体的所有I型胶原分解片段(β-CTx)。

七、贫血

铁蛋白(Ferritin)

铁蛋白的分子量较大(440KD),由含24个亚单位的蛋白质外壳(脂铁蛋白)以及含约2500个Fe3+离子的铁核心两部分组成(在肝脏和脾脏中的铁蛋白)。铁蛋白有形成聚合体的倾向,一旦在储存器官的细胞中过量存在时,易浓缩成半结晶状的血铁黄素并出现在溶酶体中。用等电聚焦技术可以将铁蛋白分成20余种异质体。它们之间的区别主要是含酸性的H亚单位与弱硷性的C亚单位的不同。硷性异质体(主要存在于肝、脾和骨髓中)起长期储存铁的作用。酸性异质体主要存在于心血管、胎盘和肿瘤组织中。它们含铁量较低,其功能可能是铁转运的中间体。铁蛋白的检测适用于了解体内铁代谢的状况。在治疗初期检测铁蛋白可反映当时体内铁的储量,可以早期发现网织内皮系统中铁储存的不足。在临床上,20ng/ml的阈值可以有效地判断准潜伏期铁不足并提示铁储存的耗竭。正常情况下储存铁可用于血红蛋白的合成。低于12ng/ml的铁蛋白阈值时,判断为潜伏期铁不足。以上二种判断值,不需要进一步的实验室参考资料,甚至在血像提供的形态学指标仍然正常的情况下,仍是如此。同时如伴有小细胞低色素性贫血,即可提示存在铁不足。如果铁蛋白水平较高,又排除了供铁不正常的可能性,即反映体内铁过量的状况。400ng/ml为判断阈值。铁蛋白升高还可见于下列肿瘤:急性白血病、何杰金氏病、肺癌、结肠癌、肝癌和前列腺癌。检测铁蛋白对肝脏转移性肿瘤有诊断价值,7 6%的肝转移病人铁蛋白含量高于400ng/ml。升高的原因可能是由于细胞坏死,红细胞生成被阻断或肿瘤组织中合成增多。

叶酸(Folate)

叶酸缺乏可导致营养性和巨细胞性贫血。膳食中缺乏蔬果或其它富含叶酸的食物可引起叶酸缺乏,见于慢性酒精中毒、药物成瘾者、老年人和穷人。另外,怀孕期血清叶酸水平低下可导致胎儿神经管缺损。膳食营养不足和吸收不良是人类叶酸缺乏症的主要原因。叶酸是维持机体正常代谢、DNA合成和红细胞再生所必需的物质。叶酸缺乏得不到及时纠正会导致巨幼细胞贫血。因为维生素B12缺乏也会引起巨幼细胞贫血,所以,为了确诊此类贫血的病因,检测维生素B12和叶酸含量是十分必要的。

维生素B12 (Vitamin B12)

膳食中缺乏肉类和菌类产品引起的维生素B12缺乏可导致营养性和巨细胞性贫血。吸收不良是该缺乏症的主要原因,见于胰腺功能低下、胃萎缩或胃切除术、肠损坏、肠内维生素B12结合蛋白(内因子)损耗、体内产生了针对内因子的自身抗体或相关的因素等等。维生素B12为机体维持正常代谢、DNA合成和红细胞再生所必需。维生素B12缺乏得不到及时纠正可导致巨幼细胞贫血及不可逆性中枢神经系统损伤。维生素B12或叶酸测定对查明维生素B12、叶酸缺乏有诊断价值,尤其对巨幼细胞贫血的鉴别诊断有意义。

八、糖尿病

胰岛素(Insulin)

血清胰岛素检测主要用于针对低血糖患者。可帮助了解葡萄糖/胰岛素比值和有关胰岛素分泌情况,如甲糖宁试验、胰高血糖素试验、口服葡萄糖耐量试验及饥饿激发试验等。自发的、不规则的胰岛素分泌是低血糖的常见原因。这种状况下糖原异生被抑制,

可见于严重的肝、肾功能衰竭,胰岛细胞瘤或癌。也有假性低血糖症。糖耐量降低人群中有3%的人其代谢状况经一段时间后会恶化成糖尿病。怀孕期间糖耐量降低需要治疗。胎儿死亡危险性的明显升高要求加强监测。

C-肽

空腹和餐后C肽测定对于糖尿病的分型及早期诊断、治疗方案的确立和调整以及研究糖尿病的发病机制均具有很大的意义。

(1)胰岛β细胞分泌功能的评价:由于胰岛素和C肽以等克分子浓度由胰岛β细胞分泌,在肝脏摄取很少,在外周血中降解又慢,且C肽不和胰岛素抗体发生交叉免疫反应,所以C肽值可较确切地反映胰岛β细胞的储备和分泌功能。

(2)糖尿病的分型诊断:空腹C肽水平和C肽释放实验对1型和2型的鉴别有重要意义。1型糖尿病空腹和餐后各时相C肽水平均较低,提示1型糖尿病患者胰岛β细胞分泌功能有严重缺陷。2型糖尿病患者空腹C肽值并不低,甚至可高于正常人,但在糖负荷后C肽值低于正常,峰值延至2小时之后出现,说明胰岛素释放功能欠佳,胰岛β细胞储备功能不足。

(3)低血糖的鉴别诊断:胰岛β细胞瘤所致内源性高胰岛素血症而引起的低血糖血清胰岛素和C肽值均升高;糖尿病患者因注射过量外源性胰岛素所引起的低血糖,其血清胰岛素值升高而C肽值较低。

九、过敏反应

免疫球蛋白E(Immunoglobulin E,IgE)

IgE浓度与年龄有关,新生儿含量最低,以后逐渐增高,5-7岁达到稳定水平。但特定年龄段的人群,IgE含量变化还是较大。婴幼儿近期的呼吸道感染,检测IgE有诊断参考价值。因为IgE在过敏反应中有重要意义,其含量升高还可见于枯草热、过敏性支气管炎和皮炎。IgE含量正常不能排除过敏性疾病。因此,在临床鉴别诊断过敏性和非过敏性疾病时,定量测定人血清或血浆中定量测定人血清或血浆中IgE的含量只有与其它临床检查联合应用才有实际意义。非过敏性疾病血清IgE含量也可升高,见于支气管肺的曲霉病、威-奥综合征、高IgE综合征、IgE骨髓瘤和寄生虫感染。

十、药物

地高辛(Digoxin)

地高辛被广泛应用于充血性心功能衰竭的治疗和各种心率失常。由于地高辛使用的经常性和治疗过程中的不谨慎,容易引起地高辛中毒。更危险的是地高辛中毒症状常以心率失常形式表现出来,而病人正是由于这种症状而用地高辛治疗的。公认的血清或血浆地高辛治疗浓度是0.9-2.0ng/ml。人类地高辛中毒症状一般只出现在地高辛浓度超过2.0ng/ml,但有时低至1.4ng/ml也可出现中毒症。与其它临床资料结合,监测地高辛浓度可以为医生及时调整用药剂量提供有用的信息,从而达到理想的治疗效果,避免药物不足或过量引起中毒。

十一其他

N端脑钠肽(NT-proBNP)

1、快速、全定量检测

2、心功能的评估和心力衰竭的诊断

3、评估心衰的严重程度和危险分层

4、评估心衰患者的预后和死亡风险

5、用于心衰治疗监测并判定治疗的效果

6、用于心脏疾病的鉴别诊断

降钙素原(PCT)

这一项目的准确检测对临床重症监护室、急诊科、呼吸科、新生儿室等科室有着重要的临床意义;不仅如此,也可作为其他科室如普通内科门诊、手术室、血液科、肿瘤科、器官移植中心等科室常见的手术后、放化疗、器官移植后的常规感染性监测指标;同时可协助微生物室的鉴定培养系统对医院院内感染进行更有效的监测及判定。这也是在国内外指南和中国专家共识中都明确指出,PCT定量检测的地位和临床指导的重要性。

PCT项目临床意义:

1、细菌感染早期的鉴别诊断。通常在发生细菌感染后2-6小时快速升高,并可检测到;

对细菌感染的诊断特异性在90%左右,而在病毒感染、自身免疫性疾病、慢性非特异性炎症等情况下几乎不升高。

2、与感染病情的严重程度与发展呈正相关。随着感染严重程度的增加,PCT浓度明显

增高,尤其对严重脓毒症和脓毒性休克的诊断特异性明显高于WBC、CRP等指标,国外某些文献指出其特异性甚至可达到100%,因此PCT浓度测定是MODS(多器官功能障碍)发生的预警指标。

3、细菌感染治疗效果及预后观察。PCT水平的下降表明炎性反应的降低及感染灶的清

除,因此可提示良好的预后及治疗效果观察,与疾病的发展呈现正相关。

4、在一定程度上可减少临床抗生素的滥用,缩短病人住院时间。采用PCT浓度监测与

细菌血培养、鉴定药敏等相结合,可以协助临床正确、合理的使用抗生素;国外有研究表明,将PCT定量检测用于门诊怀疑细菌感染的患者,可快速的明确诊断,合理的使用抗生素,防止抗生素的滥用。

化学发光全套检查项目及临床意义

化学发光全套检查项目及临床意义(附参考数值) IVD 第一资讯平台IVD 资讯2 月13 日 整理、来源:体外诊断网 本文整理化学发光临床常见的检测项目、临床意义及参考范围,不足之处敬请指正。 ??一、甲状腺功能?? 1、总三碘甲状腺原氨酸(Tot T3 )临床意义: Tot T3 是判断甲状腺功能亢进首选指标之一,对甲状腺功能紊乱进行确诊增高:Grave 病,大多数是由于甲状腺机能亢进引起(特发性T3 型甲亢、 新生儿一过性甲亢、亚急性甲状腺炎、TBG、白蛋白增高时、地方性缺碘甲状腺肿、服用外源性T3 等)。 降低:原发性甲状腺机能减低(如呆小症、Hashimoto 甲状腺炎、先天性甲状腺形成异常、新生儿甲状腺机能减退症、特发性粘液性水肿等);继发性甲状腺机能减低(如垂体功能低下、TSH单独缺乏症等);下丘脑功能障碍、重症消耗性疾病;先天性TBG 减少症;65 岁以上。

参考范围nmol/L ( -ng/mL ) 2、总甲状腺素 ( Tot T4 )临床意义: 增高:甲亢;妊娠、新生儿;服用雌激素和避孕药;高TBG 血症;急性肝炎;服用碘时;亚急性甲状腺炎;TSH分泌性肿瘤;甲状腺激素过度使用。 降低:甲减;TSH 不应症;甲状腺形成异常;母体抗甲状腺制剂的应用;TBG 低下症;某些严重肝病、禁食、高热病、肾病综合症。 参考范围?nmol/L (?ug/dL ) 3、游离三碘甲状腺原氨酸 ( FT3) 临床意义:甲亢增高,甲减降低,与病理生理相一致,不受TBG 等的影响,故可诊断妊娠性甲亢,并是诊断甲亢的最佳指标。 参考范围?pmol/L ( ?pg/mL ) 4、游离甲状腺素( FRT4) 临床意义:甲亢、T4中毒症、恶性肿瘤等增高,甲减降低,与病理生理相一致,不受TBG 等影响,是诊断甲减的最佳指标。 参考范围?pmol/L ( ?pg/mL ) 5、促甲状腺素 ( 超敏 ) ( hTSH) 临床意义:评估甲状腺的状态,确定亚临床的或潜在性的甲状腺功能减退或甲状腺功能亢进,是筛选亚临床甲状腺功能异常最灵敏的诊断指标,也是产前诊断先天性甲低的最佳指标,并可对原发性甲状腺功能衰退的治疗进行疗效考核并指导用药。 增高:表明甲状腺功能减退。如原发性甲减,异位TSH 分泌综合征( 异位TSH 瘤) ,垂体TSH 瘤,亚急性甲状腺炎恢复期,下丘脑性甲亢、地方性或单纯性甲状腺肿。 降低:表明甲状腺功能亢进。如第三性(下丘脑性)甲减,甲状腺功能亢进,继发性甲状腺功能低下和临床应用大剂量糖皮质激素。 参考范围?ulU/ml (mIU/L ) 6、甲状腺球蛋白(Tg)临床意义:

电化学发光检测项目和临床应用

电化学发光(Elecsys)检测项目及其临床应用 一、甲状腺功能 甲腺原氨酸(T3, triiodothyronine) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(N TI),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 检测范围:0.300─10.00nmol/l或O.195-6.51ng/ml 正常参考值:1.3-3.1nmol/l或0.8-2.0ng/ml 甲状腺素(T4, thyroxine) T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 检测范围:5.40─320.0nmol/l或O.420-24.86μg/dl 正常参考值: I. 66-181nmol/l或5.1-14.1μg/dl(标本取自德国和日本) II. 59-154nmol/l或4.6-12.0μg/dl, FT4指数57-147nmol/l或4.4-11.4ug/dl (标本取至美国) 游离T3(FT3- free triiodothyronine) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T -uptake,TBG)。 检测范围:0.400─50.00pmol/l或O.260-32.55pg/ml 正常参考值:2.8-7.1pmol/l或1.8-4.6pg/ml 游离T4(FT4- free thyroxine)

罗氏电化学发光免疫分析

罗氏电化学发光免疫分 析 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性)均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL)和免疫测定相结合的产物,直接以[Ru(bpy)3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy)3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。

罗氏电化学发光仪器ESOP

罗氏电化学发光仪器E170S O P 仪器简介: E170 是罗氏诊断公司出品的全自动电化学发光免疫分析仪,是全自动,随机进样的免疫分析系统,可以对许多种检测项目进行体外的定量或者定性的分析。该分析仪应用的是电化学发光技术(ECL)。每个E模块系统每小时的标本处理量为170个试验(最多可以将4个E模块连接)。只有在试验室条件下,经过培训的操作者方可操作E模块系统。 系统特色 ?可以24小时待机使用 ?标本条码扫描功能 ?试剂条码扫描功能 ?单个E模块的每小时处理能力为170个试验 ?自动保养功能 ?自动复查功能 ?自动发出定标信息 ?自动标本稀释功能 ?系统辅助的操作流程 ?一个E模块具有25个温控的试剂通道 ?1个模块可以安放672个反应杯 ?1个模块可以安放672个加样头 ?双向数据传输接口 运行条件: 水质要求 ◆无菌(< 10 cfu/ml),去离子水 ◆ 1.5 M?电阻值(最大1.0 Ms/cm) ◆15-25 磅/英寸2 (0.5~3.5 kg/cm2 或49~343 kpa) ◆耗水量:每E170模块消耗18升/小时 环境条件 ◆无灰尘的、良好通风的环境 ◆无直接日照 ◆地面水平(角度:<1/200?o) ◆地面足够坚硬能够承受仪器的重量(详细情况请见本章中的系统特点) ◆温度:18~32摄氏度 ◆当系统启动时,温度的改变应该小于2度/小时 ◆屋内湿度:45%~85%

◆电源电压没有明显的波动 ◆在附近没有会产生电磁波的仪器 ◆有接地的三相电源 E170由三个类型的硬件单元组成:控制单元、核心单元以及检测单元。 控制单元介绍 包括: ?触摸屏幕的电脑 ?键盘 ?打印机 ?仪器管理电脑终端 核心单元介绍 核心单元将所有的标本从入口端经过E170仪器到出口端或者复查缓冲区。下面所列位核心单元的组成部分。 ?加样端 ?标本架转运通道 ?复查缓冲带 ?出口端 ?中心控制区 ?电源开关(在进样端的左侧面上) 检测单元介绍 分立式、随机进样的每小时170试验的免疫检测系统。下面所列为E170模块的组成部分: ◆试剂区位于分析模块的左边部分,它包含以下部分: 1.一个试剂盘,温度控制在20?3℃; 有25个试剂通道 2.一个用来将试剂以及磁珠从试剂盘中加入的试剂针,将之加到孵育器的反应杯中 3.一个条码扫描器,用来阅读试剂盒上的二维条码 4.一个用于试剂盒盖的开关的机械装置,以避免试剂的挥发 5.一个用于混匀磁珠的搅拌器.当磁珠被加入之前或额外的混匀步骤中,搅拌棒用来搅拌磁 珠 6.两个用来清洗探针以及搅拌器的冲洗站 7.一个探针清洗站,它含有两瓶探针洗液用来清洗探针的内部 ◆测量区位于分析模块的中部,它含有以下几个部分: 1.一个孵育器,含有54个孵育位,用来进行免疫反应 孵育池有54个孵育位置,位于仪器的中心部分,当标本和试剂加入到反应杯中后,该孵育池的温度维持在37℃±0.3℃. 当一个反应在准备测定时,该孵育盘需旋转,将反应杯转至需要的位置,在此处,适宜的单位将执行相应的功能. 2.一个用来将标本从标本容器中加入到反应杯中的标本探针

常用化学发光检测项目参考区间

常用化学发光检测项目参考区间 甲状腺激素 项目分类数值分类数值分类数值 T3 正常0.9 - 2.3 nmol/l 亢进> 3 nmol/l 低下< 0.9 nmol/l T4 正常60 - 120 nmol/l 亢进> 140 nmol/l 低下< 50 pmol/l FT3 正常4 - 8.3 pmol/l 亢进> 8.5 pmol/l 低下< 3.8 pmol/l FT4 正常9 - 20 pmol/l 亢进> 24 pmol/l 低下< 8 pmol/l TSH 正常0.25 - 5 μlU/ml 亢进< 0.15 μlU/ml 低下> 7.5 μlU/ml 肿瘤标记物 AFP 正常< 20 μg/L 怀疑原发性肝癌> 300 μg/L(除外妊娠期妇女) CEA 正常< 5 μg/L 明显异常高于正常值,怀疑为恶性肿瘤 CA125 正常< 35 U/mL 动态倍数增长,疑卵巢癌可能性大 CA153 正常< 30 U/mL 数倍增长,疑(转移性)乳腺癌可能性大PSA 正常< 4 ng/mL > 4 ng/mL时,建议行前列腺组织活检 CA199 正常< 37 U/mL 明显异常高于正常值,怀疑胰腺癌、胆囊癌可能大 生殖激素 HCG(绒毛膜促性腺激素) 女性月经周期: < 5 mIU/ml,经绝期: < 10 mIU/ml 男性< 3 mIU/ml LH(促黄体生成激素) 女性

排卵期(D 0): 9.6 - 80.0 mIU/ml 卵泡期: D -15~-9: 1.5 - 8.0 mIU/ml D -8~-2: 2.0 - 8.0 mIU/ml 黄体期: D +3 - +15: 0.2 - 6.5 mIU/ml 经绝期: 8 - 33.0 mIU/ml 男性1.1 - 7.0 mIU/ml FSH(促卵泡成熟激素) 女性 排卵期(D 0): 6.3 - 24.0 mIU/ml 卵泡期: D -15~-9: 3.9 - 12.0 D -8~-2: 2.9 - 9.0mIU/ml 黄体期: D +3 - +15: 1.5 - 7.0 mIU/ml 经绝期: 17 - 95.0 mIU/ml 男性1.7 - 12.0 mIU/ml PRG(孕酮) 女性 排卵期(D 0): 0.12 - 6.22 ng/ml 卵泡期: 0.10 - 0.54 ng/ml 黄体期: 1.5 - 20 ng/ml 绝经期: <0.41 ng/ml 男性0.11 - 0.56 ng/ml 检测正常值指南

罗氏电化学发光免疫分析(精)

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL和免疫测定相结合的产物,直接以[Ru(bpy3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA和生物素(biotin,B是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。 三、独特的载体

罗氏电化学发光免疫分析仪项目推荐稀释比例

Elecsys? Dilution Recommendations Autodilution possible for bold mentioned dilution ratios ? Dilution not necessary due to the broad measuring range or not possible e.g. can not be diluted because of changing in the concentration of the binding proteins alters this equilibrium. @ The autoantibodies are heterogeneous and this gives rise to non-linear dilution phenomena. * Please check the package insert. STAT for Elecsys 2010, cobas e 411, cobas e 601 (SW version 04-03 onwards) and cobas e 602 # Diluent Universal can be used to dilute the samples. ? Auto-dilution is not possible as assay uses a three-step method. ∞ Use Elecsys? Diluent Universal for automatic sample predilution. ? Autodilution not possible.

电化学发光的基本原理

电化学发光的基本原理 电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发 的特异性发光反应,包括电化学和化学发光两个部分。分析中应用 的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。 基本原理:发光底物二价的三联吡啶钉及反应参与物三丙胺在 电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而 恢复为基态的发光底物。医学教育网搜|集整理这一过程在电极表面 周而复始地进行,不断地发出光子而常保持底物浓度的恒定。 电化学发光是化学发光方法与电化学方法相互结合的产物,是 指通过电化学方法来产生一些特殊的物质,然后这些电生的物质之 间或电生物质与其它物质之间进一步反应而产生的一种发光现象。 电化学发光保留了化学发光方法所具有的灵敏度高、线性范围宽、观察方便和仪器简单等优点;同物时具有许多化学发光方法无 法比拟的优点,如重现性好、试剂稳定、控制容易和一些试剂可以 重复使用等优点,广泛地应用于生物、医学、药学、临床、环境、 食品、免疫和核酸杂交分析和工业分析等领域。在21世纪中必将继 续为解决人类面临的各种重大问题发挥更加显著的作用。因此有必 要对电化学发光在分析中的应用有更加全面的了解。

电化学发光的应用 1、电极表面活性分布的表征 利用电化学发光成像法可以很好地观察电极表面电化学发光强度的分布情况,而电化学发光强度对电极表面的活性具有很大的依赖性,因此利用电化学发光成像法可以直观地反映电极表面活性分布。 该方法是由Engstrom等于1987年提出的,他们观察到在新抛光的玻碳电极上电化学发光强度分布十分均匀,而在环氧树脂浸渍过的网状玻碳电极上,电化学发光强度的分布不均匀,通过与其它方法相对照,发现电化学发光强度分布能够很好地反映出电极表面活性分布,并且具有微米级的空间分辨能力。在此基础上,他们把电化学发光成像法用于研究碳糊电极表面活性点的分布,观察到碳糊电极表面存在。着活性区域和非活性区域,对于了解碳糊电极的电化学行为具有一定的意义。 由于电化学发光成像法具有直观和简单等优点,许多科学工作者先后将该方法用于表征化学修饰电极表面的活性分布。如Hopper 等用该方法研究了电极表面的电荷对电子转移性质的影响;Pantano 等用该方法研究了电极表面羧基的分布对电子转移性质的影响;ShuItz等用该方法研究了聚合物在电极上的附着情况。从上面的文献可以看出,电化学发光成像法对于了解电极表面的活性分布及其与电极性能之间的关系,进而制备出具有特定功能的电极具有较好的参考价值。

电化学发光项目临床意义_20110401

一、甲状腺功能 甲腺原氨酸(T3) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(NTI),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 甲状腺素(T4) T4是甲状腺分泌的主要产物, 也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 游离T3(free FT3) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,free T3是T3的生理活性形式。Free T3测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T-uptake,TBG)。 游离T4(free FT4) 四碘甲腺原氨酸(T4)是甲状腺生理调节系统的一部分。对总代谢有作用,绝大多数的T4与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,free T4是T4的生理活性形式。Free T4测定是临床常规诊断的重要部分。当怀疑甲状腺功能紊乱时,free T4和TSH常常一起测定。Free T4也适合用作甲状腺抑制治疗的监测手段。Free T4测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T-uptake,TBG)。 甲状腺素结合力测定(T-Uptake) 甲状腺素(T4)是甲状腺调节系统的组成部分,参于机体的整体代谢活动。测定甲状腺素含量是鉴别甲状腺功能正常与否的重要实验室手段。由于甲状腺素的大部分与其运载蛋白质(TBG,前白蛋白和白蛋白)结合,因此仅在血清甲状腺素结合力正常的情况下,测定总甲状腺素才能提供有价值的信息。血中游离的甲状腺素与结合的甲状腺素处于平衡状态。尽管游离的甲状腺素可能在正常范围,但TBG含量的变化仍可导致总甲状腺素测定值的改变。甲状腺素结合力(亦称甲状腺素吸收量)测定可了解甲状腺素的结合位点数(测定结果称为甲状腺素结合指数,TBI)。总甲状腺素T4和TBI的商得出的游离甲状腺素指数(fT4I),反映了TBG含量以及甲状腺素含量这两种变化因素。 促甲状腺激素(TSH) TSH是一种分子量为30kD的蛋白质,由二种亚单位组成。β亚单位携带TSH特异的免疫学和生物学信息;α亚单位携带种族特异性信息,与LH、FSH和hCG的α链上的某些氨基酸组成的肽段有

罗氏电化学发光质控物包含项目一览表

PreciControl Universal/Cat. no. HCG+

PreciControl Tumor Marker/. HCG+ PreciControl Multi Marker/.

PreciControl Maternal Care/. 05341787-200 PreciControl Cardiac II/. 04917049-190 PreciControl Troponin/. 05095107-190 PreciControl TSH/. PreciControl ThyroAB/. 05042666-191

PreciControl HE4/. 05950953-190 PreciControl Varia/. 05618860-190 Please note there are no barcodes available for PC Varia on cobas e 602. PreciControl Anti-CCP-190 PreciControl Brahms PCT (control is within the kit)

PreciControl Anti-HAV/. 04855043-190 PreciControl Anti-HAV IgM/. PreciControl Anti-HBc/. PreciControl Anti-HBc IgM/.

PreciControl Anti-HBe/. PreciControl HBeAg/. PreciControl Anti-HBs/. PreciControl HBsAg II /. 04687787-190

化学发光检测项目临床意义

甲状腺激素检测 人体生理功能的调节系统包括神经系统和内分泌系统,神经系统通过神经纤维传导信息实现调节功能,内分泌通过血液和组织液运输激素,作用于某些靶细胞而达到调节功能,二者关系密切。所有的内分泌腺都直接或间接受神经系统的影响,激素也可以影响神经功能,如甲状激素能明显影响脑的发育和正常功能。 甲状腺是一个内分泌腺体,它分泌具有生物活性的甲状腺激素。甲状腺激素对机体的代谢、生长发育、神经系统、心血管及消化系统等具有重要作用;甲腺激素分泌量增加或减少均可导致甲状腺功能失调,内分泌代谢紊乱。因此,正确检测甲状腺相关激素,对于诊断治疗甲状腺疾病具有重要意义。 一、甲状腺基本知识 甲状腺分泌有生理活性的甲状腺素(T4)和三碘甲腺原氨酸(T3)及无生理活性的反T3等。血浆中T4来自甲状腺,而80-90%的T3和反T3是T4在外周组织经脱碘作用,脱去一个碘原子而生成的。血液中的T3和T4,以结合和游离两种形式存在。绝大部分的甲状腺激素(T4 99.97%,T3 99.7%)可逆性的结合于血浆蛋白上;游离的甲状腺激素在血中含量甚微,与蛋白结合的激素和微量游离激素处于动态平衡中,然而正是这些微量的游离激素才能进入靶组织细胞,与细胞中受体结合,发挥其生物学作用,它还在垂体部分反馈地调节促甲状腺激素(TSH)的分泌。结合型的甲状腺激素是没有生物学作用的,它对稳定血中游离激素含量起着贮存与缓冲作用。 与甲状腺功能密切相关的另一激素为垂体所分泌的TSH。TSH是由垂体前叶嗜碱细胞所分泌,它是一种糖蛋白,分子量为25000-28000,糖类分子占总分子量的15%,包括岩藻糖、甘露糖、半乳糖、氨基葡萄糖和氨基半乳糖等。 TSH的分子是由两条肽链组成,一条是α链,由89个氨基酸组成;另一条是β链,由112个氨基酸组成,两条肽链靠非共价键结合在一起。激素的生物学活性由肽链决定。两个亚基必须结合才具生物活性,分开则无活性。 TSH分泌受神经和体液的调节,包括:①下丘脑促甲状腺素释放素(TRH)的促进与靶腺激素(T3、T4)反馈抑制的影响,二者互相拮抗,构成下丘脑腺垂体甲状腺轴;②神经系统对TSH分泌控制,在中枢神经系统的控制下,生长介素可降低TSH分泌,多巴胺可抑TSH释放,雌激素可升高TSH基础分泌,糖皮质激素可通过抑制TSH的释放,使垂体分泌TSH减少;③TSH分泌受机体反应调节;④TSH分泌有昼夜节律性变化,高峰于午夜23:00-24:00,上午11:00时最低;⑤冷刺激TSH分泌增加,再促进T3、T4分泌以适应冷环境。 (一)甲状腺功能的调节 生理情况下,甲状腺功能有两种调节方式。即下丘脑垂体甲状腺之间的反馈性调节和甲状腺的自身调节。第一种调节是最主要的调节方式(见图3.1)

化学发光项目检测临床意义

化学发光项目临床意义 定量测定对乙肝疫苗免疫力的评价和高危人群预防免疫具有重要意义,特别是在少年儿童预防乙肝方面。2、定量分析HBsAg和抗-HBs的浓度变化,可以预见急性乙肝是否处于恢复期。3、定量分析HBeAg和抗-HBe的浓度变化,可以反映病情变化和治疗效果。4、抗-HBc 浓度的高低可以反映病毒感染的状态。高浓度的抗-HBc提示乙肝急性或现行感染,常与HBsAg并存,恢复期浓度降低。慢性乙肝呈抗-HBc持续高浓度。而低浓度的抗-HBc一般为恢复期或既往感染,常于抗-HBs并存,无肝损害或肝损害早已静息。5、急性乙肝一般会在六个内病情缓解,甚至自愈。病情超过六个月仍未缓解者,多转为慢性化,通过五项联合定量分析,可以对病情的发展做出预测及制定相应的治疗方案。即若表现为HBeAg下降、抗-HBe 出现或渐升,HBsAg和HBV DNA血清水平降低,这是病变恢复的时相,可望在1-2年病毒被清除而疾病痊愈;若HBeAg和HBV DNA 血清水平持续很高的病人,预期可能保留慢性无症状携带(AsC)或慢性乙型肝炎。 产品特点:化学发光定量检测HBsAg灵敏度可达0.05-0.1ng/ml,而酶免(ELISA)检测HBsAg灵敏度是0.5-1.0ng/ml,胶体金(POCT)检测HBsAg灵敏度是1-5ng/ml,也就是说只有血清中的HBsAg达到0.5-5ng/ml酶标或胶体金才会呈阳性反应。使用化学发光法提高了灵敏度,大大缩短了窗口期。 乙型肝炎病毒前S1抗原: 人体感染乙型肝炎病毒后,最早的免疫应答就是针对前S1抗原的。由于前S1抗原的出现在HBV感染的最早期,因而可以起到早期诊断的作用。前S1蛋白在病毒感染、装配、复制和刺激机体产生免疫反应等方面起有十分重要作用,前S1抗原(Pre-S1Ag)检测是对乙肝“两对半”尤其是e抗原和HBV-DNA测定的重要补充和加强。 产品特点:支持28天定标功能及急诊功能,可以敏感的反映乙肝病毒复制,可作为早期诊断乙肝病毒感染的较好指标,前S1蛋白与HBV的复制指标HBV-DNA有较好的一致性,但与HBV-DNA相比,操作简单,价格低廉,试验要求不高。

电化学发光免疫分析及其在临床检验中的应用分析

电化学发光免疫分析及其在临床检验中的应用分析 【摘要】目的:分析电化学发光免疫分析及其在临床检验中的应用效果。方法:选取广西柳州市柳钢集团公司医院2015年1月~2017年1月收入的70例肝硬化患者作为研究对象,分别利用生化免疫比浊法和电化学发光免疫分析法对甲胎蛋白进行检测和比较。结果:两种检测方法所得检测结果差异无统计学意义(P>005);两种检测方法批内及批间CV变异系数相比较,电化学发光免疫分析法较生化免疫比浊法更小但差异无统计学意义(P>005)。结论:电化学发光免疫分析操作简便、快捷,结果可靠且具备较好的重复性,值得在今后临床检验工作中推广使用。 【关键词】电化学发光免疫分析;肝硬化;甲胎蛋白【中图分类号】R969 【文献标志码】 B【文章编号】1005-0019(2018)06-256-01 随着人们保健意识的提高,前往医疗卫生机构接受诊疗的患者数量日渐增多,大批量样本快速检测成为临床检验面临的一个不可回避的现实问题。既往采用的生化免疫比浊法虽然能够满足临床大样本检测需求但检测结果无论是精密度还是准确性、重复性均相对较低,越发难以满足实际工作

需求。电化学发光免疫分析是继酶免疫测定法、放射免疫法、流注射析、时间分辨荧光免疫技术之后的一种全新酶免疫测定法,自身融合了电化学发光以及免疫测定技术的优势,整个检测工作更加简便、高效[1]。为探寻电化学发光免疫分析及其在临床检验中的应用效果,本次研究内容如下:1资料与方法 11一般资料选取广西柳州市柳钢集团公司医院2014年1月~2016年1月收入的70例肝硬化患者作为研究对象,其中男48例、女22例;年龄35岁~60岁,平均年龄(4879±131)岁;病程时间12年~5年,平均病程(231±028)年;症状表现:疲倦乏力41例、食欲不振29例;病症类型:小结节性肝硬化63例、大结节性肝硬化7例。纳入标准:(1)经临床诊断确诊为肝硬化者;(2)未合并其他肝脏疾病者。排除标准。 12方法于住院次日清晨分时抽取空腹静脉血5ml,采集部位均?橹獠烤猜觯?以3000转/min离心10min后采集血清并将其一分为二,一份采用电化学发光免疫分析测定,仪器设备为罗氏公司生产的Cobas E601全自动电化学发光免疫分析仪。另一份采用生化免疫比浊法进行测定,宁波美康生物科技有限公司生产甲胎蛋白(免疫比浊法)检测试剂盒。所有检测步骤均严格按照仪器或试剂盒内说明书要求进行。选取甲胎蛋白以及批内及批间CV变异系数作为观察指标,

罗氏电化学发光免疫分析总结

罗氏电化学发光免疫分析总结 罗氏电化学发光免疫分析总结 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性)均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。电化学发光(ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL)和免疫测定相结合的产物,直接以[Ru(bpy)3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy)3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的'一对化合物,特异性强且结合紧密。一

分子SA可与四分子B相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B 衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。 三、独特的载体 ECL中采用的固相载体是带有磁性的直径约2.8?m的聚苯乙烯微粒。其特点是反应面积极大,比板式扩大20-30倍,使反应在近乎液相中进行,反应速度大大加快,利用氧化铁的磁性,使用电磁场分离结合态和游离态,方便迅速,实现了精确的全自动化。 四、独到的磁分离技术 实现了结合相和游离相的完全自动化分离,且检测池在无电场时彻底清洗,避免了交叉污染。 五、超高的测定灵敏度和测定线性 发光信号检测的宽线性加上电化学发光独特的标记物本身(发光底物)循环发光和专利的链霉亲和素-生物素包被技术的信号放大作用,使电化学发光测定的检测下限可达10-12和10-18级,线性范围最大超越7个数量级,在待测抗原(抗体)极微量或达到病理期极限时,均能准确测定,避免了样本稀释重测定,既节约时间,又节省试剂。 六、稳定的试剂 电化学发光标记物三联吡啶钌在无电场和递电子体(三丙胺)存在的自然环境下非常稳定,保证了用它标记的抗体(抗原)试剂也非常稳定,2-8℃可稳定一年以上,批内和批间变异系数分别为<4%和<7%,在首日使用之后也可以稳定3个月。 七、简便创新的定标概念 每个测定项目的基本定标曲线已由罗氏公司完成,并已存入试剂的二维条形码,自动读入仪器,用户只需进行二点重定标即可。

电化学发光检测项目及其临床应用

电化学发光检测项目及其临床应用 一、甲状腺功能 甲腺原氨酸(T3, triiodothyronine) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(NT I),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 甲状腺素(T4, thyroxine) T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 游离T3(FT3- free triiodothyronine) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点

发光项目临床意义资料

化学发光项目临床意义 甲状腺功能检测 总甲状腺素(Total thyroxine,TT4) 【标本收集】静脉血2ml,不抗凝,分离血清进行测定。 【正常参考值】58.1-140.6 nmol/L (4.5-10.9 ug/dL) 新生儿:142-310 nmol/L 婴儿:90-194 nmol/L 1- 5岁:90-194 nmol/L 5-10岁:77-168 nmol/L 成人: 54-174 nmol/L 【项目综述】甲状腺素即3,5,3’,5’-甲碘甲状腺原氨酸,简称T4,是由甲状腺滤泡上皮细胞合成和分泌的甲状腺激素。甲状腺原氨酸的基本结合是由一个酪氨酸残基和一个酚环构成。正常人平均每日的T4分泌量为81-99ug,每日分泌的量不到甲状腺内贮存量的1%。T4进入血液循环后约99.96%与结合蛋白结合,其中约60%与甲状腺素结合球蛋白(TBG)结合。30%与甲状腺素结合前白蛋白(TBPA)结合,余下的与白蛋白结合。甲状腺外T4的循环总量为900ug。T4是血清中最多的碘化甲状腺原氨酸,占血清蛋白结合碘的90%以上。T4的半衰期为7天。T4是具有生物活性的甲状腺激素,促进糖、脂肪、蛋白质代谢,产生能量和热,促进生长发育。近年来有人认为T4是T3的前激素,是其储备形式。 【临床意义】 甲状腺疾病 1.甲状腺功能亢进时甲状腺合成和分泌T4增多。 2.亚急性甲状腺炎,慢性淋巴细胞性甲状腺炎的早期,因甲状腺滤泡被破坏,T4溢出,使 血T4过性升高,产生短暂时期的轻度甲亢。 3.大量服用甲状腺素,或误食动物甲状腺,导致血T4增高,产生医源性或中毒性甲亢,甚 至甲亢危象。 4.组织对甲状腺激素不敏感时无甲亢症状,但有外周血T4增高;若是下丘脑、垂体对甲状 腺激素不敏感,则周围血T4增高,有甲亢症状,并TSH亦增高。 5.甲状腺功能减退时,无论是原发、继发或其他原因,T4均下降。 6.甲状腺缺乏,或先天性发育不良,甲状腺全切除后,血T4缺乏。 非甲状腺疾病 1.TBG浓度的变化,显著影响T4浓度的测定结果。TBG增高时,T4增高,反之亦然。 2.精神病以及一些非甲状腺疾病病人,极少数会出现高T4血症,但无甲亢症状。原发疾病缓 解后,T4恢复正常。 3.雄激素使TBC减少,T4亦减低。

电化学发光分析研究进展

电化学发光分析研究进展 电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。电化学发光与化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生;而不同之处是电化学发光由电极上施加的电压所引发和控制,化学发光是由试剂的混合所引发和控制。根据电化学发光的发光强度进行分析的方法称为电化学发光分析法。该法不仅具有化学发光分析的灵敏度高、线性范围宽和仪器简单等优点,而且具有电化学分析控制性强、选择性好等优点。近年来,在新电化学发光试剂的合成和应用研究方面取得了比较大的发展,特别是电化学发光在免疫分析中的应用引起人们极大的研究兴趣。 福州大学,长春应用化学研究所,华东师范大学,陕西师范大学等单位在电化学发光分析新体系和新技术研究方面取得一系列的成果,受到国内外同行的关注。国内外对电化学发光分析法的研究均有评述。 本文拟侧重介绍ECL体系及其在临床分析研究中的应用,同时,对我们近年来在电化学发光分析方面的研究工作也作以简要介绍。 1电化学发光体系及其应用 ECL体系按发光试剂的种类可以分为以下两类:(1)金属配合物电化学发光体系; (2)有机化合物的电化学发光体系。 1.1无机化合物的电化学发光体系 无机化合物电化学发光体系中,最典型的电化学发光试剂是钌联吡啶配合物Ru(bpy)32+,该试剂在水溶液和有机溶剂中发光效率高,溶解度好;可进行可逆单电子转移反应,在电化学发光基础理论和分析应用研究中占有重要地位。已报道ECL金属配合物有Ru, Os, Cr, Cd, Pd, Pt, Re, Ir, Mo,Tb, Eu, Cu, Al等的金属配合物[1],其中Ru, Os,Re的金属配合物具有良好的ECL性质。合成高发光效率可标记的ECL金属配合物是电化学发光免疫分析和核酸分析中一个重要的研究方向。Blackburn[12]等合成了可标记的Ru(bpy)32+类物质,建立了地高辛和促甲状腺激素(TSH)等物质的电化学发光免疫分析方法。研究金属配合物与共反应物的ECL反应,不仅可以提高检测金属配合物的灵敏度,而且可以建立测定共反应物的ECL方法,拓宽电化学发光分析的应用范围。董绍俊等人利用金属EDTA螯合物与Ru(bpy)32+产生ECL,建立了测定金属离子的电化学发光分析法[13]。Richter 利用冠醚对金属离子的识别以及与(2, 2′-bipyridine)2Ru-4-(N-aza-18-crown-6-methyl-2,2′-bipyridine)-TPA的电化学发光反应,建立了测定Pb2+, Hg2+, Cu2+和K+的电化学发光分析法[14]。Bard等人利用Na+冠醚对钌联吡啶电化学发光的增强作用,建立了检测Na+离子的电化学发光分析法[15]。Martin等人利用钌联吡啶与辅酶NADH以及酶反应的产物的电化学发光建立了测定葡萄糖、乙醇、二氧化碳、胆固醇和葡萄糖-6-磷酸脱氢酶的电化学发光分析法[16]。我们基于罗丹明B对亚硫酸根在铂电极上弱电化学发光的增敏作用,建立了测定亚硫酸氢钠的能量转移电化学发光新方法,并用于药物VK3和白糖中亚硫酸氢钠的测定[17]。电化学发光分析法已用于测定罂粟,含氨基的生物碱,海洛因,利格鲁卡因,蔗糖,果糖,甘露糖,甘油,柠檬酸,酒石酸,三甲胺,氨基酸,脯氨酸,4-羟基脯氨酸等物质。

四类电化学发光新物质性质及生物分析应用研究

四类电化学发光新物质性质及生物分析应用研究合成和研究高发光效率的电化学发光(electrogenerated chemiluminescence,ECL)新物质是开发有机电致发光器件和建立电化学发光生物传感分析体系的基础,具有重要的科学意义和实际的应用价值。对新型电化学发光物质的光学、电化学和电化学发光基本性质的研究,在筛选性能优良的电化学发光新物质、认识和揭示这些物质的效能与结构关系的规律性以及指导功能化的电化学发光物质的设计与合成等方面均具有重要的作用。本学位论文“四类电化学发光新物质性质及生物分析应用研究”,以本学院合成的3个系列的新型有机发光物质(有机多环芳烃,PAHs)和自主设计合成的金属配合物(环金属铱配合物)为物质基础,研究了系列物质在有机溶剂中的基本光物理性质,电化学和电化学发光性质,揭示了这些物质性质与结构的关系,发现了一些新现象并得到了合理的解释。使用所研究的环金属铱配合物作为电化学发光嵌入剂,基于杂交链反应信号放大技术,建立了免标记的电化学发光传感方法,实现了对micro-RNA高灵敏的检测。 本学位论文的成果,为开发有机发光器件和建立电化学发光生物传感分析体系提供了一些有潜在应用价值的新物质,为设计高发光效率的电化学发光物质提供了一些参考性资料,对电化学发光物质的筛选、电致发光器件的设计以及电化学发光生物分析研究的发展起到了积极的推动作用。本论文研究工作是在国家自然科学基金“电化学发光生物传感器一些基础问题的研究”(No.21475082)、“微流控双极性电极电化学发光生物传感新方法研究”(No.21275095)的资助下完成的。本论文共由5章组成。第1章为引言。 引言中详细介绍了电化学发光的基本理论,光物理、电化学和电化学发光性质的研究方法,典型的电化学发光物质和基本应用以及本论文的研究目的和研究内容。在第2章中,研究了系列新型液晶材料,苯并恶唑类衍生物 (5B-H,5B-Me,5B-C1和5B-NO2)在乙腈:苯(v:v=1:1)溶剂中的光学、电化学和电化学发光性质。该系列衍生物在苯并恶唑环的5位上分别被-CH3,-C1和-NO2取代,联苯的4位具有不同长度的烷氧基链(CnH2n+1,n = 2-10)。通过对电化学实验数据的模拟和分子密度泛函理论(DFT)的计算,确定了该物质的电化学氧化还原反应机理。

相关文档
最新文档