两相短路电流计算与查表

两相短路电流计算与查表
两相短路电流计算与查表

解析法计算低压电网短路电流计算两相短路电流的计算公式为:

I)2( d =

∑∑

+2

2)

(

)

(

2X

R

Ue

∑R=R1/K b2+R b+R2

∑X=Xx+X1/ K b2+X b+X2

式中:

I)2(

d

—两相短路电流,A;

∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω;

Xx—根据三相短路容量计算的系统电抗值,Ω;

R1、X1—高压电缆的电阻、电抗值,Ω;

K b—矿用变压器的变压比,若一次电压为6000V,二次电压为400、690、1200V时,变比依次为15、、5;当一次电压为10000V,二次电压为400、690、1200V时,变比依次为25、、;

R b、X b—矿用变压器的电阻、电抗值,Ω;

R2、X2—低压电缆的电阻、电抗值,Ω;

Ue—变压器二次侧的额定电压,V。

若计算三相短路电流值I)3(

d =I)2(

d

矿用橡套电缆的单位长度电阻与电抗

380V 、660V 、1140V 系统各电缆的换算系数为下表

127V 系统各电缆的换算系数为下表

电缆截面 4 6

10 换算系数

阻抗Z 0(Ω/km) 截面(mm 2)

4

6

10

16

25 35 50 70 95 120

电阻R 0

电抗X 0

电缆截面 4

6 10 16 25 35 50 70 95 换算系数

KBSG型变压器二次侧电压690V两相短路电流计算表(2)

电缆换算长度(m) 变压器容量(kVA)

50 100 200 315 400 500 630 800 1000

0 905 1812 3625 5699 7244 9065 9129 10576 12085 20 895 1774 3484 5368 6712 8225 8325 9494 10687 40 884 1736 3333 4999 6117 7296 7402 8264 9107 60 874 1696 3177 4626 5534 6430 6528 7146 7725 80 863 1656 3021 4271 5001 5681 5766 6211 6615 100 853 1616 2870 3943 4531 5052 5124 5451 5741 120 842 1575 2725 3646 4123 4528 4589 4834 5049 140 832 1535 2588 3380 3771 4091 4142 4331 4494 160 821 1496 2459 3143 3466 3724 3767 3915 4043 180 810 1457 2339 2933 3225 3412 3449 3568 3670 200 800 1419 2227 2745 2972 3145 3177 3275 3357 220 789 1382 2123 2577 2770 2916 2943 3024 3092 240 779 1347 2027 2426 2592 2716 2740 2807 2865 260 769 1312 1937 2291 2435 2540 2562 2619 2668 280 758 1278 1854 2169 2294 2386 2404 2454 2496 300 718 1246 1777 2058 2169 2248 2265 2308 2344 320 738 1214 1705 1958 2055 2125 2140 2178 2210 340 728 1184 1638 1866 1953 2015 2028 2051 2089 360 719 1155 1576 1782 1860 1915 1927 1957 1981 380 709 1126 1518 1705 1775 1825 1836 1862 1884 400 700 1099 1464 1635 1698 1742 1752 1776 1796 420 690 1073 1413 1569 1627 1667 1676 1697 1715 440 681 1048 1365 1509 1561 1597 1606 1625 1641 460 672 1024 1321 1453 1500 1533 1541 1559 1574 480 663 1000 1278 1400 1444 1474 1482 1498 1511 500 654 978 1239 1352 1392 1420 1427 1441 1454 520 646 956 1201 1306 1343 1369 1375 1389 1400 540 637 936 1166 1264 1298 1322 1328 1340 1351 560 629 915 1133 1224 1256 1277 1283 1295 1304 580 621 896 1101 1186 1216 1236 1241 1252 1261

600 613 878 1071 1151 1178 1197 1202 1212 1221 620 605 860 1043 1117 1143 1161 1166 1175 1183 640 597 842 1016 1086 1110 1127 1131 1140 1147 660 590 826 990 1056 1079 1094 1098 1106 1113 680 582 810 966 1028 1049 1064 1068 1075 1082 700 575 794 942 1001 1021 1035 1038 1046 1052 720 568 779 920 975 994 1007 1011 1018 1023 740 561 764 899 951 969 981 985 991 997 760 554 750 879 928 945 957 960 966 971 780 547 737 859 906 922 933 936 942 947 800 540 724 841 885 901 911 914 919 924 820 534 711 823 865 880 890 892 897 902 840 528 699 806 846 860 869 872 877 881 860 521 687 789 828 841 850 852 857 861 880 515 675 773 810 823 831 834 838 842 900 509 664 758 793 805 813 816 820 824 920 503 653 743 777 789 796 799 803 806 940 498 643 729 762 773 780 782 786 789 960 492 633 716 747 757 764 766 770 773 980 486 623 703 732 742 749 751 755 758 1000 481 613 690 719 728 735 737 740 743 1050 468 590 661 686 695 701 703 706 708 1100 455 569 633 657 665 670 671 674 677 1150 443 549 608 630 637 642 643 646 648 1200 432 531 585 605 611 616 617 619 621 1250 421 514 563 581 588 592 593 595 597 1300 410 497 543 560 566 569 571 572 574 1350 401 482 525 540 545 549 550 552 553 1400 391 467 507 522 526 530 531 532 534 1450 382 454 491 504 509 512 513 514 516 1500 373 441 476 488 492 495 496 497 499 1550 365 429 461 473 477 479 480 482 483 1600 357 417 448 459 462 465 465 467 468 1650 349 406 435 445 449 451 452 453 454 1700 342 396 423 433 436 438 439 440 441 1750 334 386 411 421 424 426 426 427 428 1800 328 377 401 409 412 414 415 416 416 1850 321 368 390 398 401 403 404 404 405 1900 315 359 381 388 391 393 393 394 395 1950 309 351 371 379 381 383 383 384 385 2000 303 343 362 369 372 373 374 374 375

KBSG型变压器二次侧电压1200V两相短路电流计算表

变压器容量(kVA)

电缆换算长度(m)

KBSG型变压器二次侧电压1200V两相短路电流计算表

变压器容量(kVA)

315 500 630 800 1000 315+315 500+500

0 3280 5204 5248 6061 6941 6564 10408 20 3221 5059 5111 5880 6711 6319 9796 40 3158 4898 4956 5672 6441 6048 9102 60 3091 4727 4789 5447 6146 5764 8397 80 3023 4551 4614 5214 5842 5479 7725 100 2952 4374 4437 4980 5539 5199 7108 120 2881 4198 4261 4749 5246 4930 6553 140 2809 4028 4089 4527 4966 4676 6058 160 2738 3863 3922 4314 4702 4436 5620 180 **** **** 3761 4113 4456 4213 5231 200 2599 3554 3608 3923 4228 4006 4886 220 2531 3411 3463 3746 4016 3813 4579 240 2464 3276 3325 3579 3820 3635 4305 260 2400 3149 3195 3424 3639 3470 4060 280 2337 3029 3073 3279 3472 3317 3839 300 2276 2916 2957 3144 3318 3175 3639 320 2218 2810 2843 3018 3175 3044 3458 340 2161 2710 2746 2901 3042 2922 3293 360 2106 2616 2650 2791 2919 2808 3143 380 2053 2527 2559 2688 2805 2702 3005 400 2002 2443 2474 2592 2699 2603 2879 420 1953 2364 2393 2502 2600 2511 2762 440 1906 2290 2317 2417 2507 2424 2654 460 1861 2219 2245 2338 2421 2343 2554 480 1817 2153 2177 2263 2339 2267 2461 500 1775 2090 2113 2192 2263 2195 2374

520 1735 2030 2052 2126 2191 2128 2294 540 1696 1973 1994 2063 2124 2064 2218 560 1658 1919 1939 2003 2060 2004 2147 580 1622 1868 1887 1947 2000 1947 2080 600 1587 1820 1837 1894 1943 1893 2018 620 1554 1773 1790 1843 1890 1842 1959 640 1522 1729 1745 1795 1839 1794 1903 660 1491 1687 1702 1749 1790 1748 1850 680 1461 1647 1661 1705 1744 1704 1800 700 1432 1608 1622 1664 1701 1662 1752 720 1404 1572 1585 1624 1659 1622 1708 740 1377 1536 1549 1586 1619 1584 1665 760 1351 1503 1515 1550 1581 1548 1625 780 1326 1470 1482 1516 1545 1513 1586 800 1301 1439 1451 1482 1510 1480 1549 820 1278 1410 1421 1451 1477 1448 1514 840 1255 1381 1392 1420 1445 1418 1480 860 1233 1353 1364 1391 1545 1388 1448 880 1212 1327 1337 1363 1386 1360 1417 900 1191 1302 1311 1336 1358 1333 1387 920 1171 1277 1286 1310 1311 1307 1359 940 1152 1253 1262 1285 1305 1282 1332 960 1133 1230 1239 1261 1280 1258 1305 980 1115 1208 1217 1237 1256 1235 1280 1000 1098 1187 1198 1215 1233 1213 1256 1050 1056 1137 1144 1162 1178 1160 1199 1100 1017 1091 1098 1114 1128 1112 1147 1150 980 1048 1055 1069 1083 1067 1100 1200 947 1009 1015 1028 1040 1026 1056 1250 915 972 978 990 1001 988 1015 1300 885 938 943 955 965 953 978 1350 857 906 911 922 931 920 943 1400 831 877 881 891 899 889 910 1450 806 849 853 862 870 860 880 1500 783 822 826 835 842 833 852 1550 761 798 801 809 816 808 825 1600 740 775 778 785 792 784 800 1650 720 753 756 763 769 761 777 1700 701 732 735 742 747 740 754 1750 684 712 715 721 727 720 733 1800 667 694 696 702 707 701 714 1850 650 676 679 684 689 683 695 1900 635 659 662 667 671 666 677

1950 620 643 646 650 655 649 660 2000 606 628 630 635 639 634 644

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 2、叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立 电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电 压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 、 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变 化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: )120sin()360240sin()240sin(); 120sin(); sin( ++=+-+=-+=-+=+=?ω?ω?ω?ω?ωt U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随 着时间t 的流逝,当?ω+t 值每增长360°(或2π)时,电压ua 就经过了一个

周期的循环,如下图所示: 图 如上图,t代表时间,?代表t=0时刻的角度(例如上图中ua当t=0时位于?),ω表示角速度即每秒变化多少度。例如电网的频率为50Hz,原点,即代表0 = 每秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算: :

两相短路电流计算

根据两相短路电流计算公式:I d=U e/2√(∑R)2+(∑X)2 其中∑R=R1/K b2+R b+R2;∑X=X X+X1/ K b2+X b+X2 式中I d--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; X X—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; K b—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5R b、X b—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 U e—变压器二次侧的额定电压,对于660V网络,U e以690V 计算;对于1140V网络,U e以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器R b=0.0167,X b=0.1246; 660V变压器R b=0.0056,X b=0.0415; 1140V系统下X X=0.0144; 660V系统下X X=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km;

352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km;252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km;162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.539948 ∑X=X X+X1/ K b2+X b+X2=0.118166 I d=U e/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.27092 ∑X=X X+X1/ K b2+X b+X2=0.20162 I d=U e/2√(∑R)2+(∑X)2=1776.73A 3、副井井下风机专用线最远端两相短路电流∑R=R1/K b2+R b+R2=0.2 ∑X=X X+X1/ K b2+X b+X2=0.086 I d=U e/2√(∑R)2+(∑X)2=1568A 4、主井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.09 ∑X=X X+X1/ K b2+X b+X2=0.06 I d=U e/2√(∑R)2+(∑X)2=3136A 5、主井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.277 ∑X=X X+X1/ K b2+X b+X2=0.2

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

短路电流计算公式修订稿

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数

Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)因为S=*U*I 所以 IJZ (KA)(2)标么值计算 容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量 S* = 200/100=2.

两相接地短路电流的计算

目录 1?前言........................................................................... ?仁1.1短路电流的危害 ............................................................... 1.. 1.2短路电流的限制措施 .......................................................... 1. 1.3短路计算的作用 .............................................................. 2.. 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 ....................................................... 9. 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例............................................................ 1.4 4. 结果分析....................................................................... 1.8. 5. 心得体会 (19) 6. 参考文献....................................................................... 20.

短路电流计算的方法

短路电流计算的方法 一、 网络的等值变换与化简 为计算不同短路点的短路电流值,需将等值网络分别化简为以短路点为衷心的辐射性等值网络,并求出个电源与短路点之间的转移电抗md X 。 1、 网络等值变换 在工程计算中,常用等值变换法进行化简,其原则是网络变换前后,应使未变换部分的电话和电流分布保持不变,常用的如星三角变换(查相关手册)。 2、 并联电源支路的合并(图) 112212121n n z n n n E y E y E y E y y y X y y y +++?=?+++???=?+++? 二、 三相短路电流周期分量的计算 1、 求计算电抗js X 计算电抗js X 是将各电源与短路点之间的转移阻抗md X 归算到以各供电电源(等值发电机)容量为基准值的电抗标幺值。 ..e m js m md j S X X S = 2、 无限大容量电源的短路电流计算 由无限大容量电源供给的短路电流,或者计算电抗3js X ≥时的短路电流,可以认为周期分量不衰减。短路电流标幺值: ** ''*1z X I X ∑= 或 *1z js X X = 其有名值:*''0.2z z j I I I I I I ∞====(kA ) ;j S I =式中:

*X ∑:无穷大容量电源到短路点之间的总阻抗(标幺值) ; ''I :0秒的短路电流(kA ) ; I ∞:稳态的短路电流(kA ) ; 3、 有限容量电源的电路电流计算 通常采用使用运算曲线法,查表,注意折算电抗。 4、 短路点短路电流周期分量 将2、3中所求得的所有短路电流相加。 三、 三相短路电流非周期分量的计算 1、 单支路的短路电流费周期分量计算 按下述公式计算: 起始值:''0fz i = t 秒值:''0a a t T T fzt fz i i e e ω--== 其中:a X T R ∑ ∑= (衰减时间常数) 2、 多支路的短路电流非周期分量计算 复杂网络中个独立支路的衰减时间常数相差较大时,可采用多支路叠加法。衰减时间常数相近的分支可以归并简化,复杂的常仅近似化简为3~4个独立分支的等值网络,多数情况下化简为两个等值网络:系统支路(15a T ≤)和发电机支路(1580a T ≤≤)。对n 支路的系统: 起始值:''''''012)fz n i I I I =+++ t 秒值:12''''''12)a a an t t t T T T fzt n i I e I e I e ωωω---=+++ 3、 等效衰减时间常数 查表 四、 冲击电流和全电流计算 1、冲击电流 三相短路发生后的半个周期(0.01s ),短路电流瞬时值达到最大,称

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

短路电流计算公式

二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV

道路照明设计中单相短路电流计算

道路照明设计中单相短路电流计算 照明设计是城市道路设计中比较重要的一项设计内容。为了确保城市道路照明能为车辆驾驶人员以及行人创造良好的视看环境,达到保障交通安全,提高交通运输效率,方便人民生活,防止犯罪活动和美化城市环境的效果,建设部于91年特制定了《城市道路照明设计标准》CJJ45-91.标准要求道路照明设计原则为“安全可靠、技术先进、经济合理、节约能源、维修方便。”并对照明标准、光源和灯具的选择、设计、照明供电和控制以及节能措施等方面做了较详尽的规定和要求,笔者在工程设计中运用和深入了解标准的过程中,确实得到了很多的益处,同时也发现一些不完善之处,比较突出的是规范中对照明供电保护及电缆选择没有做详细说明和要求,而这部分内容的设计正确与否直接影响到“安全可靠、技术先进、经济合理、节约能源、维修方便”这个基本原则。在道路实际使用中发生的电气故障,小到电缆烧毁,大到人身触电伤亡事故的出现,都于与此相关。笔者希望本文起抛砖引玉的作用,以引起有关部门的重视,并与本行业同仁一同探讨。 在道路照明配电中,由于配电线路较长,配电线路零序阻抗较大,单相接地(零)短路电流相对较小。为了计算低压配电系统的单相接地(零)电流,需要利用不对称短路电流的计算方法。不对称短路电流可利用计算三相短路的原则进行计算。因为电压的对称分量

与相应的电流对称分量成正比,因此在正序、负序和零序分量中,都能独立地满足欧姆定律和克希荷夫定律。正序、负序和零序电流也只产生相应地正序、负序和零序电压降,利用这一个重要的性质,可以用电工学中对称分量法分析在对称电路中所产生的各种不对称短路。 单相接地(零)短路电流的计算 不对称短路时,由于距发电机的电气距离很远,降压变压 器容量与发电机电源容量相比甚小,因此,可假定正序阻抗约等于负序阻抗。单相接地(零)短路电流按下式计算: 式中Up平均线电压(V)R0Σ,X0Σ,Z0Σ配电网络的总零序电阻,总零序电抗,总零序阻抗。R1Σ,X1Σ,Z1Σ配电网络的总正序电阻,总正序电抗,总正序阻抗。 电路中主要元件阻抗 1、电力系统正序电抗的计算在计算低压电力网络短路时,有时需要计入系统电抗XX,如果系统电抗不知,只有原线圈方面的 短路容量或高压短路器的额定容量Sdn(MVA)时,则系统正序电抗 可近似地按下式计算:式中 Uj=Up平均线电压(V)Sdn原线圈方面的短路容量或高压短路器的额定容量(KVA)。 2、变压器阻抗的计算 变压器的正序电阻: 变压器的正序电抗:式中ΔPd 变压器短路损耗(kW)Ue 变压器二次侧额定电压(V)Se 变压器额定容量(KVA)Ud% 变压器阻 抗电压百分比,变压器的零序电抗是与其本身结构和绕组的接法有关。

短路电流计算案例

短路容量及短路电流的计算 1、计算公式: 同步电机及发电机标么值计算公式: r j d d S S x X ?= 100%""* (1-1) 变压器标么值计算公式: rT j k T S S u X ? = 100%* (1-2) 线路标么值计算公式: 2*j j L L U S L X X ??= (1-3) 电抗器标么值计算公式: j j r r k k U I I U x X ? ?= 100%* (1-4) 电力系统标么值计算公式:s j s S S X = * (1-5) 异步电动机影响后的短路全电流最大有效值: 2 ""2""])1()1[(2)(M M ch s s ch M s ch I K I K I I I -+-++=?? (1-6) 其中:%"d x 同步电动机超瞬变电抗百分值 j S 基准容量,100MV A j U 基准容量,10.5kV j I 基准电流,5.5kA r S 同步电机的额定容量,MV A rT S 变压器的额定容量,MV A %k u 变压器阻抗电压百分值 L X 高压电缆线路每公里电抗值,取0.08km /Ω 高压电缆线路每公里电抗值,取0.4km /Ω L 高压线路长度,km

r U 额定电压,kV r I 额定电流,kA %k x 电抗器的电抗百分值 s S 系统的短路容量,1627MV A "s I 由系统送到短路点去的超瞬变短路电流,kA " M I 异步电动机送到短路点去的超瞬变短路电流,kA ,rM qM M I K I 9.0"= rM I 异步电动机的额定电流,kA qM K 异步电动机的启动电流倍数,一般可取平均值6 s ch K ?由系统馈送的短路电流冲击系数 M ch K ?由异步电动机馈送的短路电流冲击系数,一般可取1.4~1.7 2、接线方案 图1 三台主变接线示意图 3、求k1点短路电流的计算过程 3.1网络变换

根据两相短路电流计算公式

根据两相短路电流计算公式: Id=Ue/2√(∑R)2+(∑X)2 其中∑R=R1/Kb2+Rb+R2;∑X=XX+X1/Kb2+Xb+X2 式中Id--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; XX—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; Kb—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5 Rb、Xb—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 Ue—变压器二次侧的额定电压,对于660V网络,Ue以690V计算;对于1140V网络,Ue以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器Rb=0.0167,Xb=0.1246; 660V变压器Rb=0.0056,Xb=0.0415; 1140V系统下XX=0.0144; 660V系统下XX=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km; 352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km; 252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km; 162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下 660V系统最远端两相短路电流 ∑R=R1/Kb2+Rb+R2=0.539948 ∑X=XX+X1/ Kb2+Xb+X2=0.118166 Id=Ue/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流 ∑R=R1/Kb2+Rb+R2=0.27092 ∑X=XX+X1/Kb2+Xb+X2=0.20162 Id=Ue/2√(∑R)2+(∑X)2=1776.73A

相关文档
最新文档