常微分方程的差分方法实验

常微分方程的差分方法实验
常微分方程的差分方法实验

常微分方程的差分方法实验

三轮DES差分分析实验报告-刘杰

DES 差分分析实验报告 四大队四队五班 刘杰 一、实验目的 差分密码分析是一种选择明文攻击,是现代分组密码分析的重要方法之一,也是理论分析密码算法和算法抗攻击测试的重要依据之一。本实验通过3轮DES 简化算法的差分分析来达到加深学员对差分分析方法原理的理解和利用该原理分析实际问题的操作能力。 二、实验内容 (1)3轮DES 简化算法的差分分析; (2)通过三组明密文对(每组两个相关明文和相应密文),利用差分原理提取密钥。 明 文 密 文 748502CD38451097 03C70306D8A09F10 3874756438451097 78560A0960E6D4CB 486911026ACDFF31 45FA285BE5ADC730 375BD31F6ACDFF31 134F7915AC253457 357418DA013FEC86 D8A31B2F28BBC5CF 12549847013FEC86 0F317AC2B23CB944 三、实验原理 设DES 两个明密文对:=00m L R ***=00m L R =33c L R *** =33c L R 计算过程: (,)(,)(,)(,)=⊕=⊕=⊕⊕322312300123R L f R k R f R k L f R k f R k

(,)(,)****=⊕⊕300123R L f R k f R k 令:*'=⊕000L L L (,)(,)(,)(* **''=⊕=⊕⊕⊕⊕333001012323R R R L f R k f R k f R k f R k 观察得:在本次实验原始数据中,明文对*=00R R ,即* '=⊕=00000000000R R R 则(,)(,)** ''=⊕=⊕⊕33302323R R R L f R k f R k 同时有:=00m L R ***=00m L R =23R L ** =23R L 则可计算出:*'=⊕000L L L *'=⊕333R R R (,)(,)* ''⊕=⊕232330f R k f R k R L 则可得出: S 盒输入差:(())(())()()* *⊕⊕⊕=⊕232333E R k E R k E L E L S 盒输出差:()*-''⊕=⊕13 0D D P R L 分析过程: 令:()()*⊕=3312345678E L E L B B B B B B B B ()-''⊕=13 012345678P R L C C C C C C C C ()=312345678E L A A A A A A A A =312345678 k J J J J J J J J ()⊕=3312345678E L k X X X X X X X X *()⊕=3312345678E L k Y Y Y Y Y Y Y Y 基本思路:(分别计算12345678J J J J J J J J ) {|,()()∈=⊕⊕=⊕=i i i i i i i J T e s t x A x y B S x S y C ,,,,,,,=12345678i 对于本次实验的3个具有明文差(*,0)的明密文对,则可构造上面的3个 Test 集合,显然 ()()( )∈12 i i i i J Test Test Test t ,,,,,,,=12345678i 一种确定Ji 的直接方法: 1.建立26=64长度的数组J[64]={0}; 2.对Testi(r),r = 1,2,…,t ,若a ∈Testi(r),则 J[a] = J[a] + 1。 3.若J[b] =3,则6比特串b 就是可能的密钥比特 Ji 。 四、实验环境 Microsoft visual c++ 五、实验步骤 (1)计算简化算法第3轮S 盒输入差

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

有限差分法实验报告

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

差分编译码实验报告

实验十三差分编译码实验 一、实验目的 掌握差分编码/译码原理 二、实验内容 1、学习差分编译码原理 2、用示波器观察差分编码结果和译码结果 三、基本原理 差分码是一种把符号‘0’和‘1’反映在相邻码元的相对变化上的波形。比如,若以相邻码元的电位改变表示符号‘1’,而以电位不改变表示符号‘0’,如图13-1所示。当然,上述规定也可以反过来。由图可见,这种码波形在形式上与单极性或双极性码波形相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分波形也称相对码波形,而相应地称单极性或双极性波形为绝对码波形。差分码波形常在相位调制系统的码变换器中使用。 图13-1差分码波形 组成模块如下图所示: cclk d_out 端口说明: CCLK:编码时钟输入端 DIN:编码数据输入端 Diff-OUT:差分编码结果输出端 DCLK:译码时钟输入端

Diff-IN:差分译码数据输入端 DOUT:译码结果输出端 四、实验步骤 1、实验所用模块:数字编解码模块、数字时钟信号源模块。 实验连线: CCLK:从数字时钟信号源模块引入一高频时钟,如512K。 DIN:从数字时钟信号源模块引入一低频时钟,如16K。 DIFF-OUT与DIFF-IN短接。 DCLK与CCLK短接。 2、用示波器两探头同时观测DIN与DIFF-OUT端,分析差分编码规则。 3、用示波器两探头同时观测DIN与DOUT端,分析差分译码结果。 五、实验报告要求 设信息代码为1001101,码速率为128K,差分码的编码时钟为码速率的四倍,根据实验观察得到的规律,画出差分码波形。

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

差分方法实验报告

实验报告 课程名称:计算方法 院系:数学科学系 专业班级:数应1001 学号:1031110139 学生姓名:姚海保 指导教师:沈林 开课时间:2012至2013学年第一学期

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

一维波动方程的有限差分法

学生实验报告实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计02班 学生姓名______________ 学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年6月20日

1、三层显格式建立 由于题中h 0.1, 0.1h,x 0,1 ,t 0,2,取N 10, M 200,故令网比r 0.1,h X j j h, j 0,1,2,L 10,t k k ,k O,1L ,200 ,在内网个点处,利用二阶中心差商得到如下格式: k 1 k U J 2U J 2- k 1 U j k k U j 1 2U j h2 k U j 1 o h2 略去误差项得到: k 1 U j 其中j 1,2丄9,k 对于初始条件 2 k r U J1 1,2,L ,199,局部截断误差为 U x,0 sin U J k U j k r U j 2 o k 1 U J h2。 (3) 对于初始条件-u x,0 t x,建立差分格式为: sin x j sin Jh , J 利用中心差商,建立差分格式为: 0,1,2,L 10 (4) 对于边界条件将差分格式延拓使综上(3 )、 (4 )、 k 1 u j 其中r山o.1 1 U J 2 1 U j 0,即U1二U j1, J 0,1,2,L 10 (5) 0,t 0,2 ,建立差分格式为: U N 0,k 0,1,L ,200 k 0为内点,代入(3)得到的式子再与(5)联立消去 1 1 2 0 ’ 2 0 1 5 r U, 1 1 r U, r J 2 J J 2 (7 )得到三层显格式如下: U 0,t U 1,t k U0 (6 ) 、 2 k r U j 1 2 1 r2k 2 k U J r U J 1 k 1? U j , J U j (6) 1后整理得到: U j 1 (7) (局部截断误差为 1,2,L 9,k 1,2,L ,199 h2) 1 U j U J sin 1 2 0 2r U J 1 k U o X j k U N sin 2 0 r U j 0,k 0,1,2,L 10 Jh ,J 1 2r2u01, J 1,2,L 9 0,1L ,200 (8) 四?实验环境(所用软件、硬件等)及实验数据文件Matlab

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程 21d d y x y -=过点)1,2 (π 共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 x x y x y +-=d d 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 y x y =d d 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 13、二阶线性齐次微分方程的两个解12(),()y x y x ??==成为其基本解组的充要条件是 线性无关 。

相关文档
最新文档