天体距离红移常数及视向速度定律

天体距离红移常数及视向速度定律
天体距离红移常数及视向速度定律

天体距离红移常数及视向速度定律

湖南溆浦卫校刘生铁

为了理解光波的干涉红移,我们首先分析显而易见的水波干涉红移。假设有两个相距很近的水波源的波不断向前传播,如果两个水波频率相同,位相完全相反,水波完全抵消,无波前行,这两个水波干涉的结果,频率降低到零,出现最大的干涉效果及红移结果。如果两个水波频率相近,两个水波向前传播的过程中,每间隔几个波就抵消掉一个波,水波的频率减少了,也出现了水波的干涉红移。

大声音可以压制小声音,这是声波的干涉现象。

在军事上,用频率相近或相同的电磁波干扰敌人的电磁波信号,用强大的电磁波作战飞机压制敌人的电磁波信号,这都是利用电磁波干涉原理。光波也是一种电磁波,与水波及声波一样,也可以产生干涉红移。

星系发出的光各种频率的光都有,光与光之间的干涉更加强烈,宇宙空间又有来自各个方向的光干涉,光在漫长的宇宙旅途中,它无法不红移,只会越远越红移(z=ar, z为红移值,a为天体距离红移常数,r为距离)。红移至少包括多普勒红移;干涉红移;自行红移;康普顿红移。星系光谱红移值由这些红移共同组成。星系光谱红移值不仅与星系来去速度的快慢有关,更与星系距离的远近有关。星系光谱红移值包括了多普勒红移值及距离红移值。只用一种红移的公式来解释宇宙,太忽略了宇宙的复杂性。哈勃定律仅仅以多普勒红移为依据,毫不考虑其他几种光的红移,所以,哈伯定律不能计算星系退行速度。这些都说明远方星系不是快速离去的,宇宙不是无休止加速膨胀的。这个激烈争论了百余年的天文学老大难问题总算有了定论。宇宙由比原子还小的点爆炸起源的学说失去了理论的支撑。

滤光原理和红移原理共同决定了光有视界极限,因为任何光线随着传播距离的增加,都可红移成不可见的低频电磁波,更何况宇宙空间充满了稀薄的尘埃物质。视界外的天体用现有的望远镜看不到。r射线穿透力强,视界外遥远天体发出的r射线经长距离传播可以红移成可见光,所以,发出大量短r射线的类星体及短r射线暴天体在视界外是可以看到的。用红外线工作的望远镜应该望得远些。但红外线衍射性大,太远的图像较模糊。

根据多普勒效应原理公式:

v/c =(λ-λ0)/λ0=z

v/c=z

c为波的传播速度,v为波源的离去速度,λ为天体光谱波长测出值,λ0为实验室物质光谱波长测出值, z为红移值。当z=1时,v=c ,当红移值为1时,天体就以光速离去。天体以光速离去,天体发出的光是不能到达地球的,我们不可能看到这个天体。遥远的类星体我们可以看到,但多数类星体的红移值大于1 ,甚至大于10 ,如果光只有多普勒红移,没有其他红移的话,就意味着类星体是以几倍甚至十几倍光速离去。超光速离去的天体发出的光,我们肯定看不到。我们能够看到红移值大于1的类星体或短r射线暴天体,肯定光有多种红移,而且肯定类星体不是以超光速离去的,也说明宇宙不是加速膨胀的,空间也不是加速膨胀的。

既然哈勃定律不能计算星系退行速度,那又要用什么定律来计算星系的来去速度呢?

哈勃定律是根据多普勒效应推导出来的:v=ho×d ,v为星系退行速度,ho为哈勃常数,d为星系与地球的距离。

多普勒效应公式为:

(λ-λ0)/λ0=V/C

式中λ为视向运动物体所放出的波的实际所测得的波长,λ0为静止物体所发出的波的波长,V为视向运动速度,C为波的传导速度。此公式在声波很适应。在光波中,C就是光速。多普勒效应公式用于宇宙的长距离计算就不适应了。因为还存在光的距离红移,星系红移值包括了多普勒红移值及距离红移值两方面。哈勃定律由于没有考虑距离红移这一因素,所以不能用于星系退行速度的计算。

按照传统的红移概念,Z=(λ-λ0)/λ0 , 距离红移的公式应该为:

Z=ar=(λ-λ0)/λ0

天文界根据这一公式测出天体平均距离红移常数a。天体平均距离红移常数a是许多天体的红移值Z和天体与地球的距离r决定的。统计的天体越多,a值就越正确。

a=(λ-λ0)/λ0r

以频率计算,距离红移公式为:

Z=ar=(F-f)/f

a=(F-f)/fr

Z为距离红移值,a为许多天体的平均红移值所决定的距离红移常数,在这许多天体中,有些天体离地球而去,有些天体向地球而来,经统计平均后的红移值就相当于与地球没有相对速度天体的红移值。r为天体与地球的距离,λ为天体光谱波长的实测值,λ0为太阳光谱的波长或实验室物质的光谱波长。F为实验室物质光谱的频率,f 为天体光谱频率实测值。统计的天体越多,a值就越正确。

V/C=(λ-λ0)/λ0=Z

天体红移的Z值减去距离红移的Z值就是多普勒红移的Z值。

V/C=Z-ar

V=(Z-ar)C

如果某星系的Z值是0.3,a值是天文界测出的常数,如果能测出其r值的话,如果ar值为0.299的话,该星系的离去速度是0.001C,也就是千分之一光速。这是天体相对于地球的离去速度。

太阳系和地球在银河系中以很高的速度移动。要想计算仙女系与银河系的靠拢速度,就应该以银河系星系核黑洞与仙女系的相对速度为准。就需要应用另一种多普勒效应公式,如果用波的频率来衡量波的红移,多普勒效应公式为:

f/F=(C-U)/(C+V) 或 V=[(C-U)F/f]-C

f为运动物体所发出波的所测频率,F为静止物体波的频率,C 为波的传播速度,U为观察者的运动速度,向着波源运动用“+”号,离开运动用“-”号,V为波源的运动速度,向着观察者运动用“-”号,离开观察者运动时用“+”号。

距离红移所产生的频率降低至f′:

Z=ar=(F-f′)/f′

f′=F/(ar+1)

f+(F-f′)就是天体多普勒红移所产生的频率降低

V=[(C-U)F/(f+F-f′)]-C

V为天体的来去速度,正值代表离去速度,负值代表靠拢速度。作者刘生铁提出的这一定律与哈勃定律比较,具有本质区别:

1、哈勃定律没有考虑光的距离红移,计算出的天体视向速度绝大多数都是快速离去的,而且越远的天体离去速度越快,甚至是超光速的离去。刘生铁定律计算出的天体视向速度,有些天体快速离去,有些天体快速靠拢,还有些天体即不离去,也不靠拢,天体视向速度与距离无关,越远的天体离去速度并不是越快。

2、用哈勃定律推导出的宇宙学理论是宇宙点爆炸起源论、宇宙加速膨胀熄灭论、宇宙大崩塌论等,这些悲观错误的宇宙学理论无法解释宇宙现象和原子现象。天文界对哈勃定律的争论从未停止过,只是

一直未能论证光有多种红移而一直未能推翻。刘生铁定律就是建立在光有多种红移这一理论基础之上的。用这一定律推导出的宇宙学理论是宇宙动态循环理论,不仅可以解释宇宙奥秘,还可以解释原子奥秘。

3、哈勃定律公式简单容易理解,只适用于近距离快速运动的天体,如粗略计算仙女星系的靠拢速度基本适应,但不精确,如果要计算遥远星系的视向速度就不适应了,就会出现极快的离去速度。刘生铁定律公式复杂很难理解,是天文数学的一大理论难点,必须仔细思考才能理解,此定律不仅适用于近距离天体视向速度的精确计算,更适用于遥远星系视向速度的精确计算。

(完整版)天体运动知识点

第二讲天体运动 一、两种对立的学说 1.地心说 (1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说 (1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律 行星运动的近似处理 在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心; (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2=k. 三、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力. 2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F∝___m r 2__.这表明:太阳对 不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___. 3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F′∝_M r 2 4.太阳与行星间的引力:根据牛顿第三定律F =F′,所以有F∝Mm r 2_,写成等式就是F =_ G Mm r 2__. 四、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.公式: F=G Mm r 2 (1)G 叫做 引力常量 , (2)单位:N ·m2/kg2 。在取国际单位时,G 是不变的。 (3)由卡文迪许通过扭秤实验测定的,不是人为规定的。 3.万有引力定律的适用条件 (1)在以下三种情况下可以直接使用公式F =G m1m2 r2 计算: ①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离. ②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离. ③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离. (2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2 r2得出r→0 时F→∞的结论而违背公式的物理含义. 内容 理解 开普勒第一定律 所有行星绕太阳运动的轨道都 是椭圆,太阳处在椭圆的一个上。 开普勒第一定律又叫轨道定律. 某个行星在一个固定平面的轨道上运动。 不同行星的运动轨道是不同的。 开普勒第二定律 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等. 开普勒第二定律又叫面积定律. 行星运动的速度是在变化的,近日点速率最大,远日点速率最小。 开普勒第三定律 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等 表达式 a 3T 2 =k 第三定律也叫周期定律 K 与中心天体的质量有关,与行星的质量无关。 如果围绕着同一个恒星运动,对于所有行星而言,K 是相同的。如果围绕着不同的恒星,K 不同。 此公式使用于所有天体。

行程问题公式讲解

行程问题公式 行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。 基本公式 路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间 关键问题 确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和 相遇问题(直线)

甲的路程+乙的路程=总路程 相遇问题(环形) 甲的路程 +乙的路程=环形周长 追及问题 追及时间=路程差÷速度差 速度差=路程差÷追及时间 路程差=追及时间×速度差 追及问题(直线) 距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形) 快的路程-慢的路程=曲线的周长流水问题 顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 解题关键 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式: 顺水速度=船速+水速,(1) 逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里 所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。 另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。 例:设后面一人速度为x,前面得为y,开始距离为s,经时间t后相差a米。那么 (x-y)t=s-a

太阳周日视运动知识归纳

太阳周日视运动 地球运动部分的知识点,尤其是太阳视运动对于一般高中学生而言较难理解,因为缺乏空间想象能力,且高中地理教材对于该块内容几乎是空白,而在高考中对太阳视运动有一定的要求,掌握和理解太阳视运动规律有利于解决地球运动的知识点,所以笔者认为掌握一定的太阳视运动知识是有必要的。 太阳视运动规律一般与直射点位置联系在一起,太阳视运动可以分为周日视运动与周年视运动。这里我们研究不同地区,不同季节的太阳周日视运动状况。 一、太阳周日视运动周期 地球自西向东的自转,从地球上看地球以外的任 何天体都有东升西落的周日运动。以恒星为参考体的 自转周期,即恒星的周日运动周期,定义为恒星日, 再划分为恒星时,分,秒,构成恒星时系统。以太阳 为参考体的自转周期,即太阳的周日运动周期,定义 为太阳日,再划分为太阳时,分,秒,构成太阳时系 统。两者的时间差异在于地球在自转的同时也在绕太 阳公转。 已知地球公转一周为365.2564 日,则地球日平均 角速度是:360°÷365.256日=0.98561°(即59′8″.196)当地球自转一周,完成一个恒星日后,还须绕过△t=59′8″.196,才能完成一个太阳日。可见,太阳日比恒星日多出59′8″.196。已知恒星日地球自转一周为23 时56 分 4 秒(即1436.06667 分),则地球自转1°的时间是:1436.06667 分÷360°=3.989074 分(或24 时÷360°59′8″.196=3.989074 分),3.989074分×59′8″.196=3 分55.9622 秒=3 分56 秒,所以一太阳日:23 时56 分4 秒+3 分56 秒=24 时。二、昼夜长短状况 高中地理教学中,我们经常利用昼弧长除以150来表示昼长,如果太阳视运动轨迹在地平线之上(此时为昼)的长度大于半个圆,则昼大于夜,反之昼短于夜;如果始终在地平线之上为极昼,反之为极夜。 与直射点位置关系为:直射点所在半球,昼大于夜,且直射点纬度越高昼夜差异越大;直射点向某半球移动,该半球的白昼增长。 三、日出日落的太阳方位 人们常说:“太阳东升西没”。而且习惯以日出地平线的一点代表东方,日没地平线的一点代表西方。在人们的心目中,太阳的出没点是判断地面东西方向的标志。然而,严格地说来,仅把太阳的出没地点作为地平面正东正西方向的判断标准,这显然是不准确的。因为,在地球表面上,同一纬度地点的不同季节,或同一季节不

第3章-紫外-可见分光光度法

第3章 紫外-可见分光光度法 一、内容提要 1、电子跃迁类型 σ→σ*跃迁、π→π*跃迁、n →π*跃迁、n →σ*跃迁、电荷迁移跃迁、配位场跃迁。 2、常用术语 1)最大吸收波长:曲线上的峰(吸收峰)所对应的波长,以m ax λ表示。 2)最小吸收波长:曲线上的谷(吸收谷)所对应的波长,以m in λ表示。 3)肩峰:在吸收峰旁边存在一个曲折,对应的波长以sh λ表示。 4)末端吸收:在200nm 附近,吸收曲线呈现强吸收却不成峰形的部分。 5)生色团:分子中可以吸收光子而产生电子跃迁的原子基团。有机化合物的生色团主要是含有π→π*或n →π*跃迁的基团(>C =C <、>C =O 、>C =S 、—N =N —、—N =O 等)。 6)助色团:含有非键电子的杂原子饱和基团(如—OH 、—SH 、—OR 、—SR 、—NH 2、—Cl 、—Br 、—I 等),它们本身不能吸收波长大于200nm 的光,但当它们与生色团相连时,能使该生色团的吸收峰向长波长方向移动,并使吸收强度增强。 7)红移和蓝移:化合物常因结构的变化(发生共轭作用、引入助色团等)或溶剂的改变而导致吸收峰的最大吸收波长m ax λ发生移动。m ax λ向长波长方向移动称为红移;m ax λ向短波长方向移动称为蓝移。 8)增色效应和减色效应:因化合物的结构改变或其他原因而导致吸收强度增强的现象称为增色效应,有时也称为浓色效应;反之,导致吸收强度减弱的现象称为减色效应,有时也称为淡色效应。 9)吸收带:不同类型的电子跃迁在紫外-可见光谱中呈现的不同特征的吸收峰。 10)强带和弱带:摩尔吸收系数大于104的吸收带为强带;摩尔吸收系数小于102的吸收带为弱带。 3、吸收带 1)R 带:跃迁类型为n →π*,波长范围为250~500nm ,吸收强度ε<102。溶剂极性增大时蓝移。R 带是杂原子的不饱和基团(>C =O 、-NO 、-NO 2、-N =N -等)的特征。 2)K 带:跃迁类型为π→π*(共轭),波长范围为210~250nm ,吸收强度ε>104。共轭双键延长时红移,且吸收强度增大。溶剂极性增大时红移。 3)B 带:跃迁类型为苯环的骨架伸缩振动与苯环内的π→π*跃迁,波长范围为230~270nm ,吸收强度ε≈200。蒸气状态下可呈现精细结构。B 带是芳香族(包括杂芳香族)化

初二物理速度路程时间典型计算题

初二物理速度路程时间典型计算题 班级_____________ 姓名_______________ 一.路线垂直问题 1.子弹在离人17m处以680m/s的速度离开枪口,若声音在空气中的速度为340m/s,当人听到枪声时,子弹己前进了多少? 2.飞机速是声速的1.5倍飞行高度为2720m,,当你听到飞机的轰鸣声时,抬头观看飞机已飞到你前方多远的地方?(15℃) 二.列车(队伍)过桥问题 3.一列队长360m的军队匀速通过一条长1.8km的大桥,测得军队通过大桥用时9min,求:(1)军队前进的速度;(2)这列军队全部在大桥上行走的时间。 4.长130米的列车,以16米/秒的速度正在行驶,它通过一个隧道用了48秒,这个隧道长多少米? 5.长20m的火车,以36km/h的速度匀速通过一铁桥,铁桥长980m.问这列火车过桥要用多少时间? 三.平均速度问题 6.汽车先以4米/秒的速度开行20秒,接着又以 7.5米/秒的速度开行20秒,最后改用36千米/小时的速度开行5分种到达目的地,求:(1)汽车在前40秒内的平均速度;(2)整个路程的平均速度。 7.汽车从A站出发,以90Km/h的速度行驶了20min后到达B站,又以60Km/h的速度行驶了10min到达C站,问(1)两站相距多远?(2)汽车从A站到C站的平均速度? 8.汽车在出厂前要进行测试。某次测试中,先让汽车在模拟山路上以8米/秒的速度行驶500秒,紧接着在模拟公路上以20米/秒的速度行驶100秒。求:(1)该汽车在模拟公路上行驶的路程。(2)汽车在整个测试中的平均速度。

四.回声问题 9.一辆汽车以15m/s的速度正对山崖行驶,鸣笛后2s听到回声,问: (1)鸣笛处距山崖离多远? (2)听到回声时,距山崖多远? 10.一辆匀速行驶的汽车在离高楼500m处鸣笛,汽车直线向前行驶20m后,司机刚好听到鸣笛的回声,求汽车的速度(15℃) 11.一辆汽车以36Km/h的速度朝山崖匀速行驶,在离山崖700m处鸣笛后汽车直线向前行驶一段路程听到刚才鸣笛的回声,求:(1)听到回声时汽车离山崖有多远. (15℃) 五.声速问题 12.一门反坦克炮瞄准一辆坦克,开炮后经过0.6s看到炮弹在坦克上爆炸,经过2.1s听到爆炸的声音,求:(1)大炮距坦克多远?(2)炮弹的飞行速度多大? 13.甲同学把耳朵贴在长铁管的某一端,乙同学在长铁管的另一端敲一下这根铁管,甲同学先后听到两次响声,其时间差0.7s,试计算铁管有多长(声音在铁中速度为5100m/s,空气的速度为340m/s)? 六.声速测距问题 14.已知超声波在海水找能够传播速度是1450米/秒,若将超声波垂直想海底发射出信号,经过4秒钟后收到反射回来的波,求海洋深度是多少? 15.在一次爆破中,用一根长1m的导火线引爆炸药,导火线以0.5cm/s的速度燃烧,点火者点着导火线后以4m/s的速度跑开,他能否在爆炸前跑到离爆炸地点600m的安全地区? 16.一名同学骑自行车从家路过书店到学校上学,家到书店的路程位1800m,书店到学校的路程位3600m.当他从家出发到书店用时5min,在书店等同学用了1min,然后二人一起再经过了12min到达学校.求:(1)骑车从家到达书店这段路程中的平均速度是多少?(2)这位同学从家里出发到学校的全过程中的平均速度是多大?

太阳周日视运动轨迹的绘制及计算

太阳周日视运动轨迹的绘制及计算 洛阳市第十九中学(471000) 王安周 本刊在2015年第17期发表《日出日落时间和方位的计算及太阳周日视运动轨迹示意图的制作方法》 [1],经过仔细阅读发现一些值得商榷的地方,比如日出太阳方位计算公式、赤道上日出方位、太阳周日视 运动轨迹的绘制等。以地面观测者为中心,太阳“东升西落”,24小时绕地轴并随天球旋转一周,其在天球上运行的轨迹称为太阳周日视运动(简称太阳周日圈)。借助天球坐标体系,对其构成要素、特点和绘制方法进行量化分析,实现了对其运动轨迹路径图准确绘制。 一、太阳周日视运动轨迹探究 地球仪地轴水平横放,固定粉笔垂直放于地球仪表面,拨动地球仪自转一周,记录留下痕迹;多次重复上述操作且更换粉笔颜色,观察留下的笔迹。表明地球仅自转,不同季节太阳直射点运动轨迹均为平行于纬线圈的一系列圆圈,范围介于南北回归线之间(图1)。 图1 仅自转太阳直射点运动轨迹 图2太阳周日视运动在天球上的投影 地心天球是以地球球心为中心,以无限大为半径,内表面分布着各种各样天体的假想球体。为了研究方便,引入天球坐标体系,地球的地轴无限延伸与天球交点,分别为北天极和南天极,地球的赤道平面无限伸延与天球交线,就是天赤道[2]。若以地面观察者为中心,观测者和太阳连线无限延长与天球的交点,若把一太阳日内这些交点用平滑曲线连接起来,就是太阳周日视运动的轨迹,其实质上就是一天中太阳直射点移动轨迹在天球上投影(图2)。 二、太阳周日视运动构成要素 为了准确描绘太阳视运动的轨迹,假设观察点所在纬度为?,太阳直射点所在纬度为δ,天球半径为 R ,在图2基础上绘制图3a 、3b 、3c 。图3a 表示北纬?的地平圈上二分二至日太阳视运动轨迹分布图,图 3b 为图3a 的侧视结构图,可以揭示不同季节太阳视运动在天球中的位置,图3c 为太阳视运动轨迹在地平圈上的立体图,更加清晰表示不同季节太阳在天球中的位置。根据图3中信息,对太阳周日视运动的构成要素及其特点进行详细分析。 (1)平行:由图3a 可知,在天球坐标系中,不同季节的太阳周日视运动圈都平行于天赤道,因此,相对于同一地平圈而言,太阳周日视运动轨道面都相互平行[3]; 南回归线 赤 道 北回归线 粉笔 图3 北纬?的地平圈上二分二至日太阳视运动轨迹分布图、结构图和立体图 E P O H C D G A 夏至 冬至 二分W C 冬至 夏至 天赤道 二分 北天极 南天极

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

有机波谱分析参考题库及答案

有机波谱分析参考题库及答案 第二章:紫外吸收光谱法一、选择 81. 频率(MHz)为4.47×10的辐射,其波长数值为 (1)670.7nm (2)670.7μ (3)670.7cm (4)670.7m 2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了 (1)吸收峰的强度 (2)吸收峰的数目 (3)吸收峰的位置 (4)吸收峰的形状 3. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大 (2)波长短 (3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 4. 化合物中,下面哪一种跃迁所需的能量最高 **** (1)ζ?ζ (2)π?π (3)n?ζ (4)n?π *5. π?π跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大 (1)水 (2)甲醇 (3)乙醇 (4)正己烷 6. 下列化合物中,在近紫外区(200,400nm)无吸收的是 (1) (2) (3) (4) 7. 下列化合物,紫外吸收λ值最大的是 max (1) (2) (3) (4) 二、解答及解析题 1. 吸收光谱是怎样产生的,吸收带波长与吸收强度主要由什么因素决定, 2. 紫外吸收光谱有哪些基本特征, 3. 为什么紫外吸收光谱是带状光谱, 4. 紫外吸收光谱能提供哪些分子结构信息,紫外光谱在结构分析中有什么用途又有何局限性,

, 5. 分子的价电子跃迁有哪些类型,哪几种类型的跃迁能在紫外吸收光谱中反映出来? 6. 影响紫外光谱吸收带的主要因素有哪些, 7.有机化合物的紫外吸收带有几种类型,它们与分子结构有什么关系, 8. 溶剂对紫外吸收光谱有什么影响,选择溶剂时应考虑哪些因素, 9. 什么是发色基团,什么是助色基团,它们具有什么样结构或特征, **10.为什么助色基团取代基能使烯双键的n?π跃迁波长红移,而使羰基n?π跃迁波长蓝移, *11. 为什么共轭双键分子中双键数目愈多其π?π跃迁吸收带波长愈长,请解释其因。 12. 芳环化合物都有B吸收带,但当化合物处于气态或在极性溶剂、非极性溶剂中时,B吸收带的形状有明显的差别,解释其原因。 13. pH对某些化合物的吸收带有一定的影响,例如苯胺在酸性介质中它的K吸收带和B吸收带发生蓝移,而苯酚在碱性介质中其K吸收带和B吸收带发生红移,为什么,羟酸在碱性介质中它的吸收带和形状会发生什么变化, 14. 某些有机化合物,如稠环化合物大多数都呈棕色或棕黄色,许多天然有机化合物也具有颜色,为什么, 15. 六元杂环化合物与芳环化合物具有相似的紫外吸收光谱,请举几个例子比较之,并解释其原因。 16. 紫外光谱定量分析方法主要有哪几种,各有什么特点, 17. 摩尔吸光系数有什么物理意义,其值的大小与哪些因素有关,试举出有机化合物各种吸收带的摩尔吸光系数的数值范围。 18. 如果化合物在紫外光区有K吸收带、B吸收带和R吸收带,能否用同一浓度的溶液测量此三种吸收带, 19. 紫外分光光度计主要由哪几部分所组成,它是怎样工作的,

天体运动专题(一)

天体运动专题(一) 一、人类认识宇宙的过程 (1)模型及学说 1.地心说:代表:托勒密 内容:地球是世界的中心,并且静止不动,一切行星围绕地球做匀速圆周运动。 2.日心说:代表:哥白尼 内容; 太阳是世界的中心,并且静止不动,一切行星都围绕太阳做圆周运动 (2)探究方法 假设法; 假设火星的轨道是圆形+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→偏差较大→假设不成立→再一次运用假设法; 假设火星的轨道是椭圆+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→几乎密合→假设成立 定律内容图示 开普勒第一定律所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 开普勒第二定律对任意一个行星而言,它与太阳的连线在相等的时间内扫过相等的面积 开普勒第三定律所有行星轨道半长轴的三次方跟它的公转周期的二次方的比值都相等.32 / a T K 特别提示:(1)开普勒三定律虽然是根据行星绕太阳的运动总结出来的,但也适用于卫星绕行星的运动.(2)开普勒第三定律中的k是一个与运动天体无关的量,只与被环绕的中心天体有关. 专题训练一 1.2016(全国新课标III卷,14)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 2、[2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天B.25天C.35天D.45天 3、(2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() (A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等 (C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 (D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 4.【2017?新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日 点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。若只 考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中( ) A.从P到M所用的时间等于T0/4 B.从Q到N阶段,机械能逐渐变大 C.从P到Q阶段,速率逐渐变小 D.从M到N阶段,万有引力对它先做负功后做正功

小学四年级数学《路程、时间与速度

小学四年级数学《路程、时间与速度 》教案模板三篇《速度、时间、路程之间的关系》是四年级“数与代数”的部分内容。本课的学习,目的是要让学生在实际情境中,理解并掌握路程、速度与时间三者之间的关系。下面就是小编给大家带来的小学四年级数学《路程、时间与速度》教案模板,欢迎大家阅读!——教学目的:1.在实际情境中,理解路程、时间与速度之间的关系。2.根据路程、时间与速度的关系,解决生活中简单的问题。3.树立生活中处处有数学的思想。 ——教学重点:理解路程、时间与速度之间的关系。 ——教学难点:理解路程、时间与速度之间的关系。 ——教学准备:主题图。 ——教学方法:谈话法;情境教学法。 一、谈话导入 师:在生活中,我们经常会遇到一些数学问题,这些问题和我们的日常生活息息相关,我们一起来看看吧。(出示主题图) 二、探索路程、时间与速度之间的关系 1.学生思考:要想知道谁跑得快,要比较什么?你有什么办法? 2.小组交流,明确:要想知道谁跑得快,就要看看同一时间里谁跑得远,谁就快。这个同一时间在这里就是1小时,那么拖拉机1小时跑了120÷2=60(千米)而面包车1小时跑了210÷3=70(千米)60<70,因此,面包车跑得快。 3.教师引导学生了解单位时间即为:1时、1分、1秒。在单位时间内所行驶的路程叫做速度。本题中,拖拉机的速度是60千米/时,而面包车的速度为70千米/时。因此,面包车的速度快。 联系生活实际,使学生明白要想知道谁跑得快,不是看谁行驶的路程多,而是要看统一时间内谁跑得远,建立单位时间的表象。

4.让学生根据这一情境得出路程、时间、速度三者的关系。速度=路程÷时间 5.看一看。 出示生活中常见的数据,拓展学生对日常生活中速度的认识,也可以把学生课前收集到的数据进行交流。——通过实例,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养学生收集、处理信息的能力和获取知识的能力。 三、巩固练习 1.完成“试一试”第一题。让学生看图,根据情境解答。进一步巩固路程、时间、速度三者的关系。 2.完成“试一试”第2题。 三个算式结合具体情境去体会、思考、交流、汇报。让学生进一步理清三者关系。 四、总结谈话——这节课,你有什么收获呢? 第4课时:路程、时间与速度 教学目的:1.根据路程、时间与速度的关系,解决生活中简单的问题。2.树立生活中处处有数学的思想。 教学重点难点:根据路程、时间与速度的关系,解决生活中简单的问题。 一、复习导入 上节课,我们了解了路程、时间与速度之间的关系,谁来说说这三者之间存在什么样的关系? 让学生理清三者关系,为下面的练习打基础。 二、综合练习 1.完成“xx”第一题。

波谱分析概论作业

浙江大学远程教育学院 《波谱分析概论》课程作业 姓名: 学 号: 年级: 2014秋药学 学习中心: 衢州学习中心 ————————————————————————————— 第一章 紫外光谱 一、简答 1.丙酮的羰基有几种类型的价电子。试绘出其能级图,并说明能产生何种电子跃迁?各种 跃迁可在何区域波长处产生吸收? 答:有n 电子和π电子。能够发生n →π*跃迁。从n 轨道向π反键轨道跃迁。能产生R 带。 跃迁波长在250—500nm 之内。 2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。 (2)(1)及 NHR 3CH CH OCH 3 CH 及CH 3CH CH 2 答:(1)的后者能发生n →π*跃迁,吸收较长。 (2)后者的氮原子能与苯环发生P →π共轭,所以或者吸收较长。 3.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因 (在乙醇中)。 (C)(B)(A)入max =420 εmax =18600入max =438 εmax =22000入max =475 εmax =320003N N N NO HC 32(CH )2N N N NO H C 32(CH )2 232(CH )(CH )23N N N NO

答:B 、C 发生了明显的蓝移,主要原因是空间位阻效应。 二、分析比较 1.指出下列两个化合物在近紫外区中的区别: CH CH 32 (A)(B) 答:(A )和(B )中各有两个双键。(A )的两个双键中间隔了一个单键,这两个双键 就能发生π→π共轭。而(B )这两个双键中隔了两个单键,则不能产生共轭。所以 (A )的紫外波长比较长,(B )则比较短。 2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n →π*跃迁及π→π* 跃迁有何影响?用能级图表示。 答:对n →π*跃迁来讲,随着溶剂极性的增大,它的最大吸收波长会发生紫移。而π→π *跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性的增大,它会发生红移。 三、试回答下列各问题 某酮类化合物λ hexane max =305nm ,其λEtOH max =307nm,试问,该吸收是由n→π*跃迁还是π→π*跃迁引 起的? 答:乙醇比正己烷的极性要强的多,随着溶剂极性的增大,最大吸收波长从305nm 变动到 307nm ,随着溶剂极性增大,它发生了红移。化合物当中应当是π→π反键轨道的跃迁。 第二章 红外光谱 一、回答下列问题: 1. C —H ,C —Cl 键的伸缩振动峰何者要相对强一些?为什么? 答:由于CL 原子比H 原子极性要大,C —CL 键的偶极矩变化比较大, 因此C —CL 键的吸收峰比较强。 2. νC═O 与νC═C 都在6.0μm 区域附近。试问峰强有何区别?意义何在? 答:C=C 双键电负性是相同的,C=O 双键,O 的双键电负性比C 要强。在振动过程中, 肯定是羰基的偶极矩的变化比较大,所以羰基的吸收峰要比C=C 双键的强的多。

第七章 分子荧光法

第七章分子荧光分析法 第一节概述 物质的分子吸收一定的能量后,其电子从基态跃迁到激发态,如果在返回基态的过程中伴随有光辐射,这种现象称为分子发光(molecular luminescence),以此建立起来的分析方法,称为分子发光分析法。 物质因吸收光能激发而发光,称为光致发光(根据发光机理和过程的不同又可分为荧光和燐光);因吸收电能激发而发光,称为电致发光;因吸收化学反应或生物体释放的能量激发而发光,称为化学发光或生物发光。根据分子受激发光的类型、机理和性质的不同,分子发光分析法通常分为荧光分析法,燐光分析法和化学发光分析法。 荧光分析法历史悠久。早在16世纪西班牙内科医生和植物学家N.Monardes,就发现含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现出极为可爱的天蓝色,但未能解释这种荧光现象。直到1852年Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到它们能发射比入射光波长稍长的光,才判明这种现象是这些物质在吸收光能后重新发射的不同波长的光,从而导入了荧光是光发射的概念,并根据荧石发荧光的性质提出“荧光”这一术语,他还论述了Stokes位移定律和荧光猝灭现象。到19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600多种荧光化合物。近十几年来,由于激光、微处理机和电子学新成就等科学科术的引入,大大推动了荧光分析理论的进步,促进了诸如同步荧光测定、导数荧光测定、时间分辨荧光测定、相分辨荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、荧光反应速率法、三维荧光光谱技术和荧光光纤化学传感器等荧光分析方面的发展,加速了各种新型荧光分析仪器的问世,进一步提高了分析方法的灵敏度、准确度和选择性,解决了生产和科研中的不少难题。 目前,分子发光分析法在生物化学,分子生物学,免疫学,环境科学以及农牧产品分析,卫生检验、工农业生产和科学研究等领域得到了广泛的应用。 第二节分子荧光分析法的基本原理 一、荧光(燐光)光谱的产生 物质受光照射时,光子的能量在一定条件下被物质的基态分子所吸收,分子中的价电子发生能级跃迁而处于电子激发态,在光致激发和去激发光过程中,分子中的价电子可以处于不同的自旋状态,通常用电子自旋状态的多重性来描述。一个所有电子自旋都配对的分子的电子态,称为单重态,用“S”表示;分子中的电子对的电子自旋平行的电子态,称为三重态,

路程速度时间基础计算题

路程、时间和速度 讲出意义并能比较速度的快慢。 如:4千米/时表示() 12千米/分表示() 340米/秒表示() 练习:1、飞机的速度是1425千米/时,小轿车3小时行驶285千米。 (1)小轿车每小时行驶多少千米 (2)飞机的速度是小轿车的几倍 2、甲、乙两地相距150千米。一辆汽车从甲地开往乙地,行了3小时后,离乙地还有15千米。这辆汽车平均每小时行多少千米 3、甲、乙两地相距2760千米。一列火车从甲地开往乙地,以每时120千米的速度行驶了20时,离乙地还有多远 4、两辆汽车同时从车站相反方向开出,它们的速度分别是45千米/时和38千米/时,经过3小时,两车相距多少千米 5、甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇

6、一列火车车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间 路程速度时间应用题 1、这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间 2、石家庄到承德的公路长是546千米。红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达 3、一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄。结果只用了3个小时就到达了。这辆汽车实际平均每小时行驶多少千米 4、一列火车,提速前平均每小时行驶71千米,从秦皇岛到邯郸用12小时,提速后平均每小时行驶95千米,提速后从秦皇岛开往邯郸大约需要几小时 5、一辆从北京到青岛的长途客车,中途经过天津和济南。早晨6:30从北京发车,平均每小时行驶85千米,大约何时可以到达青岛 北京到天津137km;天津到济南360km;济南到青岛393km。 6、从甲地到乙地936千米,大车行3小时走216千米,从甲地到乙地1066千米,小车行4小时走312千米,问哪车先到达

无机化学第三章

3-1 晶体 3-1-1 晶体的宏观特征 晶体有一定规则的几何外形。不论在何种条件下结晶,所得的晶体表面夹角(晶角)是一定的。晶体有一定的熔点。晶体在熔化时,在未熔化完之前,其体系温度不会上升。只有熔化后温度才上升。 3-1-2 晶体的微观特征 晶体有各向异性。有些晶体,因在各个方向上排列的差异而导致各向异性。各向异性只有在单晶中才能表现出来。晶体的这三大特性是由晶体内部结构决定的。晶体内部的质点以确定的位置在空间作有规则的排列,这些点本身有一定的几何形状,称结晶格子或晶格。每个质点在晶格中所占的位置称晶体的结点。每种晶体都可找出其具有代表性的最小重复单位,称为单元晶胞简称晶胞。晶胞在三维空间无限重复就产生晶体。故晶体的性质是由晶胞的大小、形状和质点的种类以及质点间的作用力所决定的。 3-2 晶胞 3-2-1 晶胞的基本特征 平移性 3-2-2 布拉维系 十四种不拉维格子 类型说明 单斜底心格子(N )单位平行六面体的三对面中有两对是矩形,另一对是非矩形。两对矩形平面都垂直于非矩形平面,而它们之间的夹角为β,但∠β≠90°。a0≠b0≠c0,α= γ=90°,β≠90° 正交原始格子(O )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交体心格子(P )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交底心格子(Q )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交面心格子(S )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 立方体心格子( B )属于等轴晶系,单位平行六面体是一个立方体。单位平行六面体参数为:a0 = b0 = c0α= β= γ= 90 ° 立方面心格子(F) 属于等轴晶系,单位平行六面体是一个立方体。位平行六面体参数为:

路程速度时间公式

路程速度时间公式 路程速度时间公式 速度 = 路程除以时间: u=s/t 路程 = 速度乘以时间: s=ut 时间 = 路程除以速度: t=s/u 1m/s=3.6km/h 1,一辆汽车在 5min 内通过的距离是 36000m ,求汽车的速度? 2,一辆汽车在做匀速运动速度是 30m/s ,它在 3min 内行驶的路程是多少? 3 ,一辆汽车的平均速度是 25m/s ,它行驶了 900m ,求汽车行驶的时间是多少? 4 ,一运动物体在 1min 内行驶了 0.12km ,如果以这样的速度行驶 1km 需要多少时间? 5 ,一个运动物体在 3min 内行驶了 900m ,如果以这样的速度行驶 2h ,物体能运动多远? 6 ,一个运动物体从甲地行驶到乙地,在前一段路用 4min 行驶了 0.72km ,在后段路用了 6min 行驶 900m 刚好到达了乙地,问物体从甲地到达乙地的平均速度是多少? 追激问题:是速度之差:时间 = 路程除以(大速度—小速度)既: t=s/(u1—u2)

例:甲乙两地相距 1km ,甲人从甲地以 9m/s 的速度去追乙人,而乙人从乙地与甲人同时,同向以 7m/s 速度跑,问:甲人追上乙人需要多少时间? 相遇问题:是速度之和:时间 = 路程除以(速度 1 +速度 2 )既: t=s/ ( u1+u2 ) 例:甲乙两地相距 5km ,甲以 20m/s 速度从甲地出发,乙以30m/s 的速度从乙地出发,他们同时同向行驶,问:他们需要多少时间相遇? 9 ,一座大桥全长是 300m ,一列火车长为 200m ,火车以 20m/s 的速度匀速通过大桥,求:火车完全通过大桥需要多少时间? 10 ,一座大桥全长 300m ,一列火车以 20m/s 匀速通过大桥,需要 40s 钟完全通过大桥,问:火车的长度是多少? 11 ,某人在山谷中,大喊一声后, 2s 钟听到第一声回声,再过 1s 后听到第二声回声。求:此人离较近的山有多远?此人离较远的山有多远?两座大山之间的距离是多少?

(完整版)四年级上册路程速度时间应用题解题技巧

路程、时间与速度 ★1.公式:路程=时间×速度→→时间=路程÷速度默写! (已知2个,求第3个。。)→→速度=路程÷时间 2.每用/ 表示。例:每小时a米写作:a米/小时;每分钟b个写作:b个/分钟 一、判断题 1.已知路程和时间,可以用乘法计算速度。() 2.一辆汽车2小时走了100千米,这个“100千米”就是汽车的路程。() 3.一列火车的速度为110千米/时。110千米/时表示这列火车每时行110千米() 4.飞机的速度为12千米/分,汽车的速度为80千米/时,汽车的速度比飞机快。() 5.速度÷时间=路程。( ) 二、小明骑电动自行车速度为20千米/时从甲地到乙地需要4时。 1.20×4表示 2.80÷4表示 3.80÷20表示 三.填表。火车的行驶情况表 速度时间路程 2小时450千米 230千米5小时 300千米270千米 四、解决问题。 1.甲船3时行驶60千米,乙船5时行驶90千米,哪条船行的快?(比较速度) 2.甲、乙两地相距240千米,一辆汽车上午7:00从甲地开往乙地,速度为60千米/时,这辆汽车是在什么时刻到达乙地的?(确定时刻) 3.某架飞机最多能在空中飞行4h,飞出的速度是600km/h,飞回的速度是550km/h,问:这架飞机一个来回最远能飞出多少千米?(确定路程) ★应用题解题技巧: 1.看题:弄明白数据的含义:路程、速度、时间 2.画图:题目较长,或数据较多,可画图帮助理解。 3.求中间值:用已知推出中间值,再推出答案。 (先思考,再讲解) 例题1、这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间?(画图帮助理解)

路程速度时间公式

、路程速度时间公式:s=vt v=s÷t t=s÷v 2、正方形周长公式:C=4a 3、正方形面积公式:S=a2 4、长方形周长公式:C=2(a+b) 5、长方形面积公式:S=ab 6、加法交换律:a+b=b+a 7、加法结合律:a+b+c=a+(b+c) 8、乘法交换律:a·b=b·a 9、乘法结合律:〔a·b〕·c=a·〔b·c〕 10、乘法分配律:〔a+b〕·c=a·c+b·c 11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角 12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。 13、三角形按角分类:锐角三角形,直角三角形,钝角三角形 14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。 15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形 16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。 17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001----- 18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。 20、1平角=2直角1周角=2平角=4直角

21、三角形具有稳定性 22、三角形任意两边之和大于第三边 23、三角形的内角和是180度 24、学会画角 25、会比较小数的大小 26、单位换算 长度单位:1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米 质量单位:1千克=1000克1吨=1000千克=1000000克 钱的换算:1元=10角=100分1角=10分 时间单位:1时=60分=3600秒1分=60秒 1年=12月=365天或366天1天=24小时 一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。 面积单位:1平方米=100平方分米1平方分米=100平方厘米1平方米=10000平方厘米 1公顷=10000平方米 1平方千米=100公顷=1000000平方

天体运动精要点总结

天体运动归纳 Ⅰ、重力类:(重力近似等于万有引力) 1.主要解决天体表面重力加速度问题 基本关系式:2R GMm mg = 例1、某星球质量是地球的1/5,半径为地球的1/4,则该星球的表面重力加速度与地球表面重力加速度的比值是多少? 设天体表面重力加速度为g ,天体半径为R ,则: GR ρπ342==R GM g (33 4R M πρ=) 由此推得两个不同天体表面重力加速度的关系为: 2.行星表面重力加速度、轨道重力加速度问题: 例2、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,则g //g 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 表面重力加速度:22R GM g mg R Mm G =?= 轨道重力加速度:g h R R h R M G g 2 2 2)()(+=+=' Ⅱ、天体运动类: 行星(卫星)模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T 2r 一、周期类:主要解决天体的质量(或密度)与同步卫星问题 基本关系式:r T m r GMm 2 22?? ? ??=π 设恒星质量为M ,行星质量为m(或行星质量为M ,卫星质量为m),它们之间的间距为r ,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v 、ω、T . 可以推得开普勒第三定律:K T r ==4πGM 23(常量) 1.天体质量(或密度)问题 2324GT r M π= 323 GT 3ρR r V M π== 当r=R 时,则天体密度简化为:2GT 3ρπ= R 、T 分别代表天体的半径和表面环绕周期,由上式可以看出,天体密度只与表面环绕周期有关. 2 1212221M M R R g g ?=

相关文档
最新文档