4波形发生电路

4波形发生电路
4波形发生电路

实验四波形发生电路

实验目的:掌握矩形波、三角波、锯齿波产生电路的工作原理,以及Multisim 仿真方法。

一、矩形波发生电路

矩形波发生器可以通过一个RC积分电路和滞回比较器来实现。创建矩形波发生电路,如图4-1所示。其中,运放U1和正反馈回路电阻R1、R5构成反相输入的滞回比较器,稳压管D1、D2和限流电阻R4构成输出限幅电路,输出信号经RC积分电路后将电容上的电压信号作为输入信号,经滞回比较器比较后,输出矩形波信号。输出波形如图4-2所示。

输出波形中,通道A(电容C2上的积分波形,近似三角波)为滞回比较器的输入比较信号,通道B(方波信号)为矩形波输出信号。调整限幅电路限幅电压(即稳压管D1、D2稳压值),即可调整输出信号幅值;调整积分时间常数(即RW或C2),或调整滞回比较器的阈值电压(即电阻R1和R5)即可调整矩形波频率。由于C2的充电、放点时间常数相同,因而矩形波的占空比为50%。

图4-1 矩形波发生电路

图4-2 矩形波发生器的输入输出波形

图4-1中,滞回比较器的输出电压Z U u ±=0,阈值电压Z T R R R U 5

11

=±。设某一时刻输出电压,则同相输入端电位Z U u +=0T P U u +=。通过对电容进行充电。反相输入端电位随时间t 增加而逐渐升高,当t 趋近于无穷大时,趋于;但是,一旦0u w R R +22C N u N u Z U +T N U u +=,在稍增大,就从0u Z U +跃变为,与此同时从跃变为。随后,又通过Z U ?P u T U +T U ?0u w R R +2对电容反向充电,或者说放电。反相输入端电位随时间t 增长而逐渐降低,当t 趋近于无穷时,

趋于;但是一旦,再稍减小,就从2C N u N u Z U ?T N U u ?=0u Z U ?跃变为,与此同时从跃变为,电容开始充电。 Z U +P u T U ?T U +

该电路中电容充电、放电时间常数均为22)(C R R w +,而且充放电的总幅值也

相等,因此在一个周期内的时间和Z U u +=0Z U u ?=0的时间相等,为对称的方波。 0u

在二分之一周期内,电容充电的起始值为T U ?,终了值为T U +,时间常数为

,根据一阶电路三要素法列方程:

22)(C R R w +

)()1)((2

)2(2/T C Rw R T T Z T U e

U U U ?+?+=++?

可求得,振荡频率21ln()(25

1

22R R C R R T w +

+= (2)在RC 积分电路中增加充电、放电控制电路,使得充电、放电时间不同,即可得到占空比可调的矩形波发生器电路,如图4-3所示。调整电位器RW ,即可调整矩形波的占空比,波形如图4-4所示。

图4-3 占空比可调的矩形波发生器电路

图4-4 占空比可调的矩形波发生器电路输出波形

当时,通过、D4和R2对电容C2进行正向充电,若忽略二

极管导通时的等效电阻,则时间常数Z U u +=00u 2w R 2221)(C R R w +≈τ。

当时,通过、D3和R2对电容C2进行反向充电,若忽略二

极管到导通时的等效电阻,则时间常数Z U u ?=00u 1w R 2)(212C R R w +≈τ。

利用一阶电路三要素法可以解出:

)21ln(5111R R T +

=τ )21ln(5

122R R T +=τ 所以)21ln()2(5

1

2221R R C R R T T T w +

+=+= 占空比为2

2

212R R R R T T q w w ++≈=

二、三角波发生电路

在方波发生电路中,输出接积分电路,即可将三角波变换为三角波。此时,

方波发生电路的输入是方波经RC 积分后的近似三角波,当后接积分电路后,完全可以由后级输出的三角波代替前面的近似三角波,从而省去RC 积分电路,为了极性一致,将滞回比较器改为同相输入,即可创建如图4-5所示的使用三角波发生电路。调整参数,运行并双击示波器图标XSC1,可得输出三角波和滞回比较器输出的方波信号,如图4-6所示。方波的幅值由稳压管D1、D2的稳压值决定,而三角波的幅值则由滞回比较器的阈值电压决定。调整积分电路R2、C1的积分常数,即可调整输出三角波的频率;调整电位器R3,即可调整滞回比较器的阈值电压,可以调整输出三角波的幅值和一定范围内的频率;调整滞回比较器的D1、D2的值,可调整方波输出幅值,在积分时间常数不变时可以改变积分时间,从而在一定范围内适当调整输出三角波频率。

图4-5 三角波发生电路

图4-6 三角波发生电路的输出波形

假设图中滞回比较器的输出电压Z U u ±=01,它的输入电压是积分电路的输出

电压。U1的同相输入端的电位

0u z o o o P u R R R R R u R R R R u R R R R R u R R R R u )

()()()()()(315313155

131********+++±++=++++++=

令,则阈值电压011==N P u u 5

31)

(R R R U T +=

± 振荡周期5

1

231)(4R C R R R T +=

振荡频率1

2315

)(4C R R R R f +=

占空比

%50=q 三、锯齿波发生电路

和占空比可调的方波发生器构成电路一样,在三角波发生电路中,只要分别控制充电、放电回路的时间常数即可控制充电、放电曲线的斜率,当然就可以形成锯齿波输出。因此可在图4-5所示三角波发生电路中充电、放电电阻R2处串接正反向二极管和电位器的组合,通过调整电位器来调整充放电时间常数,从而实现左锯齿波发生器和右锯齿波发生器,如图4-7所示。

图4-7 锯齿波发生电路

根据三角波发生电路振荡周期的计算方法,可得出下降时间和上升时间,分

别为:

125

311)

(2

C R R R R T +=

125

312)()

(2

C R R R R R T w ++= 所以振荡周期5

1

231)2)((2

R C R R R R T w ++=

1U 输出电压占空比w

R R R T T q +==

22

12 调整、和可以改变锯齿波的幅值;调整、、、和的阻值以及的容量,可以改变振荡周期;调整电位器活动端的位置,可以该改变方波s 的占空比,以及锯齿波上升和下降的速率。

1R 3R 5R 1R 3R 5R 2R w R 1C 四、由运放构成的RC 桥式正弦波振荡电路

1、创建RC 桥式正弦波振荡电路,如图4-8所示。图中,运放U1和电阻R3、

R4构成正常的负反馈放大电路,而R1、C1、R2、C2构成RC 选频网络,同时,该选频网络又作为反馈网络形成正反馈环节,其R1、C1上的反馈电压作为输入替代放大器的输入信号,D1,D2起输出限幅作用。只要负反馈放大器的放大倍数A 大于3,即R3>2R1,就可起振并产生正弦波振荡,振荡频率由RC 选频网络确定。运行并双击示波器XSC1,可都看出电路慢慢地振荡起来,逐渐产生越来越大的振荡输出。当不接限幅电路R5,D1,D2时,当R3>2R4时振荡输出的幅值会越来越大,接近无情大。外接限幅电路后,振荡输出被限幅,所以不是正弦波。为了仿真方便,选择R4为4K 的可调电阻。先调节R3到51%以上,即

R3电阻值大于2K 的阻值,运行并双击示波器图标,会看到电路慢慢振荡起来了,输出波形逐渐增大(R3越大,起振越快)。当起振起来后,调小R3到2K ,输出幅值稳定并接近正弦波。也可以在不限幅时当有了一定的幅值输出后,马上调小R3到2K ,即得稳定输出为某一幅值的正弦波。输出的正弦波如图4-9所示。

图4-8 RC桥式正弦波振荡电路

图4-9 RC桥式正弦波振荡电路的输出波形

2、在R3支路上增加反并联二极管,利用二极管电压电流的非线性(电流增

大,动态电阻减小的特性)构成稳幅环节,创建如图4-10所示的正弦波正振荡电路,调整反馈电阻R3,使得2*(R3+rd )略大于R4。当起振后,输出幅值逐渐增大,流过R3和二极管的电流也逐渐增大,从而使二极管的动态电阻rd 逐渐减小,最终使得R3+rd=R4,可得到幅值稳定的正弦波输出,如图4-11。

C2图4-10 带稳幅环节的RC 桥式正弦波振荡电路

图4-11 带稳幅环节的RC 桥式正弦波振荡电路的输出波形

3、同时改变选频网络的电阻R1、R2(或同时改变C1、C2),即可改变振荡输出的频率。

五、555构成的多谐振荡器

由555定时器和外接元件R1、R2、C 构成的多谐振荡器如图4-12所示,引

脚2与引脚6直接相连。电路没有稳态,仅存在两个暂态,电路也不需要外加触发信号,利用电源通过向R1、R2向C 充电,以及C 通过R2放电,使电路产生

振荡。电容C 在Vcc 31和Vcc 32

之间充电和放电,其波形如图4-13所示。输出信

号的时间参数为:

2ln )(1211C R R T += 2ln 122C R T =2ln )2(12121C R R T T T +=+=

振荡频率2

ln )2(11121C R R T f +==

要求与均应大于或等于1R 2R ΩK 1,但21R R +应小于或等于。

ΩM 3.3

图4-12 由555构成的多谐振荡器

图4-13 多谐振荡器的和输出波形

c u o u 占空比5.022

12

1>++=

R R R R q ,为了得到小于或等于50%的占空比,可以采用如图

4-14所示的电路。

图4-14 占空比可调的多谐振荡器

充电时间:2ln )(1311C R R t 左+= 放电时间:2ln )2(132C R R t 右+= 周期: 2ln )(1321C R R R T ++= 占空比则为:

%01.01

min ≈=T t q

%9.992max

≈=T

t

q R3调节在5%和95%位置时的波形如图4-15和4-16所示。

图4-15 R3电位器调节在5%位置时的波形

图4-16 R3电位器调节在95%位置时的波形

脉冲波形的产生和整形习题解答

自我检测题 1.集成单稳触发器,分为可重触发及不可重触发两类,其中可重触发指的是在 暂稳态期间,能够接收新的触发信号,重新开始暂稳态过程。 2.如图T6.2所示是用CMOS 或非门组成的单稳态触发器电路, v I 为输入触发脉冲。指出稳态时a 、b 、d 、 e 各点的电平高低;为加大输出脉冲宽度所采取的下列措施哪些是对的,哪些是错的。如果是对的,在( )内打√,如果是错的,在( )内打×。 (1)加大R d ( ); (2)减小R ( ); (3)加大C ( ); (4)提高V DD ( ); (5)增加输入触发脉冲的宽度( )。 v I v O V 图 P6.2 解:(1)×(2)×(3)√(4)×(5)× 3.四个电路输入v I 、输出v O 的波形如图T6.3所示,试写出分别实现下列功能的最简电路类型(不必画出电路)。 (a )二进制计数器;(b )施密特触发器; (c )单稳态触发器;(d )六进制计数器。 t t v I v t t (a ) v v (b ) t t v I v (c )v I v (d )

图 T6.3 4.单稳态触发器的主要用途是。 A .整形、延时、鉴幅 B .延时、定时、存储 C .延时、定时、整形 D .整形、鉴幅、定时 5.为了将正弦信号转换成与之频率相同的脉冲信号,可采用。 A .多谐振荡器 B .移位寄存器 C .单稳态触发器 D .施密特触发器 6.将三角波变换为矩形波,需选用。 A .单稳态触发器 B .施密特触发器 C .多谐振荡器 D .双稳态触发器 7.滞后性是的基本特性。 A .多谐振荡器 B .施密特触发器 C .T 触发器 D .单稳态触发器 8.自动产生矩形波脉冲信号为。 A .施密特触发器 B .单稳态触发器 C .T 触发器 D .多谐振荡器 9.由CMOS 门电路构成的单稳态电路的暂稳态时间t w 为 。 A . 0.7RC B . RC C . 1.1RC D . 2RC 10.已知某电路的输入输出波形如图T6.10所示,则该电路可能为。 A .多谐振荡器 B .双稳态触发器 C .单稳态触发器 D .施密特触发器 1 v I v o V DD R C G 1 G 2C d R d 图T6.10 11.由555定时器构成的单稳态触发器,其输出脉冲宽度取决于。 A .电源电压 B .触发信号幅度 C .触发信号宽度 D .外接R 、C 的数值 12.由555定时器构成的电路如图T6.12所示,该电路的名称是。 A .单稳态触发器 B .施密特触发器 C .多谐振荡器D .SR 触发器 R C v v O 图 T6.12 习题

波形发生电路

题目1:波形发生电路(P440~442) 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波和三角波波形发生器。 基本指标:输出频率分别为:102H Z、103H Z;输出电压峰峰值V PP≥20V 整体电路设计 (1)方案比较 信号发生器又称信号源或振荡器,能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。由方波-三角波的发生器产生相应的信号,通过相互转换实现多种波形的输出。由振荡电路产生的信号经比较运放产生方波,积分可得到三角波。 方案一: 此方案由RC振荡电路,滞回比较器和积分电路,比例放大电路组成,输出频率可调方波,三角波。RC回路即作为延迟环节,又作为反馈网络,通过RC充,放电实现输出状态的自动转换.振荡信号通过滞回比较器可以输出方波;方波经过比例积分器就变成所需的三角波。 方案二: 该方案由迟滞比较器,带通滤波器和积分器组成。通过正反馈环路使电路产生振荡并将信号输入迟滞比较器输出方波,过比例积分器在其输出端产生三角波。 由于方案一简单易懂,且大都是实验实现过,或较常计算的电路,可行度更高。方案一是依次经过文氏电桥振荡电路,过零比较器,积分电路而产生方波和三角波,用调节电阻的大小实现调频,比例放大实现幅值的改变,实现程度比较高,据有一定的实际意义,可操作性强,且原理简单明了故选做方案一。二实验方案二中由矩形波过带通滤波器产生振荡信号的过程复杂,计算参数不易,故选方案一。 (2)整体电路框图 为实现三角波输出,先要得到一个方波信号,这时要用到滞回比较器,而为了得到方波,应有一个振荡信号的输入,则需要一个振荡电路作为反馈电路.此外,为使集成运放正常工作,还要在电路中引入直流电压.所以,设计的波形发生电路,

波形发生电路习题及习题解答

7-1 判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。 ( ) 3. 反馈式振荡器只要满足振幅条件就可以振荡。 ( ) 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。 ( ) 6. 正弦振荡器必须输入正弦信号。 ( ) 7. LC 振荡器是靠负反馈来稳定振幅的。 ( ) 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。 ( ) 9. 反馈式正弦波振荡器是正反馈一个重要应用。 ( ) 10. LC 正弦波振荡器的振荡频率由反馈网络决定。 ( ) 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 ( ) 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。 ( ) 13. 正弦波振荡器输出波形的振幅随着反馈系数F 的增加而减小。 ( ) 7-2 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率 的相频特性? 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性, 如图(b)所示。 7-3 电路如题7-3图所示,试求解:(1)R W 的下限值;(2)振荡频率的调节范围。 题7-3图 解:(1) 根据起振条件 ''2,2f W W R R R R k 故R w 的下限值为2k 。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C , 0min 1211452()f Hz R R C 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压

简易波形发生器设计报告

电子信息工程学院 硬件课程设计实验室课程设计报告题目:波形发生器设计 年级:13级 专业:电子信息工程学院学号:201321111126 学生姓名:覃凤素 指导教师:罗伟华 2015年11月1日

波形发生器设计 波形发生器亦称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。 波形发生器一般是指能自动产生方波、三角波、正弦波等电压波形的电路。产生方波、三角波、正弦波的方案有多种,如先产生正弦波,再通过运算电路将正弦波转化为方波,经过积分电路将其转化为三角波,或者是先产生方波-三角波,再将三角波变为正弦波。本课程所设计电路采用第二种方法,利用集成运放构成的比较器和电容的充放电,实现集成运放的周期性翻转,从而在输出端产生一个方波。再经过积分电路产生三角波,最后通过正弦波转换电路形成正弦波。 一、设计要求: (1) 设计一套函数信号发生器,能自动产生方波、三角波、正弦波等电压波形; (2) 输出信号的频率要求可调; (3) 根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (4) 在面包板上搭出电路,最后在电路板上焊出来; (5) 测出静态工作点并记录; (6) 给出分析过程、电路图和记录的波形。 扩展部分: (1)产生一组锯齿波,频率范围为10Hz~100Hz , V V 8p -p =; (2)将方波—三角波发生器电路改成矩形波—锯齿波发生器,给出设计电路,并记录波形。 二、技术指标 (1) 频率范围:100Hz~1kHz,1kHz~10kHz ; (2) 输出电压:方波V V 24p -p ≤,三角波V V 6p -p =,正弦波V V 1p -p ≥; (3) 波形特性:方波s t μ30r < (1kHz ,最大输出时),三角波%2V <γ ,正弦波y~<2%。 三、选材: 元器件:ua741 2个,3DG130 4个,电阻,电容,二极管 仪器仪表: 直流稳压电源,电烙铁,万用表和双踪示波器 四、方案论证 方案一:用RC 桥式正弦波振荡器产生正弦波,经过滞回比较器输出方波,方波在经过积分器得到三角波。

顺序脉冲产生电路设计

沈阳航空航天大学 课程设计 (说明书) 顺序脉冲产生电路设计 班级计算机1304 学号2013040101178 学生姓名万延正 指导教师孙克梅

沈阳航空航天大学 课程设计任务书 课程名称数字逻辑课程设计 课程设计题目顺序脉冲产生电路设计 课程设计的内容及要求: 一、设计说明与技术指标 要求设计一个顺序脉冲产生电路,能将预先设定的并行数据转换为串行脉冲输出,具体要求如下: ①电路具有16个按键用来设定输入16个并行数据的高低电平; ②具有启动按键,每按一次启动键,电路就串行输出预先设定的16个数据; ③输出完16个数据位后电路停止,输出恒为0; ④具有输出信号指示灯,表明输出信号的高低电平,灯亮表示1,不亮表示0; ⑤具有时钟信号指示灯,在每个式中信号周期内闪烁一次。 二、设计要求 1.在选择器件时,应考虑成本。 2.根据技术指标,通过分析计算确定电路和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1.阎石主编.数字电子技术基础.[M]北京:高等教育出版社,2006年 2.赵淑范,王宪伟主编.电子技术实验与课程设计.[M]北京:清华大学出版社,2006年 3.孙肖子、邓建国等主编. 电子设计指南. [M]北京:高等教育出版社,2006年 4.杨志忠主编. 电子技术课程设计. [M]北京:机械工业出版社,2008年 五、按照要求撰写课程设计报告

成绩评定表: 指导教师签字: 2015 年7 月19 日

一、概述 在数控装置和数字计算机中,往往需要机器按照人们事先规定的顺序进行运算和操作,这就要求控制电路不仅能正确的发出各种控制信号,而且要求这些控制信号在时间上有一定的先后顺序,能完成这样功能的电路称为顺序脉冲发生器。该顺序脉冲由555定时器产生,用16个开关设定输入16个并行数据的高低电平,每次按键,电路就会串行输出预先设定的16个数,输出完16个数据位后电路停止,输出恒为0。该电路具有输出信号指示灯,灯亮的次数表示输入高电平的个数。在每个周期内,时钟指示灯只闪烁一次。 一、方案论证 根据实验要求,我选取两片74LS165芯片将其串联,74LS165芯片是并行输入, 串行输出移位寄存器。从而实现电路具有16个按键用来设定输入16个并行数据的高低电平。电路主要由顺序脉冲产生电路,移位寄存电路,状态指示电路,电源电路组成。原理图如图1所示: 图1 总电路框架图 二、电路设计 1、时钟脉冲产生电路如图2所示。 图2 时钟脉冲产生电路

脉冲波形的产生与变换

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器 uo

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无法正常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

RC波形发生电路实验

一、实验目的 学习使用运放组成方波发生器、三角波发生器、锯齿波发生器和正弦波发生器 二、实验仪器 示波器、信号发生器、交流毫伏表、数字多用表 三、实验原理 (1)方波发生器 设电路通电瞬时,电容上的电压为0,电路输出为Vz ,这时运放正相输入端为VP1=VzR1/(R1+R2)=FVz 运放输出电流经R3,RP ,R4向电容C 充电。运放反相输入端Vn 随时间延续电压升高,当vn=VP1时,电路输出翻转,vo 由Vz 变为-Vz ,vp 由VP1=FVz 变为VP2=-FVz 。这时由“地”向电容反相充电,vn 随时间延续电压下降,当vn=VP2,电路输出翻转,vo 由-VZ 变为Vz ,vp 由VP2=-FVz 变为FVz ,周而复始,电路输出方波。在稳态,输出为Vz 的时间可用以下方法推导:在起始时刻,电容上的电压为Vc(0)=-FVz,电容充电的终了电压为Vz ,所以电容上的电压为 Vc (t )=Vz+(-FVz-Vz )e^(-t/RC ) 当电容上的电压达到FVz 时,电路翻转,记电容充电时间为τ FVz=Vz+(-FVz-Vz )e^(-t/RC ) Τ=RCln (1+F )/(1-F ) 输出方波的周期为2τ,所以输出方波的周期为 T=2(Rp+R4)Cln (1+2R1/R2)

(2)占空比可调的矩形波发生器 与方波发生器相比,非C 正向充电和反向充电使用的不同的路径,从而使得高电平持续时间和低电平持续时间不同。 当输出为高电平Vz 时,运放输出的电流经Rpp ,D1,R4向电容充电,类同于对方波发生器的分析,忽略二极管的开启电压,容易得到输出高电平的持续时间为 τ1=(Rpp+R4)Cln (1+2R1/R2) 类似地可求得输出低电平的持续时间为 τ2=(Rpn+R4)Cln (1+2R1/R2) 输出的周期为T=τ1+τ2=(Rp+2R4)Cln (1+2R1/R2) 占空比为η=τ1/τ2=(Rpp+R4)/(Rpn+R4) (3)三角波发生器 设电路通电瞬间,即t=0时,电容上的电压为0,积分器输出vo=0,过0比较器输出为vo1=Vz ,这时运放AR1正相输入端电压为 Vp1=(Vz-vo )Rp/(R1+Rp )+vo=RpVz/(R1+Rp )+voR1/(R1+Rp )>0 运放AR1输出保持为高电平。积分器输出线性地下降。当Vp1等于0时,对应于时刻τ,这时过0比较器翻转,vo1=-Vz ,记此刻的积分器输出电压值为VoN ,有RpVz/(R1+Rp )=-R1VoN/(R1+Rp ) 解得 VoN= -RpVz/R1 + R P R PP

运放组成的波形发生器电路设计

运放组成的波形发生器电 路设计 This model paper was revised by the Standardization Office on December 10, 2020

运放组成的波形发生器电路设计、装配与调试 1. 运放组成的波形发生器的单元电路 运放的二个应用:⑴ 线性应用-RC 正弦波振荡器 ⑵ 非线性应用-滞回比较器 ⑴ RC 正弦波振荡器 RC 桥式振荡电路如图3-9所示。 图3-9 RC 桥式振荡电路 RC 桥式振荡电路由二部分组成: ① 同相放大器,如图3-9(a )所示。 ② RC 串并联网络,如图3-9(b )所示。 或图3-9(c )所示,RC 串并联网络与同相放大器反馈支路组成桥式电路。 同相放大器的输出电压uo 作为RC 串并联网络的输入电压,而将RC 串并联网络的输出电压作为放大器的输入电压,当f=f 0时, RC 串并联网络的相位移为零,放大器是同相放大器,电路的总相位移是零,满足相位平衡条件,而对于其他频率的信号,RC 串并联网络的相位移不为零,不满足相位平衡条件。由于RC 串并联网络在 f=f 0 时的传输系数F =1/3,因此要求放大器的总电压增益Au 应大于3,这对于集成运放组成的同相放大器来说是很容易满足的。由R 1、R f 、V 1、V 2及R 2构成负反馈支路,它与集成运放形成了同相输入比例运算放大器。 只要适当选择R f 与R 1的比值, 就能实现Au>3的要求。其中,V1、V2和R 2是实现自动稳幅的限幅电路。 1 1R R A f u + =RC f π210=

① 振荡原理 RC 桥式振荡电路如图3-9所示。根据自激振荡的条件,φ=φa+Φf=2πn ,其中RC 串并联网络作为反馈电路,当f=fo 时,φf=0°,所以放大器的相移应为φa=0°,即可用一个同相输入的运算放大器组成。又因为当f=fo 时,F=1/3,所以放大电路的放大倍数A ≥3。起振时A>3,起振后若只依靠晶体管的非线性来稳幅,波形顶部容易失真。为了改善输出波形,通常引入负反馈电路。其振荡频率由RC 串并联网络决定,图3-9(c )为RC 桥式振荡电路的桥式画法。RC 串并联网络及负反馈电路中的Rf+'2 R 、R1正好构成电桥四臂,这就是桥式振荡器名称的由来。在RC 串并联网络中, 取C C C R R R ====2121, 当虚部为零,即)/(11221C R C R ωω=时,3/1=F ② 稳幅原理 V 1、V 2和R 2是实现自动稳幅的限幅电路。V 1、V 2仅一只导通,导通的二极管和R 2并联等 效电阻为'2R 。根据同相放大器的放大倍数计算公式:1 ' 2 1R R R A f ++=可知输出电压幅度与 '2 R 有关。 )1()1(1 11111// 1 2 121211222211 222 2122 22 2221 11C R C R j R R C C C R j R C j R C R j R Z Z Z U U F C R j R C j R Z C j R Z o f ωωωωωωωω-+++ =++ ++= +==+= =+=?? ?

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

简易波形发生器的设计

目录 第一章单片机开发板 (1) 1.1 开发板制作 (1) 1.1.1 89S52单片机简介 (1) 1.1.2 开发板介绍 (2) 1.1.3 89S52的实验程序举例 (3) 1.2开发板焊接与应用 (4) 1.2.1开发板的焊接 (4) 1.2.2开发板的应用 (5) 第二章函数信号发生器 (7) 2.1电路设计 (7) 2.1.1电路原理介绍 (7) 2.1.2 DAC0832的工作方式 (9) 2.2 波形发生器电路图与程序 (10) 2.2.1应用电路图 (10) 2.2.2实验程序 (11) 2.2.3 调试结果 (15) 第三章参观体会 (16) 第四章实习体会 (17) 参考文献 (18)

第一章单片机开发板 1.1 开发板制作 1.1.1 89S52单片机简介 图1.1 89s52 引脚图 如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。 各功能部件的介绍: 1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。 2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。 3)中断系统:具有5个中断源,2级中断优先权。 4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。 5)串行口:1个全双工的串行口,具有四种工作方式。 6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。 7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。 8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。这四个端口的功能不完全相同。 A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用; B、P1口是一个准双向并行口,作通用并行I/O口使用; C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用; D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。 控制引脚介绍: 1)电源:单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。 2)时钟引脚XTAL1、XTAL2时钟引脚外接晶体与片内反相放大器构成了振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。 振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,

波形发生电路(自激振荡电路)

https://www.360docs.net/doc/b515318029.html,/v_show/id_XNzQxNjQyNzY=.html 第八章波形发生电路(自激振荡电路) 8.1 正弦波发生电路原理 8.2 RC正弦波振荡电路 8.3 LC正弦波振荡器 8.4 石英晶体振荡器(简称晶振) 波形发生电路的基本类型有两种:正弦波发生电路与非正弦波发生电路。 §8.1 正弦波发生电路原理 正弦波发生电路通常称为正弦波振荡器。是模拟电子电路的一种重要形式。特点是不需要外加任何输入信号就能根据要求而输出特定频率的正弦波信号。这种特点称为“自激振荡”。 波形发生电路是非常典型的正反馈放大电路。 一、产生自激振荡的条件 假设图示电路中:先通过输入一个正弦波 信号,产生一个输出信号,此时,以极快的速度 使输出信号,通过反馈网络送到输入端,且使 反馈信号与原输入信号“一模一样”,同时切断原输入信号,由

于放大器本身不能识别此时的输入究竟来自信号源,还是来自本身的输出,既然切换前后的输入信号“一模一样”,放大器就一视同仁地给予放大,形成: 输出→反馈→输入→放大→输出→反馈→…… 这是一个循环往复的过程,放大器就构成了一个“自给自足”的自激振荡器。 上述假设指出:只有反馈到输入端的信号与原输入信号“一模一样”。才能产生自激振荡,“一模一样”就是自激振荡的条件——亦称平衡条件。 i U U =5 是正弦波,而描述正弦波的三要素是:振幅、 频率和相位。 i U U =5 振幅相等;相位相同(若相位总相同,则频 率和初相一定都相等) 因为自激振荡是一个正反馈放大器,故可用反馈的概念来描述振荡条件。 当 f i U U =时 u u i u u i f A F U U A F U U ===11

课程设计——波形发生器要点

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

2013电子设计竞赛复试题波形发生器资料

波形发生器 徐威 (宁波大学信息科学与工程学院,浙江宁波315211) 摘要:使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片制作一个频率可变的同时输出脉冲波、锯齿波、一次和三次正弦波。进行方案设计,制作出实际电路使其达到实验要求的各项指标。 一、设计任务与要求 使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片,设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路。给出方案设计、详细电路图和现场自测数据及波形。 设计制作要求如下: 1、同时四通道输出、每通道输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ中的一种波形,每通道输出的负载电阻均为600欧姆。 2、四种波形的频率关系为1:1:1:3(3次谐波);脉冲波、锯齿波、正弦波Ⅰ输出频率范围为8KHz~10KHz,输出电压幅度峰峰值为1V;正弦波Ⅱ输出频率范围为24KHz~30KHz,输出电压幅度峰峰值为9V。脉冲波、锯齿波和正弦波输出波形应无明显失真(使用示波器测量时)。 频率误差不大于10%;通带内输出电压幅度峰峰值误差不大于5%。脉冲波占空比可调整。 3、电源只能选用+10V单电源,由稳压电源供给,不得使用额外电源。 4、要求预留脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ和电源的测试端子。 5、每通道输出的负载电阻600欧姆应标清楚、至于明显位置,便于检查。 6、翻译:NE555和LM324的数据手册(器件描述、特点、应用、绝对参数、电参数)。 二、方案设计与论证 1.原始方案: 在使用Multisim进行仿真设计的阶段,我想出了两种原始方案,两种方案的大体思路如下。 方案一:使用NE555芯片构成多谐振荡器,输出方波,通过锯齿波发生电路产生

毕业设计169邵阳学院基于模拟电路的波形发生器设计

前言 波形发生器是一种常用的信号源,广泛用于科学研究、生产实践和教学实践等领域。如设计和测试、汽车制造、生物医药、传感器仿真、制造模型等。 传统的信号发生器采用模拟电子技术,由分立元件构成振荡电路和整形电路,产生各种波形。它在电子信息、通信、工业等领域曾发挥了很大的作用。但是采用这种技术的波形发生器电路结构复杂、体积庞大、稳定度和准确度较差,而且仅能产生正弦波、方波、三角波等几种简单波形,难以产生较为复杂的波形信号。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器分辨率较低,频率切换速度较慢。 从2007年2月到2007年4月,在系统研究国内外波形发生器的基础上提出了基于Matlab和FPGA技术的波形发生器,在FPGA内开辟高速存储器ROM做查询表,通过Matlab获得波形数据存入ROM中,波形数据不断地,有序地从ROM 中送到高速D/A转换器对存储器的波形数据进行转换。因此只要改变FPGA中查找表数据就可以产生任意波形,因此该研究方法可以产生任意波形。 随着我国四个现代化和经济发展,我国在科技和生产各领域都取得了飞速的发展和进步,同时这也对相应的测试仪器和测试手段提出了更高的要求,而波形发生器已成为测试仪器中至关重要的一类,因此在国内发展波形发生器具有重大意义和实际价值。例如,它能模拟编码雷达信号、潜水艇特征信号、磁盘数据信号、机械振动瞬变过程、电视信号以及神经脉冲之类的波形,也能重演由数字示波器捕获的波形等。 在本次设计中,我通过Matlab获取了波形数据,在FPGA中开辟了ROM区域,在MaxplusⅡ开发平台上,实现了电路的VHDL硬件描述和仿真,电路功能在EDA平台上得到了验证,但由于我的能力和水平有限,论文中肯定会有不妥之处和错误,恳请老师和同学提出批评和改进意见,在此表示由衷的感谢。

脉冲波形发生电路设计

脉冲波形发生电路设计一.实验目的 1.学习脉冲波形发生电路的设计方法和调试方法。 2.学习按模块划分电路的设计与调试的方法。二.555内部结构图和芯片引脚图 555内部结构图: 555引脚图:

三.红外发射管和光电三极管的工作原理 1.红外发射管: 红外光发射管具有单向导电性。只有当外加的正向电压使得正向电流足够大时才发射红外光,正向电流越大发光越强,其工作原理图参见图2(a)。此次实验中的R1 建议选取1k?。 2.光电三极管: 光电三极管依据光照强度来控制集电极电流的大小,其功能可等效为一只二极管与一只晶体管相连,并仅引出集电极和发射极,如图3(a)所示。其符号如图3(b)所示,常见外形如图3(c)所示。 有光照射时,光电三极管的集电极电流约在几十微安到几毫安之间,为保证光电三极管的输出电压Vo 可以正确驱动后面的数字IC,合理选取接收电路中R2 的阻值。其应用参考电路参见图2(b)。

四.实验任务及电路图 1.电路原理图 VCC VCC 2.设计思路 首先将555接成单稳态触发器,输出接发光二极管。 然后考虑输入。为了能在物体挡住光超过2秒以上电路仍然能够正常

运行,在输入端接入一个微分电路,保证输入脉宽不超过2秒。 同时因为前方光电三极管的输出电压在有光时为低电平,无光时为高电平,而电路要实现的功能是遮挡时发光二极管,所以在无光时应输入低电平,所以在光电三极管的输出与后方的输入间加了一个反相器。 最后考虑选作任务,首先要让发光三极管在被挡住时,LED一直亮,这个只需去掉微分电路就可以了。但是这样在光线重新照射时LED会马上灭掉,这是因为在遮挡时,555中的三极管是不导通的,所以C2两端是有压差的,即(见555内部结构图),这样在光线重新照射时,输入会跳为高电平,所以=1,Q=0,=0,内部三极管导通,=1,保持0,所以LED就会灭掉。而且是我们不希望出现的情况,因为上述分析是基于门电路的均较长的情况下分析的,实际上这些跳变都是瞬间完成的,所以之后电路的情况并不是能准确预测的。 解决这个问题的思路就是希望能在时,保持1,这样跳变为1之后就有,LED保持亮着,而且经过1~2秒后熄灭。 实现这个功能只需在那一个三极管的c、e端与C2并联,b端接输入即可。 为了在输入为低时三极管导通,选用PNP三极管。 3.参数计算 (1)R2阻值的选取: 为保证在有光时vo输出的是低电平,则R2上的压降应接近5V,以10微安计算,则R2应取100 k?左右。 (2)R3和C3的选取

多种波形发生器的设计

《电子技术》 课程设计说明书 题目名称:多种波形发生器的设计姓名:xxx 学号:xxx 班级:xxx 指导教师:xxx 2013年 1 月 4 日

摘要 波形发生器是一种能够产生大量标准信号和用户定义信号,具有高精度、可重复性、易操作性、对频率、幅值、相移、波形进行动态及时的控制的一类新型信号源。 本设计的设计方案是把滞回比较器和积分器首尾相接组成一个正反馈闭环系统,则比较器输出的方波经过积分器可得到三角波,三角波又触发比较器自动翻转形成法波;三角波—正弦波的转换电路主要由差分放大电路来完成,差分放大电路具有工作点稳定,输入阻抗高,抗干扰能力强等优点。特别是作为直流放大器,可以有效抑制零点漂移,因此可以将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 关键词:信号源;滞回比较器;积分器;波形发生器 多种波形发生器的设计背景 波形发生器是随着众多领域对于复杂的、可由用户定义的测试波形的需要而形成和发展起来的,它的主要特点是可以产生任何一种特殊波形,输出信号的频率、电平以及平滑低通滤波的截至频率也可以作到程序设置,因此在机械性能分析、雷达和导航、自动测试系统等方面得到广泛的应用。而对AWG的控制、数据传输、输出信号的频率和电平设置都可以通过微机打印口在EPP工作模式下设计完成。这样不仅具有设计简单,占用微机资源较少的优点,而且操作简单,使用方便,易于硬件升级。

波形发生器是能够产生大量的标准信号和用户定义信号,具有高精度、可重复性、易操作性、连续的相位变换和频率稳定性,还可以对频率、幅值、相移、波形进行动态及时的控制。随着不断进步的计算机技术和微电子技术在测量仪器中的应用而形成和发展起来的一类新型信号源。 目录 1.摘要 (2) 1.设计目的 (4) 2.设计任务、要求及设计容 (4) 2.1任务 (4) 2.2要求 (4) 2.3设计方案 (5) 3. 多种波形发生器原理电路设计 (5) 3.1各方案原理框图及论证 (5) 3.2电路图和接线图及工作原理 (6) 3.3各部分电路设计 (8) 3.4 电路的参数选择及计算 (13)

第7章波形发生电路习题及习题解答

7-1判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。() 3. 反馈式振荡器只要满足振幅条件就可以振荡。 () 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。() 6. 正弦振荡器必须输入正弦信号。 () 7. LC振荡器是靠负反馈来稳定振幅的。() 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。() 9. 反馈式正弦波振荡器是正反馈一个重要应用。 () — 10. LC正弦波振荡器的振荡频率由反馈网络决定。 () 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 () 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。() 13. 正弦波振荡器输出波形的振幅随着反馈系数F的增加而减小。()7-2并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性,如图(b)所示。 7-3电路如题7-3图所示,试求解:(1)R W的下限值;(2)振荡频率的调节范围。 ^ 题7-3图 解:(1) 根据起振条件

''2,2f W W R R R R k +>>Ω 故R w 的下限值为2k Ω。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C π= ≈, 0min 1211452()f Hz R R C π=≈+ 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压幅 值为±12V ,二极管的动态电阻可忽略不计。(1)求出电路的振荡周期;(2)画出u O 和u C 的波形。 题7-6图 解7-6图 解:(1)振荡周期: 12()ln 3 3.3ms T R R C ≈+≈ (2)脉冲宽度:11ln 3 1.1T R C mS ≈≈ ) ∴u O 和u C 的波形如解7-6图所示。 7-5 试判断如图所示各RC 振荡电路中,哪些可能振荡,哪些不能振荡,并改正错误。图中, C B 、C C 、C E 、C S 对交流呈短路。

相关文档
最新文档