共模和差模信号的定义及产生机理..

共模和差模信号的定义及产生机理..
共模和差模信号的定义及产生机理..

共模和差模信号的定义及产生机理、电缆、绞线、变压器和扼流圈电磁干扰产生及其的抑制

1 引言

了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、

共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引

起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。

2 差模和共模信号

我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。

2.1 差模信号

纯差模信号是:V1=-V2 (1)

大小相等,相位差是180°

VDIFF=V1-V2 (2)

因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。

2.2 共模信号

纯共模信号是:

V1=V2=VCOM (3)

大小相等,相位差为0°

V3=0 (4)

共模信号的电路如图3所示,

其波形如图4所示。

因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。

两个电压瞬时值之和(V1+V2)不等于零。相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。

3 差模和共模信号及其在无屏蔽对绞线中的EMC

在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。流过每根导线的电流所产生的磁场受螺旋形的制约。流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。在每对

导线上流过差模和共模电流所引起的发射程度是不同的,差模电流引起的噪音发射是较小的,所以噪音主要是由共模电流决定。

3.1 对绞线中的差模信号

对纯差模信号而言,它在每一根导线上的电流是以相反方向在一对导线上传送。如果这一对导线是均匀的缠绕,这些相反的电流就会产生大小相等,反向极化的磁场,使它的输出互相抵消。在无屏蔽对绞线系统中的差模信号如图5所示。

在无屏蔽对绞线中,不含噪音的差模信号不产生射频干扰。

3.2 对绞线中的共模信号

共模电流ICOM在两根导线上以相同方向流动,并经过寄生电容Cp到地返回。在这种情况下,电流产生大小相等极性相同的磁场,它们的输出不能相互抵消。如图6所示,共模电流在对绞线的表面产生一个电磁场,它的作用正如天线一样。

在无屏蔽对绞线中,共模信号产生射频干扰。

3.3 电缆线上产生的共模、差模噪音及其EMC

电子设备中电缆线上的噪音有从电源电缆和信号电缆上产生的辐射噪音和传导噪音两大类。这两大类中又分为共模噪音和差模噪音两种[1]。

差模传导噪音是电子设备内部噪音电压产生的与信号电流或电源电流相同路径的噪音电流,如图7所示。减小这种噪音的方法是在信号线和电源线上串联差模扼流圈、并联电容或用电容和电感组成低通滤波器,来减小高频的噪音,如图8所示。

差模辐射噪音是图7电缆中的信号电流环路所产生的辐射。这种噪音产生的电场强度与电缆到观测点的距离成反比,与频率的平方成正比,与电流和电流环路的面积成正比。因此,减小这种辐射的方法是在信号输入端加LC低通滤波器阻止噪音电流流进电缆;使用屏蔽电缆或扁平电缆,在相邻的导线中传输回流电流和信号电流,使环路面积减小。

共模传导噪音是在设备内噪音电压的驱动下,经过大地与设备之间的寄生电容,在大地与电缆之间流动的噪音电流产生的,如图9所示。减小共模传导噪音的方法是在信号线或电源线中串联共模扼流圈、在地与导线之间并联电容器、组成LC滤波器进行滤波,滤去共模传导噪声。其电路如图10所示。共模扼流圈是将电源线的零线和火线(或回流线和信号线)同方向绕在铁氧体磁芯上构成的,它对线间流动的差模信号电流和电源电流阻抗很小,而对两根导线与地之间流过的共模电流阻抗则很大。

共模辐射噪音是由于电缆端口上有共模电压,在其驱动下,从大地到电缆之间有共模电流流动而产生的。辐射的电场强度与电缆到观测点的距离成反比,(当电缆长度比电流的波长短时)与频率和电缆的长度成正比。减小这种辐射的方法有:通过在线路板上使用地线面来降低地线阻抗,在电缆的端口处使用LC低通滤波器或共模扼流圈。另外,尽量缩短电缆的长度和使用屏蔽电缆也能减小辐射。

在有些电路中也可接入图11所示的抗干扰变压器来防止差模和共模噪音。

4 变压器与噪音传导

理想变压器理论上是完美的电路元件,它能用完美的磁耦合在初级和次级绕组之间传送电能。理想变压器只能传送交变的差模电流。它不能传送共模电流,因为共模电流在变压器绕组两端的电位差为零,不能在变压器绕组上产生磁场。

实际变压器初级和次级绕组之间有一个很小但不等于零的耦合电容CWW,见图12。这个电容是绕组之间存在非电介质和物理间隙所产生的。增加绕组之间的空隙和用低介电常数的材料填满绕组之间的空间就能减小绕组之间电容的数值。

电容Cww为共模电流提供一条穿过变压器的通道,其阻抗是由电容量的大小和信号频率来决定的。

5 共模扼流圈

对于理想的单磁芯、双绕组的共模扼流圈,将不考虑在实际扼流圈中或多或少存在的杂散阻抗(Cww,DCR,Cp等)的影响。这样的假设是合理的,因为一个好的扼流圈设计,它的杂散阻抗和电路的源阻抗、负载阻抗相比是可以忽略的。

5.1 理想共模扼流圈对差模信号的效应

差模电流以相反的方向流过共模扼流圈的绕阻,建立大小相等,极性相反的磁场,它能使输出相互抵消,见图13。这就使共模扼流圈对差模信号的阻抗为零。差模信号能不受阻地通过共模扼流圈。

5.2 理想共模扼流圈对共模信号的效应

共模电流以相同的方向流过共模扼流圈绕组的每一边,见图14,它建立大小相等相位相同的相加磁场。这一结果就使共模扼流圈对共模信号呈现高阻抗,使通过共模扼流圈的共模电流大大地减弱。

实际减弱量(或共模抑制量)取决于共模扼流圈阻抗和负载阻抗大小之比。

6 有中心抽头的自耦变压器

自耦变压器是以定向电流传递方式实现能量传输的。对于理想的自耦变压器[2],不考虑实际或多或少存在的杂散阻抗(Cww,DCR, Cp等)的影响。这样的假设是合理的,因为一个好的自耦变压器设计,它的杂散阻抗和电路的源阻抗、负载阻抗相比是可以忽略的。

6.1 理想自耦变压器对差模信号的效应

从差模信号看,有中心抽头的自耦变压器是两个在相位上相同的对分绕组,见图15。这就意味差模电流在其中所形成的磁场,会使其对差模电流呈现高阻抗。相当于对差模信号并联了一个高阻值的阻抗,它对差模信号的大小没有影响。

6.2 理想自耦变压器对共模信号的效应

从共模信号看,有中心抽头的自耦变压器是两个在相位上相反的对分绕组,见图16。这就意味共模电流在其中会形成大小相等相位相反的磁场,这一磁场会使共模电流的输出互相抵消。对共模信号呈现零阻抗效应,使共模信号直接短路到地。

7 减小电磁干扰的一些常用方法

通常都是在电路设计、印制板布线上想办法来减小电磁干扰或在

机箱上增加屏蔽、采用有中心线的共模扼流圈等方法来减小电磁干扰。

7.1 屏蔽

用金属材料将机箱内部产生的噪音封闭起来的方法称为屏蔽。屏蔽对防止外部噪音进入机箱也是同样有效的。电场屏蔽和磁场屏蔽的方法是不同的。

电场屏蔽是用导体将噪音源包围起来,然后接地,就能达到屏蔽的目的。由于导体表面的反射损耗很大,因此很薄的材料(铝箔、铜箔)也有很好的屏蔽效果。另外,机箱上即使有缝隙,也不会产生太大的影响。

磁场屏蔽主要用来屏蔽低频磁场的干扰,

这种干扰是由交流电流或直流电流产生的。例如,感应炼钢炉中有数万安培的电流通过,在炉周围产生很强的磁场,这个强磁场会使控制系统中的磁敏器件失灵。最常见的磁敏器件是彩色CRT显示器,在磁场的作用下,显示器屏幕上的图象颜色会失真,图象会产生抖动,导致显示质量严重降低,甚至无法使用。低频磁场往往随距离的增加而衰减很快,因此在很多场合,将磁敏器件远离磁场源是减小磁场干扰的十分有效的措施。但当空间的限制而无法采取这个方法时,屏蔽也是一个十分有效的措施。要注意的是,低频磁场屏蔽与射频磁场屏蔽是完全不同的,射频磁场的屏蔽使用导电率高的材料如铍铜复合材料、银、锡或铝等材料,把它完全封闭起来,就可以了。但这些材料对低频磁场没有任何屏蔽作用。只有高导磁率的铁磁合金才能屏蔽直流磁场或低频磁场。

根据电磁屏蔽的基本原理,低频磁场由于其频率低,吸收损耗很小,趋肤效应很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠反射和吸收很难获得需要的屏蔽效果。对这种低频磁场,要通过使

用高导磁率材料为磁场提供一条磁阻很低的旁路来实现屏蔽,这样空间的磁场便会集中在屏蔽材料中,从而使磁敏器件免受磁场干扰。

高导磁率材料在机械的冲击下会极大地损失磁性,导致屏蔽效能下降。因此,屏蔽体在经过机械加工(如折弯、焊接、敲击、钻孔等)后,必须经过热处理以恢复磁性。热处理要在特定条件下进行,一般要在干燥氢气炉中以一定的速率加热到1177℃,保持4个小时,然后以一定的速率降低到室温。

在对拼连接处进行焊接时,要使用屏蔽材料母料做焊接填充料,这样可以保证焊缝处的高导磁。如果屏蔽效能要求较低,也可以采用铆接或点焊的方式固定,但要注意拼接处的屏蔽材料要有一定的重叠,以保证磁路上较小的磁阻。

当需要屏蔽的磁场很强时,仅用单层屏蔽材料,达不到屏蔽要求。这时,一种方法是增加材料的厚度。但更有效的方法是使用组合屏蔽,将一个屏蔽体放在另一个屏蔽体内,它们之间留有气隙。气隙内可以填充任何非导磁材料(如铝)做支撑。组合屏蔽的屏蔽效果比单个屏蔽体高得多,因此组合屏蔽能够将磁场衰减到很低的程度。

7.2 电路设计

由于时钟频率越高,高频能量的发射越强,因此在数字电路中不要使用过高的时钟频率。印制板上的总线、较大的环路面积和较长的导线都是强辐射源,因此,除非必要,要尽量避免这些情况的出现。使用大规模集成电路能够大幅度减少印制板上的走线,从而减小辐射。在选用集成电路时,也有些问题需要注意。例如,高速肖特基电路由于脉冲上升时间很短,因此会在很高的频率范围内产生发射。在功能允许的条件下,尽量使用标准型电路。电路设计时要最大限度地保持数字线和信号线分离。信号通道必须远离输入输出线以防止数字线上开关噪音辐射到信号线上。

7.3 印制板的设计

在印制板上合适的放置元器件与合理的安排印制板走线是很关键的。有些元器件,特别是磁性元件(如滤波器)在一个方向比其它方向可能有更大的磁场。元器件相互之间成90°放置,磁场相互抵消并减小噪音辐射。开关器件远离磁性元件也能减小噪音辐射。

印制板上的走线也是主要的辐射源。走线产生辐射主要是由于逻辑电路中电流的突变,在走线的电感上产生感应电压,这个电压会产生较强的噪音辐射。另外,由于走线起着发射天线的作用,因此走线的长度越长,辐射的噪音越多。短的走线比长的走线辐射少。粗的走线比细的走线噪音辐射少。所以使走线尽可能地短,从而把走线的自感减到最小是很必要的。

7.4 采用有中心线的共模扼流圈

减少和改善噪音的另一种方法,特别是对高频段,是在传输频道上用有中心线的共模扼流圈,如图17所示。

共模扼流圈的耦合电容对中心线的每一边是对称的。变压器的次级具有分路,这分路有助于变压器的次级绕组的分布电容更好地控制传输频道上的返回损耗。它还可以在高频段提供一阻尼的下凹,其频率范围出现在(700~900)MHz之间,这个范围也可以进行控制,典型的响应曲线见图18。

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。它包括两个概念:EMI和EMS。EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。而辐射干扰主要通过屏蔽的手段加以滤除。 从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。 电源噪声干扰在日常生活中很常见。比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。比如电话或手机通话时有嗞嗞的杂声。又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。比如,会造成自动化仪器误动作,造成医疗仪器失控等等。 我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。 噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。 上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X电容),差模线圈来进行抑制和衰减。共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。 第 1 页

共模和差模信号的定义及产生机理

共模和差模信号的定义及产生机理、电缆、绞线、变压器和扼流圈电磁干扰产生及其的抑制 1 引言 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、 共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引

起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2 差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。 2.1 差模信号

纯差模信号是:V1=-V2 (1) 大小相等,相位差是180° VDIFF=V1-V2 (2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2 共模信号 纯共模信号是: V1=V2=VCOM (3) 大小相等,相位差为0° V3=0 (4) 共模信号的电路如图3所示,

其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 两个电压瞬时值之和(V1+V2)不等于零。相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。 3 差模和共模信号及其在无屏蔽对绞线中的EMC 在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。流过每根导线的电流所产生的磁场受螺旋形的制约。流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。在每对

共模信号和差模信号

共模信号和差模信号 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 图1差模信号 图2差模信号的波形图 2差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2 来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是C p。其电路如图1所示,其波形如图2所示。

2.1差模信号 纯差模信号是:V1=-V2(1) 大小相等,相位差是180° VDIFF=V1-V2(2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。 在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。两个电压(V1+V2)瞬时值之和总是等于零。 2.2共模信号 纯共模信号是: V1=V2=VCOM(3) 大小相等,相位差为0° V3=0(4) 共模信号的电路如图3所示,其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 图3共模信号

共模和差模信号与滤波器

共模和差模信号与滤波器 山东莱芜钢铁集团动力部周志敏(莱芜271104) 1概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 2差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。 共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 3滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF; CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。

共模与差模完美解释

共模与差模 虽然我们在学习模电时经常提到关于共模和差模两个知识点,但是有时候总无法与实际电路结合起来,搞不清楚为什么要去抑制共模,为什么电平输入时一定会带入共模信号。特此在摘录网上大侠们的知识论点,争取把这个问题弄清楚。 共模信号与差模信号 最简单理解,共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同。 差模信号:双端输入时,两个信号的相位相差180度。 任何两个信号都可以分解为共模信号和差模信号。 设两路的输入信号分别为: A,B. m,n分别为输入信号A,B的共模信号成分和差模信号成分。 输入信号A,B可分别表示为:A=m+n;B=m-n 则输入信号A,B可以看成一个共模信号 m 和差模信号 n 的合成。 其中m=(A+B)/2;n=(A-B)/2。 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”……而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。 但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。 例如对于仪放,差分输入不是0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 牛人的形象比喻:两只船,分别站着一个MM和一个GG. MM和GG手拉着手. 当船上下波动时,MM才能感觉到GG变化的拉力。这两个船之间的高度差就是差模信号。 当水位升高或者降低时,MM并不能感觉到这个拉力. 这两个船离水底的绝对高度就是共模信号。

差分信号和单端信号概述.

差分信号与单端信号概述 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b.能有效抑制EMI(电磁干扰),同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。 1、共模电压和差模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。就像初中时平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-)也可以表示为vi = (vic, vid)。c 表示共模,d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。 可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。当水位上升或者下降时,A并不能感觉到这个拉力。这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留。理论上,A 和B应该只是对差模有响应。 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。说笑了啊,不过大致也就是这个意思。 当然,差模电压也不可以太大,否则会导致把A和B拉开。

共模干扰与差模干扰的成因与应对

共模干扰与差模干扰的成因与应对 共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。 差模干扰:则是幅度想等,相位相反的的噪声。 常用的差分线对共模干扰的抗干扰能力就非常强。 干扰类型通常按干扰产生的原因、噪声干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。 共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。 共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 差模干扰在两根信号线之间传输,属于对称性干扰。消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线; 共模干扰是在信号线与地之间传输,属于非对称性干扰。消除共模干扰的方法包括: (1)采用屏蔽双绞线并有效接地 (2)强电场的地方还要考虑采用镀锌管屏蔽 (3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线 (4)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV) 在一般情况下,差模信号就是两个信号之差,共模信号是两个信号的算术平均值。 共模抑制比:差模信号电压增益与共模信号电压增益的比值,说明差分放大电路对攻模信号的抑制能

共模、差模电源线滤波器设计

切断电磁干扰传输途径——共模、差模电源线滤波器设计 电源线干扰可以使用电源线滤波器滤除,开关电源EMI滤波器基本电路如图6所示。一个合理有效的开关电源EMI滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。在图6中CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。差模滤波元件和共模滤波元件分别对差模和共模干扰有较强的衰减作用。 共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。通常使用环形磁芯,漏磁小,效率高,但是绕线困难。当市网工频电流在两个绕组中流过时为一进一出,产生的磁场恰好抵消,使得共模电感对市网工频电流不起任何阻碍作用,可以无损耗地传输。如果市网中含有共模噪声电流通过共模电感,这种共模噪声电流是同方向的,流经两个绕组时,产生的磁场同相叠加,使得共模电感对干扰电流呈现出较大的感抗,由此起到了抑制共模干扰的作用。L1的电感量与EMI滤波器的额定电流I有关,具体关系参见表1所列。 [4] 实际使用中共模电感两个电感绕组由于绕制工艺的问题会存在电感差值,不过这种差值正好被利用作差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个∏型滤波器。这种滤波器对差模干扰有较好的衰减。 除了共模电感以外,图6中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。计算电容CY漏电流的公式是 ID=2πfCYVcY 式中:ID为漏电流; f为电网频率。 一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。 差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等

详解差模电压和共模电压-简单易懂

差模电压与共模电压 我们需要的是整个有意义的“输入信号”,要把两个输入端看作“整体”。 就像平面坐标需要用 x,y 两个数表示,而到了高中或大学就只要用一个“数”v,但这个 v 是由 x,y 两个数构成的“向量”…… 而共模、差模正是“输入信号”整体的属性,差分输入可以表示为 vi = (vi+, vi-) 也可以表示为 vi = (vic, vid) c 表示共模, d 表示差模。两种描述是完全等价的。只不过换了一个认识角度,就像几何学里的坐标变换,同一个点在不同坐标系中的坐标值不同,但始终是同一个点。 运放的共模输入范围:器件(运放、仪放……)保持正常放大功能(保持一定共模抑制比 CMRR)条件下允许的共模信号的范围。 显然,不存在“某一端”上的共模电压的问题。但“某一端”也一样存在输入电压范围问题。而且这个范围等于共模输入电压范围。 道理很简单:运放正常工作时两输入端是虚短的,单端输入电压范围与共模输入电压范围几乎是一回事。 对其它放大器,共模输入电压跟单端输入电压范围就有区别了。例如对于仪放,差分输入不是 0,实际工作时的共模输入电压范围就要小于单端输入电压范围了。

可以通俗的理解为: 两只船静止在水面上,分别站着两个人,A和B。 A和B相互拉着手。当船上下波动时,A才能感觉到B变化的拉力。这两个船之间的高度差就是差模信号。 当水位上升或者下降时,A并不能感觉到这个拉力。 这两个船离水底的绝对高度就是共模信号。 于是,我们说A和B只对差模信号响应,而对共模信号不响应。当然,也有一定的共模范围了,太低会沉到水底,这样船都无法再波动了。太高,会使会水溢出而形成水流导致船没法在水面上停留 理论上,A和B应该只是对差模有响应 但实际上,由于船上下颠簸,A和B都晕了,明明只有共模,却产生了幻觉:似乎对方相对自己在动。这就说明,A和B内力较弱,共模抑制比不行啊。 当然,差模电压也不可以太大,否则会导致把A和B拉开。 主要是 “共模是两输入端的算术平均值,差模是直接的同相端与反相端的差值”。 共模电压应当是从源端看进来时,加到放大电路输入端的共同值,差模则是加到放大电路两个输入端的差值。 共模电压有直流的,也有交流的。直流的称为直流共模抑制(比),交流的称为交流共模抑制(比),统称共模抑制(比)。一般

共模与差模信号及其抑制原理

共模与差模信号及其抑制原理 1、引言 了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。 变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。 共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。 本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。 在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2、差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压用符号V1和V2来表示。差模信号分量是VDIFF,共模信号分量是VCOM,电缆和地之间存在的寄生电容是Cp。其电路如图1所示,其波形如图2所示。 2.1 差模信号 纯差模信号是:V1 = -V2,(1) 大小相等,相位差是180°, VDIFF = V1-V2 (2) 因为V1和V2对地是对称的,所以地线上没有电流流过。所有的差模电流(IDIFF)全流过负载。在以电缆传输信号时,差模信号是作为携带信息“想要”的信号。 局域网(LAN)和通信中应用的无线收发机的结构中安装的都是差模器件。 两个电压(V1+V2)瞬时值之和总是等于零。 2.2 共模信号 纯共模信号是:V1 = V2 = VCOM(3) 大小相等,相位差为0°,

V3=0 (4) 共模信号的电路如图3所示,其波形如图4所示。 因为在负载两端没有电位差,所以没有电流流过负载。所有的共模电流都通过电缆和地之间的寄生电容流向地线。 在以电缆传输信号时,因为共模信号不携带信息,所以它是“不想要”的信号。 两个电压瞬时值之和(V1+V2)不等于零。 相对于地而言,每一电缆上都有变化的电位差。这变化的电位差就会从电缆上发射电磁波。 3、差模和共模信号及其在无屏蔽对绞线中的EMC 在对绞电缆线中的每一根导线是以双螺旋形结构相互缠绕着。 流过每根导线的电流所产生的磁场受螺旋形的制约。 流过对绞线中每一根导线的电流方向,决定每对导线发射噪音的程度。 在每对导线上流过差模和共模电流所引起的发射程度是不同的,差模电流引起的噪音发射是较小的,所以噪音主要是由共模电流决定。 3.1 对绞线中的差模信号 对纯差模信号而言,它在每一根导线上的电流是以相反方向在一对导线上传送。如果这一对导线是均匀的缠绕,这些相反的电流就会产生大小相等,反向极化的磁场,使它的输出互相抵消。 在无屏蔽对绞线中,不含噪音的差模信号不产生射频干扰。 在无屏蔽对绞线系统中的差模信号如图5所示。 3.2 对绞线中的共模信号 共模电流ICOM在两根导线上以相同方向流动,并经过寄生电容Cp到地返回。在这种情况下,电流产生大小相等极性相同的磁场,它们的输出不能相互抵消。 在无屏蔽对绞线中,共模信号产生射频干扰。 如图6所示,共模电流在对绞线的表面产生一个电磁场,它的作用正如天线一样

差模信号

85总线就是利用差分传输信号的一种具体应用。 实际应用中,温度的变化各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中,两根线的对地噪声哀减的不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。 差分放大器,差模输入差模是相对共模来说的。。差分是一 种方式。。 差模共模信号,差分放大电路 举例来说,假如一个ADC有两个模拟输入端,并且AD转换结果取决于这两个输入端电压之差,那么我们说 这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压 并不一定总是大小相等方向相反,甚至很多情况下是同符号的。(注:即不一定是一正一负)我们把它们 的差叫做差模输入,而把它们共有的量(即平均值)叫做共 模输入。

差分是一种电路形式的叫法.... 差模是对信号的定义....(想对来说有共模..) 差动=======差分 回答:差模信号:大小相等,方向相反的交流信号,共模信号:大小相等。方向相同。在差分放大电路 中,经常提到共模信号和差模信号,在差分放大电路中共模信号是不会被放大的,可以理解为三极管的 温漂引起的电流型号,为了形象化温漂而提出了共模信号,差模信号为输入信号,就是Ui,就是放大的对 象。 在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这是有 用的信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放 大倍数。 如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化而产生的信号 ,是一种有害的东西),我们把这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。由于差动

电磁干扰(EMI)共模和差模信号与滤波

电磁干扰(EMI)共模和差模信号与滤波 摘要 介绍了共模、差模信号的关键特性及其抑制方法,以及滤波器的工作原理及其应用电路。 Common Mode and Differential Mode Signals and Filter Abstract:The key characterisics of common mode anddifferential mode signals as well as the method of rejection was presented.The principl of filter was introduced and the application circuit was given. 一.概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰应用包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传输途经分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz—30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 二.差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等, 在两线电缆传输回路,每一线对地电压用符号V1和V2 来表示。差模信号分量是V DIFF。纯差模信号是V1=-V2, 其大小相等,相位相差180o,V DIFF=V1-V2,因为V1 和V2对地是对称的,所以地线上没有电流流过,差模 信号的电路如图1所示。所有的差模电流(I DIFF)全流 过负载。差模干扰侵入往返两条信号线,方向与信号电 流方形一致,其一种是由信号源产生,另一种是传输过 程中由电磁感应产生,它和信号串在一起且同相位,这 样的干扰一般难以抑制。

共模和差模区别与处理

1、共模信号和差模信号是指差动放大器双端输入时的输入信号。 共模信号:双端输入时,两个信号相同(同相)。 差模信号:双端输入时,两个信号的相位相差180度(相位相反)。 任何两个信号都可以分解为共模信号和差模信号。 设两路的输入信号分别为: A,B. m,n分别为输入信号A,B的共模信号成分和差模信号成分。 输入信号A,B可分别表示为:A=m+n;B=m-n 则输入信号A,B可以看成一个共模信号 m 和差模信号 n 的合成。 其中m=(A+B)/2;n=(A-B)/2。 差动放大器将两个信号作差,作为输出信号。则输出的信号为A-B,与原先两个信号中的共模信号和差模信号比较,可以发现: 共模信号m=(A+B)/2不见了,而差模信号n=(A-B)/2得到两倍的放大。 这就是差模放大器的工作原理。 2、任何电源线上传导干扰信号,均可用差模和共模信号来表示。差模干扰在 两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 共模干扰:一般指在两根信号线上产生的幅度相等,相位相同的噪声。 3、电压电流的变化通过导线传输时有二种形态,我们将此称做"共模"和"差模".设备的电源线,电话等的通信线,与其它设备或外围设备相互交换的通讯 线路,至少有两根导线,这两根导线作为往返线路输送电力或信号.但在这两根导线之外通常还有第三导体,这就是"地线".干扰电压和电流分为两种:一种是两 根导线分别做为往返线路传输;另一种是两根导线做去路,地线做返回路传输.前者叫"差模",后者叫"共模". 共模干扰是在信号线与地之间传输,属于非对称性干扰。消除共模干扰的方法包括: (1)采用屏蔽双绞线并有效接地 (2)强电场的地方还要考虑采用镀锌管屏蔽

共模信号与差模信号辨析

共模信号与差模信号辨析 差模又称串模,指的是两根线之间的信号差值;而共模噪声又称对地噪声,指的是两根线分别对地的噪声。 对于一对信号线A、B,差模干扰相当于在A与B之间加上一个干扰电压,共模干扰相当于分别在A与地、B与地之间加上一个干扰电压;像平常看到的用双绞线传输差分信号就是为了消除共模噪声,原理很简单,两线拧在一起,受到的共模干扰电压很接近, Ua - Ub依然没什么变化,当然这是理想情况。比如说,RS422/485总线就是利用差分传输信号的一种具体应用。 实际应用中,温度的变化各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中,两根线的对地噪声哀减的不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。差分放大器,差模输入差模是相对共模来说的。。差分是一种方式。。 差模共模信号,差分放大电路 举例来说,假如一个ADC有两个模拟输入端,并且AD转换结果取决于这两个输入端电压之差,那么我们说 这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压 并不一定总是大小相等方向相反,甚至很多情况下是同符号的。(注:即不一定是一正一负)我们把它们 的差叫做差模输入,而把它们共有的量(即平均值)叫做共模输入。 差分是一种电路形式,它与差动是一个意思。差模是对信号的定义,与共模是想对应的。 差模信号:大小相等,方向相反的交流信号。 共模信号:大小相等,方向相同。 在差分放大电路中,经常提到共模信号和差模信号,在差分放大电路中共模信号是不会被放大的,可以理解 为三极管的温漂引起的电流信号,为了形象化温漂而提出了共模信号,差模信号为输入信号,是被放大的对 象。

共模和差模信号与滤波

共模和差模信号与滤波 一.概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰应用包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传输途经分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz—30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 二.差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是V DIFF。纯差模信号是V1=-V2,其大小相等,相位相差180o,V DIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(I DIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方形一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这样的干扰一般难以抑制。共模信号又称为对地感应信号或不对称信号,共模信号分量是V com,纯共模信号是:V com=V1=V2,大小相等,相位差为0o。V3=0。共模信号的电路如图表2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路,原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 三.滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送的干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),他们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用л型滤波器抑制,如图3所示。 图3(a)中,L D为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,Lc为滤波扼流圈。由于Lc的两个线圈绕向一致,当电源输入电流流过Lc时,所产生的磁场可以抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。Lc对共模噪声来说相当于一个大电感,能有效抑制共模噪声。开关电源输入端分别对地并接的电容C Y对共模噪声起抑制作用。R为Cx的放电电阻,它是VDE-0806和IEC-380安全技术标准所推荐的。图3(b)中各元件参数范围为:Cx=0.1—2.0uF。CY=2.0nF—33nF。Lc=几—几十mH,随工作电流不同而取不同的参数值,如电流为25A时Lc=1.8mH。电流为0.3A时,Lc=47mH。

差模信号、共模信号、共模抑制比

差模信号、共模信号、共模抑制比 一、差模信号与共模信号 差模又称串模,指的是两根线之间的信号差值(有用信号); 共模噪声又称对地噪声,指的是两根线分别对地的噪声(有害信号)。 对于一对信号线A、B,差模干扰相当于在A与B之间加上一个干扰电压,共模干扰相当于分别在A与地、B与地之间加上一个干扰电压;像平常看到的用双绞线传输差分信号就是为了消除共模噪声,原理很简单,两线拧在一起,受到的共模干扰电压很接近, Ua - Ub依然没什么变化,当然这是理想情况。比如,RS422/485总线就是利用差分传输信号的一种具体应用。 实际应用中,温度的变化各种环境噪声的影响都可以视作为共模噪声信号,但如果在传输过程中,两根线的对地噪声哀减的不一样大,使得两根线之间存在了电压差,这时共模噪声就转变成了差模噪声。差分信号不是一定要相对地来说的,如果一根线是接地的,那他们的差值就是相对地的值了,这就是模拟电路中讲过的差分电路的单端输入情况。 差分放大器,差模输入,差模是相对共模来说的。差分是一种方式。 差模、共模信号,差分放大电路(差分是一种电路形式的叫法。差模是对信号的定义)差动=差分 举例来说,假如一个ADC有两个模拟输入端,并且AD转换结果取决于这两个输入端电压之差,那么我们说这个ADC是差分输入的,并把这两个模拟输入端合在一起叫做差分输入端。但是加在差分输入端上的电压并不一定总是大小相等方向相反,甚至很多情况下是同符号的。(注:即不一定是一正一负)我们把它们的差叫做差模输入,而把它们共有的量(即平均值)叫做共模输入。 差模信号:大小相等,方向相反的交流信号; 共模信号:大小相等,方向相同。

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共 模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗 的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波 的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低, 换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出: 式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。

差模信号干扰和共模信号

电压电流的变化通过导线传输时有二种形态,我们将此称做"共模"和"差模".设备的电源线,电话等的通信线,与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号.但在这两根导线之外通常还有第三导体,这就是"地线".干扰电压和电流分为两种:一种是两根导线分别做为往返线路传输;另一种是两根导线做去路,地线做返回路传输.前者叫"差模",后者叫"共模". 电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的。电源线噪声分为两大类:共模干扰、差模干扰。共模干扰(Common-mode Interference)定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰(Differential-mode Interference)定义为任何两个载流导体之间的不希望有的电位差。 任何电源线上传导干扰信号,均可用差模和共模信号来表示。差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 什么叫差模信号?什么叫共模信号? 答:两个大小相等、极性相反的一对信号称为差模信号。差动放大电路输入差模信号(u il =-u i2)时,称为差模输入。 两个大小相等、极性相同的一对信号称为共模信号。差动放大电路输入共模信号(u il =u i2)时,称为共模输入。 差模输入使两管的集电极电流一增一减,相应两管的集电极电位也一增一减,于是有输出电流出现出现。而在共模输入信号作用下,如果两管完全 对称,则两管的集电极电位变化相同,因而此时输出电压为零。

相关文档
最新文档