西门子完美无谐波高压变频器

西门子完美无谐波高压变频器
西门子完美无谐波高压变频器

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

GH180变频器推动水行业实现智慧水务新模式

GH180变频器推动水行业实现智慧水务新模式 某经济技术开发区地表水厂及配水管网工程(一期)项目 高压变频设备成功交付 河北省某经济技术开发区地表水厂及配水管网工程(一期)项目高压变频设备成功交付业主,这是天拓四方公司在供水项目中取得的又一成绩。本项目水泵电机为3台630kW、6kV,电网电压为10KV,变频器选用西门子SINAMICS完美无谐波GH180变频器。 SINAMICS完美无谐波GH180变频器应用在电力、石油、化工、采矿、冶金、市政等各种工业行业,帮助您显著提高生产率、增强能源利用率和降低运行成本。使其成为高可靠性、高精度、长使用寿命的变频应用之首选。西门子可提供为客

户量身定制的SINAMICS完美无谐波GH180变频器,从而尽可能的提高效率。我们是唯一一家可提供功率范围为225至120,000kW变频器的公司。完美无谐波GH180变频器在全球总装机容量超过220万千瓦,久经考验的完美无谐波GH180 变频器可以承担您所交付的重任。完美无谐波GH180变频器采用了西门子专利的低压单元串联拓扑结构,维护简单、显著提高电能质量和产品灵活性。我们还提供单元旁路功能提高系统的可用性。 优点: 全球高压变频知名品牌,世界上最畅销的中压交流变频器,可靠性极高 性能优异,输入和输出谐波极少,符合各国供电部门最严格要求 内部变压器为干式,可靠性高,维护简单 适应电网波动要求,电网电压可下降至65%,变频器仍能继续工作而不跳机

电压源型高压变频器、在整个速度段输入功率因数不小于0.95 体积最小,土建成本降低 高-高结构,直接输出6.0KV高压,没有升压变压器 独有功率单元旁路技术,在变频器出现故障时仍可继续运行不跳机。 一体化的隔离变压器 矢量控制和高性能无传感器矢量控制 适用于异步电动机、同步电动机和绕线电机 变频器效率高,高于98.5% 防护等级高IP31,高于普通的IP20,对用户的环境要求低 支持Modbus、Profibus DP等多种通讯协议。 北京天拓四方科技有限公司

罗宾康高压变频器维修作业操作标准

罗宾康GEN III型完美无谐波变频器维修作业操作标准型号:PH-10-6-XXXX 一.技术参数: 1.生产厂家:西门子 2.工作环境温度:-15℃~40℃ 3.额定输入电压:3×10000V±10%,50Hz±5% 4. 变频器输出电压:6000(可达6600)v 5. 允许电压波动:±10 6. 抗瞬时电压降低:45% 7. 变频器效率:大于96.5% 8. 变频器发热量:约为额定功率的3%KW 9. 排热方式:风冷 10. 移相变压器相关参数:干式 11. 移相变压器生产厂家:SIEMENS 配套商 12. 功率因数:>0.95(整个调速范围内) 13. 逆变脉冲数:36 14. 谐波率:〈 2% 15. du/dt:不大于900V/us 16. 最小频率分辨率:0.01Hz 17. 平均无故障运行时间:100000h 18. 变频器到设备电缆长度限制:2000m 19. 调制方法:PWM脉宽调制 20. 设定频率精度:±0.5% 21. 输出频率范围:0-60Hz 22. 过载能力:110%(60S),150%(0.5S) 23. 起动转距:120%(5Hz起) 二.工作原理及结构 1.工作原理 完美无谐波变频器是罗宾康公司设计制造的脉宽调制变频器系列。变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机主控制柜中的控制单元通过光纤时对功率柜中的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。 完美无谐波变频器系统具有如下优点品质: 提供纯净的输入特性,提供高功率因数,提供几近完美的正弦波输出。1.1.1. 纯净电源输入 完美无谐波变频器系列符合最严格的电压、电流谐波畸变标准IEEE 519 1992的要求,即 使在输入容量不大于变频器额定容量的情况下也能满足。该变频器系列能保护其它在线设备(如计算机、电话、电子镇流器等)免受谐波干扰,同时能防止与其它调速装置发生串扰。纯净输入特性使您无须费时、费力地进行谐波/ 谐振分析,也节省了使用谐波滤波器的费用。 1.1. 2. 高功率因数和几近完美的正弦波输入电流 完美无谐波系列变频器获取几近完美的正弦波输入电流使得其功率因数在整个调速范围内,无须使用外部功率因数补偿电容即可超过95%。同时改善了电压状况。另外,配电柜、断路器和变压器不会因无功功率而引起过载。使用标准感应电机,就能在整个速度范围内保持稳定的高功率因数,所以在低速应用场合使用完美无谐波系列变频器收益更大。 1.1.3. 几近完美的正弦波输出电压 完美无谐波系列变频器的设计使得变频器本身提供正弦波输出而无须使用外部输出滤波器。这意味着变频器只产生极少的失真电压波形,其产生的电机噪声根本感觉不到。另外,电机也不必降额使用。事实上, 完美无谐波变频器消除了变频器引发的使电机发热的有害谐波。同时,变频器引发的转矩 脉动也被消除(即使在低速范围),因此降低了机械设备的应力,共模电压和dV/dt 产生 的应力也减至最小。图1-3. 为典型完美无谐波变频器的输出电流波形。 2. 结构: 2.1. 完美无谐波变频器硬件配置 每个变频器通常是由多部分构成的单柜。它们是: ? 变压器部分 ? 用户 I/O 部分 ? 控制部分 ? 单元部分 2.1.1 变压器部分 完美无谐波变频器的变压器部分包括输入隔离变压器。输入电源线从这部分进入变频器,到电机的输出电源线也从这部分引出。除带多绕组次级线圈的移相主电源变压器外,变压器部分还包括一或多个风机以使变频器冷却。 2.1.2 用户I/O 部分 完美无谐波变频器的用户I/O 部分包括用户控制线、控制电源和风机控制连接用的端子板。

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

西门子440变频器调试步骤及参数设置

BUSY 调试结束 五矿营口中板厂变频器调试步骤及参数设置 1、回转变频器设置 DIP 开关为2 1 OFF-50HZ (—般为默认,不用调 P0010=1 I 调试参数过滤器:快速调试 P0003=1 1 用户访问级:标准级,可以访问最经常使用的一些参数 P0100=0 1 使用地区:欧洲[kW ],缺省值50Hz P0304=380V 1 电机额定电压: P0305=28A 1 电机额定电流 P0307=11KW 1 电机额定功率 + P0310=50Hz 1 电机额定频率 * P0311=726 I 电机额定速度 P0700=1 1 选择命令源:BOP (键盘)设置 * P1000=1 1 频率设定的选择:电动电位计给定 P3900=1 快速调试结束 显示BUSY 按面板上电机启动键起动电机后停止再进行其它的设置 P0003=3 1 用户访问等级:专家级(可以访问所有参数) P0700=2 1 选择命令源:由端子排输入 ▼ P1000=2 1 频率设定值的选择:模拟量给定 * P0701=9 5号端子 数子输入1的功能,故障确认 + P0702=0 6号端子 数字输入2的功能,禁止输入 + P0703=1 1 7号端子 数字输入3的功能,ON/OFF1 (接通正转/停车命令1) P0704=2 8号端子 数字输入4的功能,ON reverse/OFF1 (接通反转/停车命令1)

▼ 从RAM 到EEPROM的数据传送P0971=1

走行变频器参数设置: DIP开关为2 I OFF-50HZ (—般为默认,不用调) 右 P0010=1 1 调试参数过滤器:快速调试 P0003=1 1 用户访问级:标准级,可以访问最经常使用的一些参数 P0100=0 1使用地区:欧洲 [kW],缺省值50Hz P0304=380V 1 电机额定电压: P0305=88A电机额定电流 P0307= 44KW 电机额定功率 P0310=50Hz 1 电机额定频率 P0311=1440 I 电机额定速度 * P0700=1 1选择命令源:BOP (键盘)设置 * P1000=1 1频率设定的选择:电动电位计设定 * P3900=1快速调试结束 起动电机后停止再进行其它的设置 P1003=3用户访问等级:专家级(可以访问全部参数)* P0700=2 1选择命令源:由端子排输入 t P1000=3 1频率设定值的选择:固定频率设定 * P0701=1 15号端子数字输入1的功能,ON/OFF1 (接通正转/停车命令1) + P0702=2 6号端子数字输入2的功能,ON reverse/OFF1 (接通反转/停车命令1) ▼P0703=15 17号端子数字输入3的功能,固疋频率设疋值(直接选择) ▼ P0704=9 8号端子数字输入4的功能,(故障确认)+ P1080=15 1 最小频率设定15HZ (走行慢速) P1003=30频率给定值30HZ (走行快速)

高压变频器输出谐波对电动机的影响

高压变频器输出谐波对电动机的影响 时间:2012-10-05 10:51来源:未知 作者:360期刊网 点击: 107 次 目前、髙压变频器没有统一的电路拓扑结构,由于变频器对电动机的影响主要取决于变频器逆变电路的结构和特性。因而,不同电路拓扑结构的变频器对电动机的影响也是不同的。 输出谐波对电动机的影响主要有谐波引起电动机附加发热、导致电动机额外温升,电动机要降容使用,由于输出波形失真,增加电动机的重复峰值电压,影响电动机绝缘;同时,谐波还会引起电动机转矩脉动。噪声增加。高次谐波引起的损耗增加主要表现在定子铜损耗、转子铜损耗、铁损耗以及附加损耗的增加。其中影响最为显着的是转子铜损耗,因为电动机转子是以接近基波频率旋转速度旋转的,因此对于髙次谐波电压来说,转子总是在转差率接近1 的状态下旋转,所以转子铜损耗较大,而且在这种情况下,除了直流电阻引起的铜损耗外,还必须考虑由于肌肤效应所产生的实际阻抗增加而引起的铜损耗。 普通的电流源型变频器输出电流波形和输入电流波形极为相似,都是120 度的方波,含有较大的谐波成分,总谐波电流可以达到307。左右。为了降低输出谐波,也有采用输出12脉动方案或设置输出滤波器,输出波形会有很大的改善,但系统的成本和复杂性也会大大的增加。输出滤波器换相式电流型变频器固有的滤波器可以起到一定的滤波作用,所以速度较高时,电动机电流波形有所改善。 三电平变频器与普通的电平变频器相比,由于输出相电压电平数增加,毎个电平幅值相对下降,提髙了输出电压谐波消除算法的自由度,在相同开关频率的前提下,可使输出波形质量比二电平变频器有较大的提高,但输出因谐波使电压波形失真仍达297。电动机电流谐波失真达177。必须采用专用的电动机,如果采用普通电动机,必须设置输出滤波器。 基波旋转磁动势和6倍频率的转子谐波电流共同作用,产生6倍频的脉动转矩, 所以6脉动输出电流源型变频器含有较大的6倍频率脉动转矩。电流源型变频器采用12脉动多重化后,输出电流波形有较大改善,由于5次和7次谐波基本抵消,6倍频率脉动转矩大大降低,剰下的主要为12倍频率的脉动转矩,总的转矩脉动明显降低。脉动转矩在低速时对电动机转速的影响尤为明显。对三相电动机而言,由于60± 1次谐波存在,产生的电磁转矩为。 电动机的转速脉动有以下规律:转速脉动频率分别为电动机基波角频率10.611 倍,其幅值与变频器输出的基波角频率03 或频率0成反比,即输出频率(或电动机转速)越低,转速波动越大,也就是说,电动机在低速运行情况下,为了使转速波动量维持在同一水平,对输出谐波抑制的要求更髙。转速脉动幅值与变频器输出的谐波次数0成反比,即低次谐波所引起的转速脉动比高次谐波的影响更大。所以,要使电动机的转速脉动较小,首先要消除或抑制变频器输出的低次谐波, 将输出谐波往高频推移,不失为减少转速脉动的有效办法。三电平变频器在不采用输出滤波器时,也会产生较大的转矩脉动, 采用输出滤波器后,转矩脉动可大大降低。 由于高速电力电子器件的使用,变频器输出电压变化率对电动机绝缘产生的影响越来越严重。取决于两个方面:一是电压跳变台阶的幅值,它与变频器的电压等级和主电路结构有密切的关系,二是逆变器功率器件的开关速度,开关速度

谐波抑制和无功补偿

绪论 电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。我国对电能质量的三方面都有明确的标准和规范。 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。

第一章 基础概念 1.1 电力系统的组成 电力系统是由发电、输电、用电三部分组成。其中过程为发电厂发电经升压变压器升压并网,再由输电网络输送的各个变电站,变电站进行降压后输送给各个用户,用户经过再一次降压后给用电设备供电。主要设备为发电机、升压变压器、输电网络、降压变压器、用电设备及二次保护系等组成。 发电机的电压等级一般为6KV 、10KV ,输电网络为110KV 、220KV 、500KV ,配电网络为10KV 、35KV ,用电设备一般为380V 、220V 。 我国电力系统采用三相50HZ 交流供电。 1.2 功率的概念 在供电系统中,通常总是希望交流电压和交流电流时正弦波形(不含有谐波的情况下),正如电压为: ()ωt U t U sin 2= 式中 U ------电压有效值 ω--------角频率 f πω2= f ---------频率 (50HZ) 正弦电压施加在线性无源负载上如电阻、电容、电感上时,其电流的表达式为: ()()?-= ωt I t I sin 2 I --------电流有效值 φ--------相位角 电压和电流的关系从相位图上看如:(绿色为电压,红色为电流)

10kV高压谐波治理兼无功补偿治理方案(模板示例)

10kV高压谐波治理兼无功补偿治理方案 1 系统概述 根据某铜业厂提供的现有配电系统情况可知,工厂现有35KV进线一条,该线非该厂专线。厂内主要负荷为电解铜生产线及大功率电机等用电设备。因电解铜生产线采用的是可控硅整流装置。由于可控硅整流装置的六脉及12脉整流特性,在运行过程中将产生以6N±1和12N±1(N为正整数)为主的谐波电流注入电网,危及到其它用电设备及电网的用电安全。同时因系统功率因数比较低,故用户在10KV母线上安装了一套高压电容补偿柜,但由于电解铜等用电设备在运行时产生了较大的谐波注入系统,而电容补偿柜在投入后又与系统发生并联谐振,对系统谐波进一步放大,造成电容补偿装置在谐波环境下运行因过载而发生较大的异常声音,甚至造成部分电容柜无法正常投入,经常造成高压补偿电容器的熔丝爆炸烧毁。 用户配电系统一次示意图如图1所示。 图1用户配电系统示意图 2系统用电参数分析 根据对厂内变电站10KV I段母线的谐波测试数据分析,可将运行时有功功率、无功功率、功率因数及谐波的变化可归纳为: (1)10KV母线平均功率因数约为0.92左右, (2)母线协议容量10MVA, (3)主要谐波源类型:热电解铜及大功率电机等, (4)10KV线路三相功率数据分析 段10KV I段母线正常运行时负荷基本相等,且负载相对较稳定。有功功率基本都8000kW左右,功率因数相对较低,约0.92左右,无功功率也基本在2800kVar~3300kVar之间变化。 3谐波分析 因负载大部分采用的是六脉波及12脉波整流,产生的主要谐波为:6N±1次及12N±1(N为工频频率倍数)。故10KV段谐波的特征次为5、7、11、13......。其中5、7、11次谐波相对较大,故滤波装置应考虑以滤除5、7、11次谐波为主的滤波方式。根据我司于2007/09/21日对配电系统10KV母线 I段的谐波测试数据分析,将设备运行时产生的各次谐波值分析如下: 35kV侧用户协议容10MVA,设备容量90MVA,正常方式下短路容量为689MVA。 为了对滤波装置的滤波效果要求更为严格,故各次谐波电流注入允许值可按最小短路容量为689MVA的标准来考核,见表1。

变频器软启动说明(带同步上切)

变频器软启动说明(带同步上切) 第一部 基本配置 高炉风机控制系统,主要配置有:12000KW电机(见表一)、罗宾康第三代完美无谐波4500KW高压变频器(见表二)、励磁控制柜、DCS系统。其主要参数及性能如下 表一电机铭牌 电机类型:同步电动机 型号功率 12000KW 额定电压 6000V 额定电流 1311A 功率因数0.9 转速 1500r/min 励磁电压 108V 励磁电流 424A 表二变频器基本信息 变频器类型:罗宾康第三代完美无谐波高压变频器 功率 4500KW 输入电压 6000V 输入电流 513A 输入频率 50Hz 输出电压 0-6000V 输出电流 500A 输出频率 0-50Hz 控制电压 380V 控制电流 20A 第二部分变频器简介 完美无谐波变频器采用变压器移相技术,单元直接串联结构,每相由5个功率单元组成,每个功率单元规格及大小完全相同,可以互换。每个功率单元有自己的控制板,实现单元自检。功率单元与主控系统采用光纤连接,具有高可靠性及快速性。 该变频器用于软启动的主要特点有:可实现无冲击同步切换,旋转负载启动,谐波失真小,高功率因数,近乎完美的正弦波输入电流和正弦波输出电压,高效率, PLC处理能力,自诊断能力强等优点。 由于该变频器具有以上特点,用于软启动过程,尤其是同步电机软启动过程,具有非常大的优越性:首先,由于该风机带有盘车电机,属于旋转负载,变频器启动时能够自动跟踪电机的转速,实现平稳启动;其次,电机达到工频后,上切过程中,变频器能够自动跟踪电机的频率、电压和相位,实现同频、同压、同相位切换,所以切换过程非常平稳,电流不会有太大变化;再次,变频器具有PLC 处理能力,在启动过程中,可以自动检测各种可能出现的情况及故障,进行自动处理,保护设备及人生安全。

完美无谐波高压变频器调试浅析

完美无谐波高压变频器调试浅析 摘要:自1994年罗宾康公司研发制造出世界第一台完美无谐波变频器,后经不断改进发展,又推出基于Pentium处理器全数字控制系统的新一代变频器。其产品以广泛 应用于石油、冶金、化工、发电等领域。 关键词:无谐波高压变频 1 引言 由中化十一建设公司承建的新疆天利高新工程有两台高压烃泵,为了方便调速采用了美国罗宾康公司的两台完美无谐波高压变频器进行驱动。两台烃泵的额定功率为410kW、额定电压为6000V、额定电流49.6A、转速1490r/min。罗宾康高压变频器型号为NXG Harmony Drive P/N459829.00其额定功率为450kW、额定输出电压6000V AC、额定输出电流70A、辅助控制电源:380V 50HZ 30A。完美无谐波高压变频器具有输入输出谐波低、功率因数高、效率高、维护方便、体积小,多电平输出,无需滤波器,对电机适用范围宽,适用于异步电机、同步电机和绕线电机等特点。它的功率因数能达到0.95以上,不需要进行额外的功率因数补偿。高压可以直接输出,省去了输出升压变压器。对电源的要求范围也很宽,可以承受30%的电源电压下降。 2 高压变频器基本原理 其高压变频器采用单个功率电压单元进行叠加的方式高压输出,解决了高压大功率半导体技术的瓶颈。先通过多副边输入变压器降压供给各个单个功率单元,单个功率单元为三相输入,单相输出的交-直-交逆变方式。然后把单个功率单元进行叠加实现高压变频输出,驱动电动机运转。其采用了脉宽调制(PWM)逆变方式,简化了主电路与控制电路的结构,使体积、重量、造价都得到了有效控制。系统的动态也能很好的控制,其输出频率和电压都在逆变器内完成控制和调节,调节速度快,调节过程中频率和电压能很好配合。PWM 逆变器由于输出波形接近于正弦波,对电机提供了较好电源波形,避免了电机由于电源矩形波引起的电机发热和转矩降低等问题。(PWM逆变器是依靠改变脉宽控制其输出电压,通过改变调制周期来控制输出频率。) 单个功率单元电路图: 输入端引入三相交流电经过三相二极管整流、电容滤波成直流,再经过单相逆变桥逆变 输出。

无功补偿与谐波治理技术(铜业协会)

无功补偿与谐波治理技术
报告人:许强 全国电压电流等级和频率标准化技术委员会 中国电工技术学会电力电子学会 委员 理事
报告日期:2009年4月

一、功率因数为什么会变低?什么是无功功率?
我们知道,通常我们所 用的交流电压是50Hz的正 弦波,在电压的两端接上 负载就会产生电流,如我 们在220伏(或380V)的 电源上接一个电灯,电灯 中流过电流,灯就亮了。 当负载是电阻时,电压波 形的相位与电流波形的相 位完全相同,即电压波形 与电流波形重叠在一起。 这时电网送出的功率也与 消耗的功率相等。

而现实生活中电阻负载使用 的较少,大多数负载都有一定 的电感,如变压器、电动机、 洗衣机、冰箱、空调等都是带 有电感性的负载,这样就使电 压波形的相位与电流波形的相 位不能重叠,电流的波形(红 色)就会比电压波形(蓝色) 迟后△T的时间,△T时间越 大,功率因数越低,消耗的无 功功率也越大。那么电网送出 的功率(视在功率)也与消耗 的功率(有功功率)就不再相 等了,电网送出的功率是如下 表达式: 电网送出的功率(视在功率)=实际消耗的功率(有功功率)+无功功率

什么是无功功率:
无功功率决不是无用功率,它是另外一种能量消耗的表达形 式,如电动机需要建立和维持旋转磁场,使转子转动,从而 带动机械运动,电动机的旋转磁场就是靠从电源取得无功功 率建立的。变压器也同样需要无功功率,才能使变压器的一 次线圈产生磁场,在二次线圈感应出电压。因此没有无功功 率的话,电动机不会转动,变压器不会变压等。 因此在正 常情况下,用电设备不但从电网中取得有功功率,同时还需 要从电网中取得无功功率。如果电网中的无功功率供不应 求,用电设备就没有足够的无功功率来建立正常的电磁场, 那么这些用电设备就不能维持在额定情况下的工作。能反映 无功功率被使用的指标是用电的功率因数,即COS?。

西门子变频器基本参数设置

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸)

6SE70 变频装置调试步骤 一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转 P572.1=7 PMU 反转

高压变频器的几种控制方式

高压变频器的几种控制方式 一直接高压控制(高成本) 目前以采用美国罗宾康类似的无谐波变频技术,由低压模块串接起来成为高压输出,其优点是极低的谐波,但是需要专用输入变压器装置,投入成本最高,低频运转时因为IGBT 的饱和压降串联产生效率较低的问题.比较适合大容量高压电机的风机水泵类负载驱动. 二、三电平控制(中等成本) 由于功率半导体的耐压较低,采用串联方案以提高输出电压,与低压变频器技术类似差异性在于输出电压提高一倍,输出电流谐波较低等优点,比较适用于中压场合(690~3300V),容量也属中等,由于也有使用IGCT高压功率模块,所以电压也可以提高到6,000V,但是目前市场应用较少.三电平技术目前欧美国家使用在地铁驱动,风机水泵节电运转以及油田矿山场合,一般电压范围集中到低压与中压内使用,日 本也有使用三电平技术生产低压变频器在市场上销售. 三、高低压控制(低成本) 高低压控制变频器指利用变压器将高压降为低压,再购买低压变频器装置驱动低压电机..此系统技术最成熟,可靠性最高,运行效率最高,投入成本最低,维修服务方便.中低容量电机(一般指2,000KW以下)最适合使用.对于用户新上项目最适合选用此方案. 四、高低高控制 一般适用于老设备的节电改造,原来高压电机设备的改造,高低高控制方案对于2,000KW以下高压变频器非常适合,此技术采用变压器将高压降到低压,在购买低压变频器装置,再将变频器输出电压经过变压器直接升到高压驱动高压电机. 目前德国西门子公司在中国有较多的销售实绩.而且该公司出口到欧美的设备也在中国采购输入输出变压器,可见此方案有一定的优越性. 高低高控制的优点是技术成熟,可靠性高,维修服务方便,投入成本低. 由于变频器的广泛应用,中小容量的高压电机已逐步减少需求,主要是因为变频器能够有效的控制起动电流,运转效率及功率因子,因此中低容量高压电机应该尽量改选用低压驱动目前欧洲有些电机厂都已生产低压电机到1,500KW,用户可以选购低成本,低维护费用,高效率,高可靠性的变频装置驱动.

中频电炉无功补偿和谐波治理的成功案例(DOC)

815V、5吨中频电炉无功补偿和谐波治理的成功案例 2007-4-27 天津市津开电气有限公司总经理盖福健高级工程师孙泽林 关键词:中频电炉、无功功率、无功补偿、谐波、间谐波、谐波治理、变流、变频、谐波电流、谐波电流 放大、博里叶级数 1.绪论: 随着电力电子技术的飞速发展,我国的工矿企业中,电力电子器件的大量应用,可控、全控晶 闸管作为为主要开关元件,电力电子器件的整流设备,变频、逆变等非线性负荷设备的广泛应用,谐波问题亦日益广泛的提出。诸如谐波干扰、谐波放大、无功补偿失效及谐波无功电流对供电系统的影响等。上述电力电子设备是谐波产生的源头。谐波电流的危害是严重的,主要有以下几个方面: ·谐波电流在变压器中,产生附加高频涡流铁损,使变压器过热,降低了变压器的输出容量,使变压器噪声增大,严重影响变压器寿命。 ·谐波电流的趋肤效应使导线等效截面变小,增加线路损耗。 ·谐波电流使供电电压产生畸变,影响电网上其它各种电器设备不能正常工作,导致自动控制装置误动作,仪表计量不准确。 ·谐波电流对临近的通讯设备产生干扰。 ·谐波电流使普通电容补偿设备产生谐波放大,造成电容器及电容器回路过热,寿命缩短,甚至损坏。·谐波电流会引起公用电网中局部产生并联谐振和串连谐振,造成严重事故及不良后果。 2.概述 2.1天津市某铸造公司(简称铸造公司)为生铁铸造企业,工厂主要设备为两台500HZ中频感应电炉以溶化生铁进行铸造,因采用中频电炉,故由于变流及变频等原因造成用电谐波超标,功率因数过低,为此进行设备改造以提高功率因数,治理谐波,节约能源,提高电网质量,降耗增容。 2.2中频电炉运行主要参数 ①电炉为长期间断运行,运行时间每炉出铁冷炉约为2.5小时,热炉约2小时。 ②在正常运行时高压侧工作电流为150~160A。整流变压器二次侧为六相十二脉波输出。 ③现场仪表指示数据 一次测电压10.2KV 二次测电压815V×2 一次测电流157A 二次测电流992A×2 一次测功率因数COS?=0.6~0.7最低COS?=0.23最高COS?=0.79予升温COS?=0.49 保温COS?=0.23~0.49 加温COS?=0.72~0.79 2.3中频炉一次系统图

罗宾康变频器操作步骤

变频器运行操作步骤 一、变频器启动电机操作 1.确定电机处于可以运行状态。 2.合上变频器控制电源开关CDS1,按下UPS电源键,此时键盘上最左边的power on灯亮,表示380V控制电源已经上电,变频器电源正常,确认风机转动正常(时常用一张A4的纸,放在滤网上,看能否吸住),过60秒后,观看键盘显示。 3.观察变频器的键盘显示,如果键盘上显示有故障(键盘上故障指示灯长亮),按键盘上的故障复位键,确定故障是否能被复位,如不能复位说明设备有问题,察看键盘的故障提示,采取相应解决的措施,或按控制柜上提供的电话联系罗宾康公司。如果键盘上的故障灯闪烁,说明内部有报警,查看报警情况,看完后按故障位键,若不能复位,采取相应的措施。 4.确认变频器控制柜上的就地/远程旋钮开关打到远程位置。注意:如果在就地位置,则DCS无法操作变频器,此时可以通过键盘来控制变频器。 5.确认上级高压开关已经断开, 旁路柜的工频运行刀闸K3处于断开 位置,合变频器的进线刀闸K1,合出线刀闸K2。注意:在分合上述刀闸的时候,一定要确定相应的刀闸已经在正确的位置,可以打开柜上的照明开关来察看。 6.合上上级用户高压开关之后,观察变频器有无故障显示,要按复位按钮将报警或故障复位,若不能消除故障或报警,则查看是何原因引起的故障和报警,并采取相应的措施。当面板上无故障显示,并且键盘的MODE 下边现实OFF,在DCS上则可以看到变频器准备好的信号,此时就可以由DCS

进行启动变频器的操作。 注意的是,如果高压开关不能合上,一定要确定刀闸是否在正确的位置,因为刀闸的节点已经串入高压开关的合闸回路中去了,如果刀闸不在正确的位置,则高压开关无法合上。 7. 如果没有设定给定速度,则变频器接受到启动信号后按30%的速度给定启动(因为内部已经设定最小转速30%),当给定的速度超过30%时候,则电机按给定的速度转动。 二、变频器停止电机操作 1. DCS或键盘发出信号让变频器停止的命令,电机速度降到零速。 2.断开上级用户高压开关,断开变频运行的K1,K2刀闸。注意:尽量不要经常的停送高压电,保持控制部分和风机旋转 3.按下UPS电源按钮,此时风机停机,断开变频器控制电源开关CDS1,CDS2,操作完毕。 三、变频器使用时要注意的问题: 变频器有任何异常情况都会发出报警或者故障信号,在键盘上表示为:故障灯长亮表示故障,若是闪烁表示报警。报警不影响变频器运行。故障可分为两种,一种是跳上级的用户高压开关,这些故障为:门打开、按急停、风机故障、变压器温度过热、变频器损耗过大、以及变压器次级短路,这些故障的产生将会产生严重后果或者威胁人身安全,所以要跳高压开关。另一种是不跳用户的高压开关。两种故障的发生都会使变频器停止输出,电机此时自由滑行停车。发生报警或故障的时候先按复位键,如果不能复位,则要查明原因,相关人员也要到变频器前去看是什么原因引起的报警或故障。在键盘上也会留下报警或故障信息,按键盘上的故障复位键才能将报警或故障信息清除。

相关文档
最新文档