生物可降解聚乳酸的改性及其应用研究

生物可降解聚乳酸的改性及其应用研究
生物可降解聚乳酸的改性及其应用研究

生物可降解聚乳酸的改性及其应用研究(上) https://www.360docs.net/doc/b57261005.html, 2006年11月06日中国包装网作者:

1概述

聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA

这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30

天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O

,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。

1.1聚乳酸的制备

目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)

。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。

1.2聚乳酸的基本性质

由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA

,分别由乳酸或丙交酯的消旋体、左旋体制得。

聚乳酸(PLA)

是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)

批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。

同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)

聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa

负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA

的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

$分页符$

2聚乳酸的改性

正由于聚乳酸的上述缺点,使得目前通过对聚乳酸进行增塑、共聚、共混和复合等改性方法来改进聚乳酸的力学性能,改善其亲水性,并使其降解性能不受影响,从而能更好地满足生物医用以及环保的应用。

2.1增塑改性

目前,广泛研究用生物相容性增塑剂例如柠檬酸酯醚、葡萄糖单醚、部分脂肪酸醚、低聚物聚乙二醇(PEG)、低聚物聚乳酸(OLA)

、丙三醇来提高聚乳酸的柔韧性和抗冲击性能。对增塑后的聚乳酸进行热分析和机械性能表征研究其玻璃化转变温度(Tg)

、弹性摸量、断裂伸长率等的变化,从而来确定增塑剂的效能。大量研究结果显示:其中较有效的增塑剂是OLA和低分子量的PEG(PEG400)

,加入20%(wt)的PEG400和OLA可使得聚乳酸的玻璃化转变温度由原来的58℃分别降低至12℃和18℃。

2.2共聚改性

共聚改性是目前研究最多的用来提高聚乳酸柔性和弹性的方法,其主旨是在聚乳酸的主链中引入另一种分子链,使得PLLA

大分子链的规整度和结晶度降低。目前聚乳酸的共聚改性主要可以分为以下几个方面:

2.2.1丙交酯与乙交酯共聚聚乙交酯(PGA)是最简单的线型脂肪族聚酯,早在1970

年,PGA

缝合线就已以“Dexon”商品化,但PGA

亲水性好,降解太快,目前用单体乳酸或交酯与羟基乙酸或乙交酯共聚得到无定型橡胶状韧性材料,其中通过调节LLAPGA

的比例可控制材料的降解速度,作为手术缝合线已得到临床应用,其中L2丙交酯与乙交酯GA的共聚物已商品化。

2.2.2聚乳酸与聚乙二醇(PEG)的嵌段共聚物聚乙二醇(PEG)

是最简单的低聚醚大分子,具有优良的生物相容性和血液相容性、亲水性和柔软性。朱康杰等以辛酸亚锡作为催化剂的条件下,通过开环聚合合成了PLA2PEG2PLA

的三嵌段共聚物。这类嵌段共聚物具有亲水的PEG链段和疏水的PLA

链段,通过改变共聚物组成,可大幅度调节材料的亲疏水性能和降解融蚀速率[7]。华南理工大学的葛建华等[8]

将可生物降解高分子聚乳酸与具有亲水性链段的聚乙二醇共聚制得嵌段共聚物,

在一定反应条件下,使得材料的接触角由46°降为10°~23°,显著改善了聚乳酸材料的亲水性。

2.2.3丙交酯与己内酯(CL)共聚合聚(ε2己内酯)

(PCL)是一种具有良好的生物相容性和降解性的生物医用高分子,其降解速度比聚乳酸慢,因此制备LAPCL

嵌段共聚物来达到控制降解速度,LAPCL嵌段共聚物近年来由于优异的生物降解和生物相容性受到广泛的关注,主要用于生物医学领域。Jeon

等制备了聚L2丙交酯和聚(ε2己内酯)多嵌段共聚物,进一步改善了其加工和降解等性能。

2.2.4

丙交酯与醚段和环状酯醚共聚合聚醚高分子有着优良的血液相容性,但其水溶性太大从而限制了其应用。聚丙二醇与环氧乙烷的加聚物(PEO2PPO2PEO)

(聚醚)Pluronic已被美国食品和医药管理部门批准可用于食品添加剂和药物成分,Xiong 等将PLA

成功地接枝到Pluronic共聚物的两端从而得到了含有短PLA链段的两性分子

P(LA2b2EO2b2PO2b2EO2b2LA)

嵌段共聚物,研究结果表明这种嵌段共聚物保留了原有Pluronic体系的热响应性,并由于PLA

链段的引入有效地降低了临界胶束浓度,以亲水性药物为模型,观察到可持续释放,极有望用于药物控释。另外,丙交酯与环状酯醚如对2二氧六环酮的共聚后可改善其亲水性,该共聚物是一种具有优良的柔韧性和弹性的手术缝合线材料。

2.2.5L2丙交酯与淀粉共聚Chen等合成了淀粉接枝聚L2乳酸共聚物,这种接枝共聚物可直接用于淀粉2聚(ε2己内酯)

和淀粉2聚乳酸共混物的热塑性塑料和两相相容剂。涂克华等研究发现淀粉2聚乳酸接枝共聚物可有效地增加淀粉与聚乳酸的相容性,

从而提高共混体系的耐水性和力学性能。

2.2.6其它He等将含双键的天然代谢物质苹果酸(羟基丁酸,马来酸)

引入聚乳酸大分子的主链或侧链中,得到既具降解性、力学性能,又具反应性的功能材料,可作靶向控释载体以及组织和细胞工程的支架材料。

重庆大学罗彦凤等合成了基于马来酸酐改性聚乳酸(MPLA)的丁二胺新型改性聚乳酸(BMPLA)

,改善了聚乳酸的亲水性,完全克服了聚乳酸和马来酸酐改性聚乳酸降解过程中的酸性,并为进一步引入多肽和胶原等生物活性分子提供活性基团。丁二胺改性聚乳酸可望具有优良的细胞亲和性,

在组织工程中具有重要的应用潜力。

Wu

等合成了新型两性分子壳聚糖聚丙交酯接枝共聚物,可在水性介质中形成以憎水性聚丙交酯链段为内核、亲水性壳聚糖链段为外壳的核壳胶束结构。有望用于憎水性药物的诱捕和控制释放。Luo

等合成了低分子量聚N2乙烯吡咯烷酮(PVP)与聚D

,L2丙交酯的新型两性二嵌段共聚物,这种二嵌段共聚物在水性溶液中能自组装成为胶束,有望用于肠道外注射用药物的药物载体。

Breitenbach等将聚乳酸和乙二醇的共聚物(PLG)嫁接到亲水性聚乙烯醇(PVA)

上得到了生物可降解梳形聚酯PVA2g2PLG,通过调节PLG链长、组成以及PVA

分子量等参数能有效控制降解速度,避免憎水性聚合物使亲水性大分子药物变性,可用于亲水性大分子药物蛋白质、缩氨酸和低(聚)

核苷酸的肠道外药物传输体系。

Lo等合成了具有核壳结构的聚DL丙交酯与聚N2异丙基丙烯酰胺和甲基丙烯酸共聚物的接枝共聚物[

PLA2g2P(NIPAm2co2MAA)],其具有温度敏感性和pH敏感性,可用于抗癌类药物在细胞内传输的药物载体。

2.3共混改性

最普通和重要的可生物降解聚合物都是脂肪族的聚脂如聚乳酸(PLA)、聚(ε2己内

酯)(PCL)、聚氧化乙烯(PEO)

、聚羟基脂肪酸丁酯(PHB)、聚乙醇酸(PGA)

。然而,任何一种都有些短处从而限制了其应用。共混改性是另一类可以改善材料的机械性能和加工性能,并且降低PLA

成本的有效途径。共混物样品的制备方法目前广泛采用以下几种方式:熔融共混法、溶液浇铸成膜法

、溶解P沉降法、用水作发泡剂,单螺杆或双螺杆挤出机制备发泡材料。

聚乳酸与另一类生物可降解高分子如由微生物合成的聚羟基脂肪酸酯(PHA)、化学合成的聚(ε2己内酯)(PCL)

、聚氧化乙烯(PEO)、聚N2乙烯基吡咯烷酮(PVP)、可溶性磷酸钙玻璃微粒、葡聚糖以及天然高分子淀粉

组成完全可生物降解共混体系,致力于从根本上解决塑料消费后造成的环境污染问题。另一类,聚乳酸与非生物降解高分子如聚氨酯、聚苯乙烯[、聚异戊二醇接枝聚乙酸乙烯酯共聚物橡胶、对乙烯基苯酚(PVPh)

、聚甲基丙烯酸甲酯(PMMA)[30]、聚丙烯酸甲酯(PMA)、线性低密度聚乙烯(LLDPE)

组成部分生物降解共混体系,这类体系不能从根本上解决环境污染问题。

2.4复合改性

将聚乳酸与其它材料复合旨在解决聚乳酸的脆性问题,达到增强的目的,使其能满足于作为骨折内固定材料的用途。目前可以分为以下几种复合体系:

2.4.1聚乳酸与纤维复合将聚乳酸基体与聚乳酸纤维通过纤维集束模压成型得到聚乳酸自增强材料;用碳纤维增强PLLA

复合材料,其初始弯曲强度高达412MPa,模量达124GPa,具有相当的承载能力;Oksman 等用天然亚麻纤维增强PLA

,与传统用聚丙烯P亚麻复合材料相比,其制备方法类

聚乳酸的研究进展

聚乳酸的研究进展 摘要:聚乳酸(Poly(lactic acid),PLA)是一种由可再生植物资源如谷物或植物秸秆发酵得到的乳酸经过化学合成制备的生物降解高分子。聚乳酸无毒、无刺激性,具有优良的可生物降解性、生物相容性和力学性能,并可采用传统方法成型加工,因此,聚乳酸替代现有的一些通用石油基塑料己成为必然趋势。由于聚乳酸自身强度、脆性、阻透性、耐热性等方面的缺陷限制了其应用范围,因而,增强改性聚乳酸己成为目前聚乳酸研究的热点和重点之一。本文综述了聚乳酸的研究进展,以改性为中心。 关键词:聚乳酸改性合成方法生物降解 引言 天然高分子材料更具有完全生物降解性,但是它的热学、力学性能差,不能满足工程材料的性能要求,因此目前的研究方向是通过天然高分子改性,得到有使用价值的天然高分子降解塑料。1780年,瑞典化学家Carl Wilheim Scheele 首先发现乳酸(Lactic acid ,LA)之后,对LA进一步研究发现,在大自然中其可作为糖类代谢的产物存在。乳酸即2—羟基丙酸,是具有不对称碳原子的最小分子之一,其存在L-乳酸(LLA)和D—乳酸(DLA)两种立体异构体。LA的生产主要以发酵法为主,一般采用玉米、小麦等淀粉或牛乳为原料,由微生物将其转化为LLA,由于人体只具有分解LLA的酶,故LLA比DLA或DLLA在生物可降解材料的应用上有独到之处。 上世纪50年代就开始了PLA的合成及应用研究上世纪70年代通过开环聚合合成了高分子量的聚乳酸并用于药物制剂及外科手术的研究上世纪80到90年代组织工程学的兴起更加推动了对PLA及其共聚物材料的研究。目前国内外对的研究主要集中在两个方面(1)合成不同结构的聚合物材料主要是采用共聚、共混等手段合成不同结构的材料;(2)催化体系的研究。 1 PLA的结构和性能

聚乳酸化学改性

聚乳酸化学改性的研究 摘要为了改善聚乳酸的使用性能,需要将聚乳酸改性,改善其力学性能、耐热性、柔韧性和作为生物材料所需的亲水性、生物相容性等。近年来有许多研究者对聚乳酸的改性进行了大量研究。本文致力于综述各种化学改性的方法如共聚、交联改性、表面改性,并对各种方法进行分析。 关键词聚乳酸化学改性共聚表面改性 0引言 合成聚乳酸的原料来自可再生的农副产品,而且聚乳酸本身可以生物降解、有较好生物相容性,因此聚乳酸在通用材料特别是一次性材料和生物材料等方面有较好的应用前景。然而聚乳酸的韧性、强度等力学性能和耐热性较差,同时亲水性不高、生物相容性还不能满足作为生物材料的许多要求,因此近年来许多研究者从化学改性、物理改性、复合改性方面进行了大量研究。而本文将从最有效的改性手段之一-化学改性的进展进行诉述和分析。 共聚改性 共聚改性是指将乳酸和其他单体按一定比例进行共聚,以此改善聚乳酸某些性能。 1.1任建敏等【1】分别研究了聚乳酸与聚乙二醇改性聚乳酸的体外降解特性,通过测定分子量和重量在pH7.4的磷酸盐缓冲液中的变化表征它们的体外降解特性。结果表明,聚乙二醇改性聚乳酸开始降解的时间早于聚乳酸,在相同时间内,前者的重量下降也较后者明显。他们提到这些材料的降解与水引起酯基水解有关,降解较快表明亲水性更好,所以聚乙二醇改性聚乳酸亲水性优于聚乳酸,这使得它可能是蛋白抗原等亲水性药物的缓释载体材料。而乙二醇的比例应该与亲水程度有关,因此研究乙二醇的比例与降解速率的关系对满足不同的缓释效果有重大的意义。樊国栋等【2】就对在共聚物中PEG分子量对亲水性能的影响进行了研究,结果表明PEG聚合度为800时亲水性最好,水在其表面的接触角为63。 1.2马来酸酐改性聚乳酸指将乳酸和马来酸酐进行共聚而得到的共聚物。许多研究证明了马来酸酐可以改性聚乳酸的亲水性和力学性能。程艳玲和龚平【3】在不同的pH值的环境下研究了聚乳酸和马来酸酐改性聚乳酸的降解性能,结果表明聚乳酸在碱性环境中降解更快,而在酸性环境中马来酸酐改性聚乳酸降解更快。曹雪波等【4】研究了马来酸酐改性聚乳酸的力学性能,结果显示其压缩强度和压缩模量均优于未改性的聚乳酸。作为生物材料,经常需要更好的力学性能,因此马来酸酐改性聚乳酸在作为组织工程支架材料方面有更好的优势。当然,力学性能改性也能改善聚乳酸作为环保材料的力学性能要求。曹雪波等【5】还研究了大鼠成骨细胞在聚乳酸、马来酸酐改性聚乳酸表面的粘附性能。他们的实验表明:与玻璃材料相比,成骨细胞在聚乳酸表面的粘附力有较大的提升,而在马来酸酐改性聚乳酸表面的粘附力更是提升了近两倍。这体现了马来酸酐改性聚乳酸对成骨细胞有较好的亲和力。马来酸酐改性聚乳酸相比聚乳酸有更好的亲水性、力学性能和细胞粘附力,这体现它可能在组织工程材料方面有一定的应用前景。 同时,聚乳酸降解会产生乳酸,这将会导致机体不良反应,因此再次改性消除这种效应对于最终的成功应用是不可或缺的。为此,罗彦风等【6】合成了基于马来酸酐改性聚乳酸和丁二胺的新型改性聚乳酸BMPLA。他们测定了BMPLA在12周内降解过程中pH的变化,结果表明降解过程中未出现pH快速下降的现象,没有表现酸致自加速特征。丁二胺上的氨基有效地改善了降解产生的酸导致的pH变化,同时阻止了酸催化降解的加速效应。不仅如此,他们还测定了水接触角,发现这种新型改性聚乳酸相比于聚乳酸和马来酸酐改性,其亲水性有了很大的改性。这可能与氨基与水形成了氢键有关。优良的细胞亲和性和降解行为,使得马来酸酐、丁二胺改性聚乳酸在组织工程支架上有良好的应用前景。

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚乳酸的合成、改性与应用的研究进展

聚乳酸的合成、改性与应用的研究进展 摘要:本文阐述了聚乳酸(PLA)的基本特征及合成方法,并针对其性能上的缺点,提出了几种具体的改性方法,介绍了可降解生物材料聚乳酸在包装行业、纺织行业及医疗卫生行业的应用前景。 关键词:聚乳酸; 改性; 应用前景 Abstract:This paper describes the polylactic acid (PLA) and the basic characteristics of synthesis methods, and for the performance of its shortcomings, proposed several specific modification method, introduced biodegradable polylactic acid material in the packaging industry, the textile industry and health care prospects of the industry. Key word: Prospects; modified; polylactic acid

1前言 目前,世界高分子材料产量已超过2亿吨,一些不可分解的塑料产品废弃物 也相应增加,它不仅影响了整个城市的美观,更严重的是它会引起环境污染,破 坏生态环境的平衡,影响人类的身体健康。可降解塑料作为一种新型的绿色生物 材料,它可以补充替代石油资源、减少温室气体排放、有利于社会的可持续发展, 因此,生物可降解塑料成为国内外研究的热点。不同于一般石化产品,生产聚乳 酸(PLA ) 的原料主要有玉米、小麦、甘蔗等天然农作物中提取的淀粉。这些淀 粉原料可经过发酵过程制成乳酸,然后通过化学合成法制得PLA ,这样不仅降低 了对石油资源的依赖,也间接降低了原油炼油等过程中氮氧化物及硫氧化物等污 染气体的排放。聚乳酸作为目前产业化最成熟、产量最大、应用最广泛、价格最 低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,将成为 生物基塑料的主力军[1]。 2聚乳酸的合成方法 目前合成聚乳酸的方法主要有两种:直接缩聚法和开环聚合法。 2.1直接缩聚法 直接缩聚法也叫一步聚合法,就是把乳酸单体直接缩合。其原理是在脱水剂 存在的条件下,分子中的羧基和羟基受热脱水,直接缩聚成低聚物,然后加入催 化剂,继续加热,最终就会得到分子质量相对较高的聚乳酸。PLA 直接缩聚的反 应式如下: HO C H CH 3C O OH HO C H C OH O CH 3+H 2O n (n-1)n 直接缩聚法的优点是操作简单,成本低,但反应条件要求高,反应时间长, 副产物水难以及时排除,得到的产物相对分子质量低,分布宽,重现性能差。直 接聚合法制得的产物相对分子质量普遍偏低,是因为反应过程中,受到许多影响 因素的影响,在聚合反应末期,聚合熔体的粘度很大,其中的水分很难除去,残 余水分不仅会降低PLA 的相对分子质量,也会影响其整体性能,因此,改善直接 聚合法反应过程中的影响因素,是一个亟待解决的问题。

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

聚乳酸的增韧改性研究

聚乳酸的增韧改性研究 张凤亮高材130140007 燕京理工学院 065201* 课题分析 课题概述: 聚乳酸(PLA)作为一种非石油基可生物降解高分子材料,一直是材料科学领域中研究的重大主题。PLA是一种可生物降解的热塑性线性脂肪族类聚酯,是由可再生原料制备得到的,它具有很多石油基塑料没有的优异性能。它具有较高的力学性能、热塑性、加工性能、生物相容性和降解性。土壤埋没实验证明,PLA 制品在土壤中能够稳定降解,几年后完全消失;根据ISO14855标准,在堆肥喜氧氛围中,PLA在45天内能够达到80%以上降解。因此,PLA作为可再生、可降解塑料,在日用品和食品包装、垃圾袋、地膜、一次性餐具及生物医药等领域具有广泛应用。但因其存在冲击强度和热变形温度低,气体阻隔性差等缺陷,其应用范围受到限制,而如何成功对PLA进行增韧改性也成为了科研工作者的任务之一。 课题分类: 有机化学聚合物加工工程塑料助剂与配方设计技术 信息检索范围: (1)时间范围:最早对聚乳酸的报道是20世纪30年代著名的化学家Carothers,而后1944年在Hovey、Hodgins及Begji研究的基础上,Filachiene 对聚乳酸的聚合方法做了系统的研究。在而后至今发展的几十年中,科研工作者不断完善聚乳酸的增韧改性方法。 (2)地域范围:以中国为主,英系国家为辅(主要在英语文献检索中实现)(3)语言范围:中文英文 检索类型:数据型文献型 检索内容:电子文献 根据所给课题检索得到的信息如下所示: 收稿日期:2016年6月25日 作者简介:张凤亮,燕京理工学院在校生* 摘要:为了克服聚乳酸的局限性,我们需要提高他的韧性来降低不必要的花费,并使其在各种各样的应用中发挥作用。大量研究表明,主要是在可再生资源和聚

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展 姚芳莲孟继红毛君淑#姚康德# (天津大学化工学院#天津大学高分子材料研究所天津 300072) 聚乳酸(PLA)和聚羟基乙酸(PGA)及它们的共聚物(PLG)为研究得最多的生物分解性脂肪族聚酯。它们已为美国FDA批准可用作外科缝合线及药物释放载体。近年来在组织工程中被广泛用于支架(scaffold)和细胞构建结构物。此类生物降解聚合物随组织重建在体内分步降解吸收。这些材料的本体性能和力学性质与降解速率有关。而材料的表面特性则因其与体内细胞接触而对材料与细胞间的相互作用情况起关键作用,因而对这类植入体内材料的表面修饰就显得特别主要。乳酸类聚合物的表面疏水性强,影响了其与细胞的亲和性,要扩大乳酸系聚合物在组织工程中的应用,对其与细胞亲和力的改进是一关键问题。由于聚乳酸分子链上缺乏反应位点,使得对其进行修饰变得非常困难。一般常用于聚合物表面修饰的方法,如调节材料表面亲水/疏水性及电荷、将细胞粘连因子和细胞增殖因子等生物活性因子固定于材料表面等,对乳酸类聚酯的表面修饰难于奏效。基于物理吸附的修饰方法是由范德华力维持吸附分子与基材间的作用,所以结合力弱,被结合分子易脱落,影响材料的长期使用性能,不能满足应用需要。因而,寻求聚乳酸系聚合物合适的修饰技术,包括用嵌段或接枝聚合方法对其化学结构进行本体修饰、表面修饰或复合改性,从而改善聚乳酸基生物降解材料对目标细胞的亲和性,使其在组织工程相关应用中发挥作用具有重要意义。 1 嵌段共聚物 纤连蛋白细胞粘连微区为精氨酸-甘氨酸-天冬氨酸(RGD)二肽,它可由含 侧链羧基的乳酸和苹果酸的共聚物而固定化。天冬氨酸与苄醇的80%H 2SO 4 水溶液 于70?C脱水缩合得其L-β天冬氨酸苄酯,将其在硫酸水溶液中与NaNO 2 反应得L-β 苹果酸苄酯(2),它与溴代乙酰氯在三乙胺存在下,于醚中反应得L-β溴乙酰苄 基苹果酸酯(3),它在二甲基甲酰胺中与NaHCO 3 反应则得其环状二聚体(BMD)(4)。将它与L-丙交酯(L-LAC)在己酸亚锡催化下于160?C开环聚合而后水解得 PMLA[1]。其中含苹果酸10%,数均分子量为31,700。以二环己基碳二亚胺(DCC)法或氯甲酸酯(ECF)法可将RGD在其薄膜上固定化。以后法为例,固定化量达6.3μg RGD/1mg PMLA。以1.0×105的NIH3T3细胞种植后,在D-MEM基中,37?C 下 5% CO 2 气氛中培养1h, 细胞培养后的薄膜用戊二醛固定化,对照薄膜上粘连细胞仅为种植细胞的1%,而固定化7.29μg后表面粘连细胞数增大30倍。可见利用聚(苹果酸-共-乳酸)侧链上的羧基使聚乳酸表面修饰,利于细胞粘连因子、细胞分化诱导因子和增殖因子固定化。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

聚乳酸的改性研究进展

聚乳酸的改性研究进展 摘要:聚乳酸是一种新型无毒的材料,有较好的生物相容性和生物降解性,是性能优良的绿色高分子材料,本文综述了聚乳酸的改性研究进展,展望了其应用前景。 中国论文网/7/view-12986201.htm Abstract:The polylactic acid was a kind of new non-toxic material,which was biocompatible and biodegradable. It was a fine performance green polymer material. The research progress of the modification of polylactic acid was reviewed. The application prospects of modified polylactic acid were discussed. 关键词:聚乳酸;改性;共聚;共

混;复合 Key words:polylactic acid;modification;coplymerization;blend;composite 中?D分类号:TQ311 文献标识码:A 文章编号:1006-4311(2017)23-0227-03 0 引言 聚乳酸简称为PLA,因为具有较好的相容性和降解性,所以在医药领域得到了广泛的应用,如生产一次性的点滴用具、美容注射粒子、口腔膜、心脏支架等方面得到了很广的应用。在PLA制备的初期,是由小麦、玉米、麦秆等植物中的淀粉为原料,在催化剂酶的作用下,得到乳酸,在经过一定的化学合成工艺合成得到高浓度的聚乳酸。聚乳酸除了较好的生物可降解性以外,还具良好的机械性能和物理性能。 1 聚乳酸改性的原因 PLA的聚合主要是有两种方法[1],第一种方法是直接缩聚法,乳酸同时具

聚乳酸的研究进展

聚乳酸的研究进展 摘要 乳酸主要应用于食品保健、医药卫生和工业等方面。聚乳酸是以乳酸为主要原料的聚合物,聚乳酸作为生物可降解材料的一种,对环境友好、无毒害,可应用于组织工程、药物缓释等生物医用材料,以及石油基塑料的替代材料。本文综述了聚乳酸在可降解塑料,纤维,医用材料,农用地膜,和纺织等领域的应用,并对其发展方向进行了展望。 关键词:聚乳酸聚乳酸纤维生物医药生物降解 Abstract Lactic acid green chemistry is the basic structure of one of the unit ,Mainly used in food, medicine, sanitation and health care industry, etc。Poly lactic acid is lactic acid as the main raw material polymer,Poly lactic acid as biodegradable material of a kind,Friendly to environment, non-toxic, can be applied to tissue engineering, drugs such as slow release of biomedical materials,And instead of the petroleum base plastic material。This paper reviewed the biodegradable polylactic acid in plastic, fiber and medical materials, agricultural plastic sheeting, and textile application in the field, and its developing prospects。 Key world: PLA PLA fiber Biological medicine Biodegradable 前言 由于人口的日益膨胀,以及地球上资源和能源的短缺,环境污染日益成为全人类需要急需关注的问题,各国在享受现代科技带来的便利的同时,也应该认识到人类即将面临的及其紧迫的环境危机。因此绿色化学成为了今国际化学和化工科学创新的主要动力来源,它是未来科学发展最重要的领域之一。绿色化学是实现污染预防最基本的科学手段,具有极其重要的社会和经济意义。

聚乳酸改性的研究进展

聚乳酸改性的研究进展 周海鸥史铁钧王华林方大庆 (合肥工业大学化工学院,合肥,230009) 摘 要 概述了近年来国内外聚乳酸通过共聚、共混、复合等方法获得改性材料的研究进展,并对其发展方向进行了展望。 关键词:聚乳酸改性共聚共混复合 一、前言 聚乳酸(PLA)具有优良的生物相容性、生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染。这使之在以环境和发展为主题的今天越来越受到人们的重视,并对其在工业、农业、生物医药、食品包装等领域的应用展开了广泛地研究。由于聚乳酸在性质上存在如下局限而限制了它的实际应用: (1)聚乳酸中有大量的酯键。酯键为疏水性基团,它降低了聚乳酸的生物相容性; (2)降解周期难以控制; (3)聚合所得产物的分子量分布过宽。聚乳酸本身为线型聚合物,这使得材料的强度往往不能满足要求。 同时,在实际应用中还有一些特殊的功能性需要。这都促使人们对聚乳酸材料的改性展开深入地研究。目前国内外对聚乳酸的改性主要有共聚、共混以及制成复合材料等几种方法。 二、共聚法改性 随着聚乳酸应用领域的不断扩展,单纯的均聚物已不能满足人们的需要,特别是在高分子药物控制释放体系中,要求对于不同的药物有不同的降解速度,同时对于抗冲击强度、亲水性有更高的要求。这使得人们开始将乳酸与其它单体共聚改性,以调节共聚物的分子量、共聚单体数目和种类来控制降解速度并改善结晶度、亲水性等。由于在乳酸分子中含有羟基和羧基,生成的聚乳酸含有端羟基和端羧基,所以在聚乳酸共聚物中比较多的是聚酯2聚酯共聚物、聚酯2聚醚共聚物以及和有机酸、酸酐等反应生成的共聚物。 1.线性结构的共聚物 聚酯2聚酯共聚物是目前聚乳酸共聚物中最多的一种。人们将多种酯类和丙交酯共聚制得了不同用途的产物,其中涉及的机理主要是将共聚单体制成环状化合物,再开环聚合生成不同单体间的交替共聚物。Miller等研究发现用乙醇酸生成乙交酯(gly2 colide,简称G A)再和乳酸开环聚合,能使降解速率比均聚物提高10倍以上,并且可以通过改变组分的配比来调节共聚物的降解速度[1]。张艳红等采用低聚D,L2丙交酯与聚己内酯低聚物在2,42甲苯二异氰酸酯(TDI)作用下进行了扩链反应,形成了具有

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

生物降解高分子材料——聚乳酸

生物降解高分子材料——聚乳酸 摘要:生物降解材料聚乳酸的性质及其制备方法的研究进程,其中主要介绍了通过开环聚合反映制取聚乳酸的方法以及聚乳酸易降解的特性,此外还讲了我国在聚乳酸方面的研究,最后介绍了聚乳酸在医药等方面的重大应用以及聚乳酸的发展前景。 关键词:环境材料生物降解聚乳酸前景 正文: 人类经济和社会的发展常常以扩大开发自然资源和无偿利用环境作为发展模式,这一方改造了空前巨大的物质财富和前所未有的社会文明,另一方面也造成了全球性自然环境的破坏。资源与能源是制造材料和推动材料发展的两大支柱。同时,材料的生产和使用过程也会带来众多的环境问题。因而,传统材料的生态化和开发新型生态材料以缓解日益恶化的环境问题,即材料与环境如何协调发展的问题日益受到人们重视,出现了“环境材料(ecomaterial)”的概念和环境材料学这一新兴的交叉学科,要求材料在满足使用性能要求的同时具有良好的全寿命过程的环境协调性,赋予材料及材料产业以环境协调功能。环境材料是未来新材料的重要方面之一。开发既有良好的使用性能,又具有较高的资源利用率,且对生态一步发展,能够更有效地利用有限的资源和能源,尽可能地减少环境负荷,实现材料产业和人类社会的可持续发展。 随着人类驾驭自然的本领按几何级数增长,向自然环境摄取的物质和抛弃的废弃物就越多。人类对自然环境的影响和干预越大,自然

环境对人类的反作用就越大[1]。当自然环境达到无法承受的程度时,在漫漫岁月里建立起来的生态平衡,就会遭到严重的破坏。材料的性能在很大程度上决定于环境的影响,环境包括“社会环境”和自然环境。其中人所组成的社会因素的总体称为社会环境。自然因素的总体称为自然环境,目前认为是以大气、水、土壤、地形、地质、矿产等一次要素为基础,以植物、动物、微生物等作为二次要素的系统的总体。为了得到更好的环境,开始从不同的环境材料开始研究.。 一、聚乳酸的合成与制备方法 乳酸的直接缩合是作为早期制备PLA的简单方法,但一般只能得到低聚物(数均分子量小于5000,分子量分布约2.0),而且聚合温度高于180℃时,通常导致产物带色。到目前为止,PLA主要是通过LA 的开环聚合制得。依据引发剂的不同,LA的开环聚合可分为正离子聚合、负离子聚合和配位聚合。目前,聚乳酸以乳酸或其衍生物乳酸酯为原料(最常见的是采用左旋乳酸为原料),通过化学合成得到聚合物。高力学性能的聚乳酸是指旋光纯度高的聚L酸(PIJA),单体为£一乳酸。合成工艺大致可以分为间接合成法和直接合成法。直接合成法,也被称作一步聚合法,是利用乳酸直接脱水缩合反应合成聚乳酸。直接法优点操作简单,成本低。缺点乳酸纯度要求高,反应时间长,反应温度控制要求严格[2]。 LA正离子开环聚合是烷氧键断开,每次增长是在手性碳上,因此外消旋成了不可避免的,而且随聚合温度的升高而增加。另外的不足之处在于:能引发LA正离子聚合的引发剂不多,而且难以得到高

聚乳酸及其改性的研究和应用进展

聚乳酸及其改性的研究和应用进展 1 聚乳酸的研究进展 绿色化学为开发新的乳酸衍生物拓展了思路,生物聚合物(如聚乳酸)就是绿色化学的应用领域之一。 目前环保行业的明星是利用乳酸生产的新型聚酯材料——聚乳酸(PLA),它也称为聚丙交酯(polylactide),属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生,主要以玉米、木薯等为原料。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。聚乳酸中间体丙交酯具有3种立体异构体,因此由丙交酯开环聚合所得到的聚乳酸有多种链结构,如聚L一乳酸(PLLA)、聚D一乳酸(PDLA)和聚D,L 一乳酸(PDLLA)等,链结构决定了聚乳酸的性能。Purac公司和Sulzer Chemtech公司联合开发一种新型低成本、高效的聚合工艺以生产高质量聚乳酸。这种新型工艺基于先进的聚合和液化技术并利用由Purac提供的特种丙交酯以高效生产各种各样的PLA产品。Purac提供丙交酯单体作为聚合进料并利用先进聚合技术与Sulzer合作以生产PLA。这项工艺可大幅度降低工艺和产品的开发时间,从而促进PLA产品快速可靠地进入市场。这项新工艺仅要求较少的投资,并具有放大化生产的巨大潜力。Purac介绍说,由丙交酯合成PLA相当简单,而且不会产生任何副产品。丙交酯是一种环状二聚物,由两种不同构型的乳酸单体组成。

使乳酸生成环状二聚体(丙交酯),再开环缩聚成PLA。在此过程中,丙交酯必须经过提纯,否则难以获得分子量较高的聚合物。 Pyramid Bioplastics公司在德国东北部威廉·皮克城应用Uhde Inventa Fischer公司(德国纤维机械制造商)的技术在建设年产6万t的装置。计划于2012年建成,预计2010年全世界塑料消费量预计将达为2.5亿t,西欧消费量为4900万t(占19.5%,其中29.5 用于包装材料),预计1445万t包装材料中5 (约70万t)会被以聚乳酸为主的生物塑料所替代。 聚乳酸是一种可再生的碳水化合物资源,因其具有广阔市场前景而得以迅速发展,然而由于聚乳酸材料本身性质的缺陷(如性能脆、拉伸强度低以及热稳定性差等)和一些技术问题,使其发展和应用受到了极大的限制。PLA产业化的重大突破在于克服PLA 的热力学缺陷,它在温度高于50℃时就发生热变形,严重影响产品的存储、运输和使用。改善这一缺点并保持其透明性将更能使人们接受,并大大拓宽其应用市场。 2 聚乳酸的改性 对聚乳酸改性的方法主要包括共混、共聚和复合等。改性后聚乳酸的降解性能、耐热性能及机械性能等可得到一定改善,且不影响其生物相容性,从而更好地满足在环保或医学领域的应用要求。可用普通高聚物的加工方法(如挤出、注塑等),熔融共混PLA与PDLA,以形成聚乳酸立构复合物(SC—PLA)。这种立构复合物对PLA 的结晶起异相成核作用,能有效促进PLA结晶。使结晶速度加快,结晶度提高,聚乳酸

生物可降解材料聚乳酸结晶行为研究进展_任杰

生物可降解材料聚乳酸结晶行为研究进展 任 杰*,杨 军,任天斌 (同济大学材料科学与工程学院纳米与生物高分子材料研究所,上海 200092) 摘要:聚乳酸是一种具有良好生物相容性、可生物降解的热塑性脂肪族聚脂,是一种环境友好材料。聚乳 酸的结晶性能对其力学性能和降解速率有着重要的影响,因而其结晶行为也逐渐成为人们研究的热点。本文 针对聚乳酸的结晶行为综述了聚乳酸及其共混、共聚体系的最新研究进展。 关键词:聚乳酸;共聚;共混;结晶 目前,生物医用高分子材料作为功能高分子材料的分支之一,发展非常迅速,广泛用作组织工程材料、人体器官、药物控制释放材料、仿生智能材料等。其中聚乳酸因具备良好的生物相容性、生物降解性、以及易加工性,在医学和包装材料等方面有着广泛的应用,是最有前途的可生物降解高分子材料之一。但是聚乳酸均聚物也存在不少缺陷,如亲水性差,力学强度低、韧性较差等。为了改善聚乳酸的这些性能,国内外许多学者对其进行了大量的共聚、共混改性研究。 除化学结构因素外,聚合物结晶和形态的不同,同样会导致各种性能的差异,而高聚物的结晶也始终是高分子领域研究的重要课题之一。聚乳酸的结晶性能对其力学性能和降解性能有着重要的影响。因此,研究影响聚乳酸结晶和形态的因素聚乳酸及其共聚、共混物的结晶行为,不论在理论方面,还是在实际应用方面,都将是十分有意义的。 根据立体构型的不同,聚乳酸(PLA)可以分为聚左旋乳酸(PLLA)、聚右旋乳酸(PDLA)和聚消旋乳酸(PDLLA)三种。其中,常用易得的是PLLA和PDLLA。PLLA是半结晶性的,T g为50~60 ,T m为170 ~180 ,而PDLLA是无定型的透明材料,T g为50~60 。因此本文主要对聚左旋乳酸(PLLA)的结晶行为,及共聚、共混改性对其结晶行为影响的最新研究进展进行综述。 1 聚左旋乳酸(PLLA)的结晶 PLLA的结晶行为不仅受其分子量及分子量分布的影响,还受诸多外在因素的影响,如冷却速率、结晶温度等。Tadakatu和Toru[1]运用DSC和POM等手段系统研究了PLLA的结晶特征。在非等温结晶过程中,冷却速率影响PLLA晶体的成核机理、最终的结晶度和晶体的形态。PLLA结晶度随着冷却速率的降低而显著增加,在冷却速率为3 5 min时结晶度仅为0 10,而冷却速率降至0 5 min时结晶度可达0 56。PLLA球晶尺寸在较低的冷却速率下(<2 min)随冷却速率的降低而增大。等温结晶测试表明,在105 时PLLA(M w=200000)有最大的结晶速率,且结晶速率随着PLLA分子量降低而增加;但是PLLA 最大的球晶增长速率出现在120 ,约为3 0 m min-1。Iannace等[2]研究表明,在等温结晶过程中,对于所有的结晶温度T c,PLLA的Avrami指数均接近3,表明PLLA晶体的生长方式是三维的,为典型的球晶生长特征。PLLA的半结晶期t1 2受T c影响很大。而等温和非等温方法的联合运用可以在更宽的温度范围内测量PLLA球晶的生长速率[3]。 基金项目:上海市重点基础研究资助项目(05DJ14006),上海市科委纳米专项资助项目(0552nm029); 作者简介:任杰(1965-),男,教授,博士生导师,主要研究方向为生物可降解高分子材料和聚合物纳米复合材料; *通讯联系人:T el:021 ********;Fax:021 ********;E mail:renjie65@https://www.360docs.net/doc/b57261005.html,.

聚乳酸的合成和改性研究进展.

Abstract Polylactic acid is a widely used biodegradable material, which,together with its copolymers,are now among the most important biomedical materials.There are two main methods for synthesizing homopolymer of lactic acid: the ring-opening polymerization and the direct polycondensation. The direct polycondensation method includes the direct melt polycondensation and the solution polycondensation.In accordance with the reaction mechanism,the ring -opening polymerization includes the anionic ring-opening polymerization,the cationic ring-opening polymerization and the ring-opening polymerization of coordination.In this paper,the polymerization mechanism and the research progress of different polymerization methods are discussed.The high cost in synthesizing lactic acid homopolymer,the low molecular weight of products and its hydrophobic,brittle performance have limited its applications.The current study of polylactic acid is mainly concentrated in the modification.The latest research progress on

相关文档
最新文档