数字图像处理课程设计_图像去雾

数字图像处理课程设计_图像去雾
数字图像处理课程设计_图像去雾

数字图像处理

课程设计报告

课设题目:图像去雾

学院:信息科学与工程学院

专业:

班级:

姓名:

学号:

指导教师:

哈尔滨工业大学

2012 年11月8日

目录

一. 课程设计任务 (1)

二. 课程设计原理及设计方案 (2)

三. 课程设计的步骤和结果 (6)

四. 课程设计总结 (9)

五. 设计体会 (10)

六. 参考文献 (11)

一. 课程设计任务

由于大气的散射作用,雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。为了解决这一问题,设计图像复原处理软件。

要求完成功能:

1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;

2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;

3、设计软件界面

二. 课程设计原理及设计方案

2.1设计原理

由于图像中存在噪声等干扰,使得图像模糊不清。可以采用图像增强的方法对原图像处理,使图像变得清晰。而直方图均衡化是一种常用的图像增强的方法。图像模糊,其图像的像素分布不均匀,采用直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布增强图像的目的。

2.1.1直方图均衡化

对于连续图像,设r 和s 分别表示被增强图像和变换后图像的灰度。为了简单,在下面的讨论中,假定所有像素的灰度已被归一化了,就是说,当 时,表示黑色;当 时,表示白色;变换函数 与原图像概率密度函数 之间的关系为:

()()()r

r s T r p r d r ==?01r ≤≤ (1)

式中:r 为积分变量。式(1)的右边可以看作是r 的累积分布函数(CDF ),因为CDF 是r 的函数,并单调地从0增加到1,所以这一变换函数满足了前面所述的关于 在 内单值单调增加,对于 ,有 的两个条件。

由于累积分布函数是r 的函数,并且单调的从0增加到1,所以这个变换函数满足对式(1)中的r 求导,则:

()r ds P r dr

= (2) 再把结果带入式:

111()()()()[()][()]()s r r r r T s dr d dr P s P r p r T s p r T s ds ds ds

---==?

=?=?= 则得 11()()11()[()]()[][()]1/()

s r r r r T s r T s r dr d p s p r p r p r ds ds ds dr p r --======(3)

由以上推到可见,变换后的变量s 的定义域内的概率密度是均匀分布的。

由此可见,用r 累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。其结果扩展了像素取值的动态范围。

上面的修正方法是以连续随机变量为基础进行讨论的。为了对图像进行数字处理,必须引入离散形式的公式。当灰度级是离散值的时候,可用频数近似代替概率值,即:

()k r k n p r N

= (01k r ≤≤ 0,1,2,k =…,L-1)(4) 式中,L 是灰度级数; 是取第k 级灰度值的概率; 是在图像中出现第k 级灰度的次数;N 是图像中像素数。

通常把为得到均匀直方图的图像增强技术叫做直方图均衡化处理或直方图线性化处理。式(1)的直方图均衡化累积分布函数的离散形式可由式(5)表示:

00()()k k j k k r j i i n s T r p r N =====∑∑ (01j r ≤≤,0,1,2,k =…,L-1)

(5)

其反变换为 1()k k r T s -= (6)

2.1.2 HIS 彩色模型下的图像增强

在图像处理及显示的过程中,为了能正确的使用颜色模型,需要建立颜色模型。颜色模型是三维颜色空间中的一个可见光集,它包含某个颜色域的所有模型。常见的颜色模型有RGB,HSV ,NTSC,HISr 等,各颜色模型之间可通过公式进行相互转换。

HSI 〔Hue-Saturation-Intensity(Lightness),HSI 或HSL 〕颜色模型用H 、S 、I 三参数描述颜色特性,其中H 定义颜色的波长,称为色调;S 表示颜色的深浅程度,称为饱和度;I 表示强度或亮度

当人观察一个彩色物体时,用色调、饱和度、亮度来描述物体的颜色。

数字图像处理课程心得

数字图像处理课程心得 本学期,我有幸学习了数字图像处理这门课程,这也是我大学学习中的最后一门课程,因此这门课有着特殊的意义。人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉信息总的加起来不过占20%。可见图像信息是十分重要的。通过十二周的努力学习,我深刻认识到数字图像处理对于我的专业能力提升有着比较重要的作用,我们可以运用Matlab对图像信息进行加工,从而满足了我们的心理、视觉或者应用的需求,达到所需图像效果。 数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字照片。此后,由于遥感等领域的应用,使得图像处理技术逐步受到关注并得到了相应的发展。第三代计算机问世后,数字图像处理便开始迅速发展并得到普遍应用。由于CT的发明、应用及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,数字图像处理技术的需求与日俱增。其中,图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源及利用信息的重要手段,因此图像处理科学与技术逐步向其他学科领域渗透并为其它学科所利用是必然的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。图像处理科学是一门与国计民生紧密相联的应用科学,它给人类带来了巨大的经济和社会效益,不久的将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。它的发展及应用与我国的现代化建设联系之密切、影响之深远是不可估量的。在信息社会中,数字图象处理科学无论是在理论上还是在实践中都存在着巨大的潜力。近几十年,数字图像处理技术在数字信号处理技术和计算机技术发展的推动下得到了飞速的发展,正逐渐成为其他科学技术领域中不可缺少的一项重要工具。数字图像处理的应用领域越来越广泛,从空间探索到微观研究,从军事领域到工农业生产,从科学教育到娱乐游戏,越来越多的领域用到了数字图像处理技术。 虽然通过一学期的课程学习我们还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像处理方面的知识有了比较深入的了解,当然也更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

数字图像处理 作业1汇总

数字图像处理 报告标题:01 报告编号: 课程编号: 学生姓名: 截止日期: 上交日期:

摘要 (1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。 KEY WORD :MATLAB MSE、PSNR 直方图量化

技术探讨 数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。 task1 均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码 均方误差(MSE): sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N) 信噪比(SNR): sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE) 峰值信噪比(PSNR): sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 平均绝对误差(MAE): sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N) 在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。 task3 按比例缩小灰度图像 (1)直接消除像素点: I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。 (2)先平滑滤波再消除像素点: 滤波函数,g=imfilter(I,w,'corr','replicate'); task4 对图像的放大运用了pixel repetition法以及双线性插值法: 它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。 ;缩放与放大由给定的参数来确定。而缩小则同样适用I1=g(1:m:end,1:m:end); 而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法” 放大倍数更改m值即可 task4 对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长 task5 灰度图像的量化和直方图均衡化直接调用函数。“J=histeq(I)”“imhist(I,64)”

数字图像处理的概念教学总结

数字图像处理的概念

二、数字图像处理的概念 1.什么是图像 “图”是物体投射或反射光的分布,“像”是人的视觉系统对图的接受在大脑中形成的印象或反映。 是客观和主观的结合。 2数字图像是指由被称作象素的小块区域组成的二维矩阵。将 物理图象行列划分后,每个小块区域称为像素(pixel)。 –每个像素包括两个属性:位置和灰度。 对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示, 0表示黑、255表示白,而其它表示灰度级别。 物理图象及对应 的数字图象 3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。 –通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 4什么是数字图像处理 数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f(x,y)进行数字化:空间上,图像抽样;幅度上,灰度级量化 x方向,抽样M行 y方向,每行抽样N点

整个图像共抽样M×N个像素点 一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示: f(i,j)=0~255,灰度级为256,设灰度量化为8bit 7 数字图像处理的三个层次 8 图像处理: 对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换;图像处理是一个从图像到图像的过程。 9图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息 以观察者为中心研究客观世界; 图像分析是一个从图像到数据的过程。 10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内 以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作 (符号运算) N N N N f N f N f N f f f N f f f y x f ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - = )1 ,1 ( )1,1 ( )0,1 ( )1 ,1( )1,1( )0,1( )1 ,0( )1,0( )0,0( ) ,( 符号 目标 像素 高层 中层 低层 高 低 抽 象 程 度 数 据 量 操 作 对 象 小 大语 义

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

数字图像处理

院系:计算机科学学院 专业:计算机科学与技术 年级: 09级 课程名称:数字图像处理 组号: 25组 指导教师:孙阳光 学号: 姓名: 2012 年 6 月 13 日

年 级 班号学号 专 业 姓名实 验名称MATLAB图像处理编程基础 实验 类型 设计型综合型创新型 √ 实验目的或要求加深对数字图像处理理论课程的理解,进一步熟悉数字图像处理课程的相关算法和原理选择一副图像,叠加椒盐噪声,分别用邻域平均法和中值滤波法对该图像进行滤波,显示滤波后的图像,比较和分析各滤波器的效果。 选择一副图像,叠加零均值高斯噪声,设计一种处理方法,既能去噪声,又能保持边缘清晰。

实验原理(算法流程图或者含注释的源代码)二、算法原理 平滑滤波器用滤波模板确定的领域内象素的平均灰度值去代替图像中的每一个像素点的值,这种处理减少了图像灰度的“尖锐”变化,常称为邻域平均法。邻域平均法有力地抑制了噪声,同时也引起了模糊,模糊程度与邻域半径成正比。 中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波法对消除椒盐噪音非常有效。 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰。 三、Matlab代码 1: I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = filter2(fspecial('average', 3), J); k2 = filter2(fspecial('average', 5), J); k3 = filter2(fspecial('average', 7), J); k4 = filter2(fspecial('average', 9), J); subplot(233); imshow(uint8(k1));title('3×3模板平滑滤波'); subplot(234); imshow(uint8(k2));title('5×5模板平滑滤波'); subplot(235); imshow(uint8(k3));title('7×7模板平滑滤波'); subplot(236); imshow(uint8(k4));title('9×9模板平滑滤波'); I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = medfilt2(J); k2 = medfilt2(J,[5,5]); k3 = medfilt2(J,[7,7]); k4 = medfilt2(J,[9,9]); subplot(233); imshow(k1);title('3×3模板中值滤波'); subplot(234); imshow(k2);title('5×5模板中值滤波'); subplot(235); imshow(k3);title('7×7模板中值滤波'); subplot(236); imshow(k4);title('9×9模板中值滤波');

数字图象处理课程设计

课程设计 课程名称___ 数字图像处理课程设计__ 题目名称一个简单的“photoshop”软件 学生学院信息工程学院 专业班级电子信息工程 学号 学生姓名 指导老师 2014年 1 月 3 日

一、课程设计题目 设计内容及要求: 1、独立设计方案,实现对图像的3种处理。 2、利用VC++实现软件框架:有操作菜单、能显示某项操作前后的图像。 3、查找相关算法,至少实现3种功能,比如:灰度增强、直方图显示、浮雕等等(底片化、二值化及平滑等实验内容不计算在内)。 4、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 二、课程设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在完成数字图像处理的相关理论的学习后,进行的综合性训练课程,其目的主要包括: 1、使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法; 2、增强学生应用VC++编写数字图像处理的应用程序及分析、解决实际问题的能力; 3、尝试将所学的内容解决实际工程问题,培养学生的工程实践能力,提高工科学生的就业能力。 三、设计内容 1、直方图显示 直方图显示就是统计图像某一灰度级出现的次数,保存到一个数组中。然后在一个直方图上画图显示出来。 2、直方图均衡化 直方图就是某一灰度级的象素个数占整幅图像的象素比h=nj/N,其中nj是灰度级在j的象素数,N是总象素数,扫描整幅图像得出的h的离散序列就是图像的直方图,h求和必然=1,所以直方图可以看成是象素对于灰度的概率分布函数。直方图均衡化算法分为三个步骤,第一步是统计直方图每个灰度级出现的次数,第二步是累计归一化的直方图,第三步是计算新的像素值。对于彩色的图片来说,直方图均衡化一般不能直接对R、G、B三个分量分别进行上述的操作,而要将RGB转换成HSV来对V分量进行直方图均衡化的操作。3、浮雕效果 浮雕效果就是将图像的变化部分突出显示,颜色相同部分淡化处理,使图像出现浮雕效果。实现图像浮雕效果的一般原理是,将图像上每个像素点与其对角线的像素点形成差值,使相似颜色值淡化,不同颜色值突出,从而产生纵深感,达到浮雕的效果,具体的做法是用处于对角线的2个像素值相减,再加上一个背景常数,一般为128而成。这样颜色变化大的地方色彩就明显,颜色变化小的地方因为差值几乎为零则成黑色。 4、均值滤波 图像平滑主要是为了消除噪声。噪声并不限于人眼所能看的见的失真和变形,有些噪声只有在进行图像处理时才可以发现。图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。图像中的噪声往往和信号交织在一起,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边界轮廓、线条等变的模糊不清,如何既平滑掉噪声有尽量保持图像细节,是图像平滑主要研究的任务。 这次实验采用的均值滤波,原理是采用一个3*3的模板

上数字图像处理技术的心得

上数字图像处理技术的心得我一直对PS挺感兴趣的,虽然我去图书馆借了许多书,可是有很多地方解释不清楚也没有素材,我都快崩溃了。单我发现这门课立即就报了它。我的最初目的不是要去学数字图像处理技术,而是冲着学photoshop去的。 刚开始上第一节课时,老师您并没有讲PS,而是讲一些关于数字图像处理技术的原理知识。我本以为我可能不会喜欢这种类型的课。但是出于一个理科生的本能反应,我挺喜欢这些内容。我发觉我的几个选修都正好符合我的兴趣爱好。我第一次接触数字图像处理技术,才知道图像的原理竟然一些数字矩阵。不愧叫数字图像处理技术。 但老师开始讲PS的时候,我自然是更加高兴了。因为这是我主要的学习目的。图像处理技术只是碰巧撞上。说实话,我对PS上的一些工具及使用方法还不是很了解。老师能从基本知识讲起正和我心意。虽然有很多我以前都会了。 我现在来讲讲我从在这门选修课中学到最主要的两项知识。 其一就是老师最希望我们了解的数字图像处理技术。我们现在都知道一张像数码相机照出来的照片(数字图像)是由一大堆数字矩阵组成。黑白与彩色图像的矩阵又有一些不同。老师用北京邮电大学的那个软件给我们演示一下PS里面的图像处理原理是怎样形成的。比如模糊,锐化等等。还有很多的图像处理通过PS来说明解释。后面主要就是介绍压缩技术。当然也涉及到一些视频音频的压缩。图像

压缩老师您也介绍了很多不同的方法。可我想不起来了,但是起码我们知道了它的压缩原理。知道原图像与压缩后所占存储量的巨大差异。我在这里也和老师一样用画图做一个。有一点失真,这就是有损压缩。 另外那个无损压缩从视觉上是抗不出来的,就不用做了。 其二,就是在photosop的操作上。老师您举了许许多多的操作例子来提高我们对数字图像处理技术的兴趣,尤其是在图层和滤镜的学习,我都学到很多在书上看不懂的方法技能。下面我也简简单单做一张,就当做是作业来完成吧! 如下三张图:通过第一张图中草地,山与第二张的天空合成第三张图。

数字图像处理心得体会

《数字图像处理》心得体会 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。? 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。? 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。? 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。?

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。? 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。? 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。? 数字图像处理的特点主要表现在以下几个方面:? 1)?数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。? 2)?数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。? 3)?数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。?图像受人的因素影响较大,因为图像一般是给人观察和评价的。? 数字图像处理的优点主要表现在4个方面。? 1)?再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。? 2)?处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于

数字图像处理课程设计

数字图像处理课程设计报告 目录 一.实验目的 (3) 二.实验内容............ ................... . (3) 1.打开图像 (3) (1)、图像信息获取 (3) (2). RgbtoHsi(&rgb, &Hsi) (4) (3).OnMouseMove(UINT nFlags, CPoint point) (4) 2.标记Mark点 (5)

(1)标记可能的点 (5) (2)把可能标记的点变为标记点 (5) (3) EdgeIformation边缘标记 (6) (4)EdgeFilter边缘滤波 (6) 3.二值化 (7) 4.填洞 (8) 5收缩 (10) 6获取中心点 (11) 三.学习心得 1.错误总结 (16) 2.心得体 会 (17) 一.实验目的: 对血液细胞切片图片进行各种处理,最终得出细胞的数目、半径等信息 基于vc的红细胞识别统计系统设计 它主要以病人的血液样本为原始数据。经过一系列的图像处理和分析,识别出血液中的红细胞,并能给出红细胞的个数。而得到红细胞的个数以后,通过血液量的检测,就可以得出血液中红细胞的密度。该系统可以很方便的利用在临床上,大大提高速度和效率。

二、实验内容 基于VC++6.0软件下的细胞识别,通过细胞的标记、二值化、提取边缘、填洞、收缩、找中心点、计数等过程完成实验目的 1 . 打开图像 (1)图像信息获取 该步骤实现的功能是打开bmp格式的图像文件,要对图像进行操作,系统必须能调用图像。 打开bmp图像的具体步骤为 1.新建项目:--MFC AppWizard、工程名 2.拷贝cdib.h,cdib.cpp到工程文件夹,再向工程里添加 3.~Doc.h添加变量:m_pDib 4.~doc.cpp:变量(m_pDib):new、delete 5.~doc.cpp: Serialize() 6.~View.cpp: OnDraw() m_pDib->Draw() 2.RgbtoHsi(&rgb, &Hsi)

数字图像处理作业 1

数字图像处理作业 1 1.基本问题 a.什么是数字图像处理,英语全称是什么? 数字图像处理:对图像进行一些列的操作,以达到预期目的的技术,可分为模拟图像处理和数字图像处理两种方式。英文全称:Image Processing b.数字图像处理与什么领域的发展密切相关? 数字图像处理与数字计算机的发展,医学,遥感,通信,文档处理和工业自动化等许多领域的发展密切相关。 c.人类主要通过什么来感知获取信息的? 主要通过人的视觉、味觉、嗅觉、触觉、听觉以及激光、量子通信、现代计算机网络、卫星通信、遥感技术、数码摄影、摄像等来获取信息。 d.数字图像处理技术与哪些学科领域密切相关? 与数学、物理学、生理学、心理学、电子学、计算机科学等学科密切相关 e.数字图像处理在哪些领域得到广泛应用? 数字图像处理的应用越来越广泛,已渗透到工程、工业、医疗保健、航空航天、军事、科研、安全保卫等各个领域。 f.数字图像处理起源于什么年代? 20世纪20年代 g.现代大规模的图像处理需要具备哪些计算机能力? 需要具备图像处理、图像分析、图像理解计算机能力 h.根据人的视觉特点,图像可分为哪两种图像? 分为可见图像和不可见图像。 i.根据光的波段,图像可分为哪几种图像? 分为单波段、多波段和超波段图像。 j.图像数字与模拟图像的本质区别是什么? 区别: 模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理。 数字图像:空间的坐标和灰度都不连续、用离散的数字表示,能被计算机处理。 2.通过互联网,查下数字图像处理有哪些应用?选一个应用范例即可。具体描绘如何通过数字图像处理技术来实现其应用。要有图像范例说明。 数字图像处理主要应用领域有:生物医学,遥感领域,工业方面,军事公安领域,通信领域,交通领域等。我就生物医学领域做一个简单介绍。 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。 医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性。下面是关于人体微血管显微图像的采集实例。

武汉大学数字图像处理课程综合实习实习报告

数字图像处理课程综合实习 实习报告 学院 班级 学号 姓名 日期 指导教师

一、实习目的和意义 本实习内容旨在让同学们通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。为学生进一步学习数字摄影测量、遥感和地理信息系统等专业课程以及应用图像处理解决实际问题奠定基础。 二、实习原理和方法 实习一实现RAW->BMP格式的转换 RAW格式:文件按照数字图像组成的二维矩阵,将像素按行列号顺序存储在文件中。这种文件只含有图像像素数据,不含有信息头,因此,在读图像时,需要根据文件大小,计算图像所包含的行列号,或者需要事先知道图像大小(矩阵大小)。但这种文件读取和保存简单。 RAW文件按图像上行到下行、左列到右列顺序存储,而BMP文件数据区按图像上下行到上行、左列列到右列顺序存储到数据区。 实现RAW文件到BMP文件的转换,需要为BMP文件生成文件头、信息头、颜色表、数据区,将RAW文件数据区赋值到BMP文件数据区。 实习二灰度线性变换 点运算是指像素值(即像素点上的灰度值)通过运算改变之后,可以改善图象的显示效果。这是一种像素的逐点运算,是旧图象与新图象之间的映射关系,是一种简单但却十分有效的一种图象处理手段。常用方法有灰度线性变换、直方图均衡、对比度调整、直方图规定化、对数变换、指数变换、密度分割等方法。 灰度的线性变换就是指图像的中所有点的灰度按照线性灰度变换函数进行变换。灰度变换方程如下: D0=f(Di)=a*Di+b 该方程为线性方程。式中参数Di为输入图像的像素的灰度值,参数D0为输出图像的灰度,a和b由给定条件确定。 实习三图像局部处理:高通滤波和低通滤波

《数字图像处理》课程学习心得

《数字图像处理》课程学习心得 导读:本文《数字图像处理》课程学习心得,仅供参考,如果能帮助到您,欢迎点评和分享。 《数字图像处理》课程学习心得(一) 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它

却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1、数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或

数字图像处理课程设计(实验报告)

上海理工大学 计算机工程学院 实验报告 实验名称红细胞数目统计课程名称数字图像处理 姓名王磊学号0916020226 日期2012-11-27 地点图文信息中心成绩教师韩彦芳

一、设计内容: 主题:《红细胞数目检测》 详细说明:读入红细胞图片,通过中值滤波,开运算,闭运算,以及贴标签等方法获得细胞个数。 二、现实意义: 细胞数目检测在现实生活中的意义主要体现在医学上的作用,可通过细胞数目的检测来查看并估计病人或动物的血液中细胞数,如估测血液中红细胞、白细胞、血小板、淋巴细胞等细胞的数目,同时也可检测癌细胞的数目来查看医疗效果,根据这一系列的指标来对病人或动物进行治疗,是具有极其重要的现实作用的。 三、涉及知识内容: 1、中值滤波 2、开运算 3、闭运算 4、二值化 5、贴标签 四、实例分析及截图效果: (1)代码如下: 1、程序中定义图像变量说明 (1)Image--------------------------------------------------------------原图变量;

(2)Image_BW-------------------------------------------------------值化图象; (3)Image_BW_medfilt-------------------------中值滤波后的二值化图像; (4)Optimized_Image_BW---通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果; (5)Reverse_Image_BW--------------------------优化后二值化图象取反;(6)Filled_Image_BW----------------------已填充背景色的二进制图像;(7)Open_Image_BW--------------------------------------开运算后的图像; 2、实现代码: %-------图片前期处理------------------- %第一步:读取原图,并显示 A = imread('E:\红细胞3.png'); Image=rgb2gray(A); %RGB转化成灰度图 figure,imshow(Image); title('【原图】'); %第二步:进行二值化 Theshold = graythresh(Image); %取得图象的全局域值 Image_BW = im2bw(Image,Theshold); %二值化图象 figure,imshow(Image_BW); title('【初次二值化图像】'); %第三步二值化图像进行中值滤波 Image_BW_medfilt= medfilt2(Image_BW,[13 13]); figure,imshow(Image_BW_medfilt); title('【中值滤波后的二值化图像】'); %第四步:通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果 Optimized_Image_BW = Image_BW_medfilt|Image_BW; figure,imshow(Optimized_Image_BW); title('【进行“或”运算优化图像效果】'); %第五步:优化后二值化图象取反,保证:‘1’-〉‘白色’,‘0’-〉‘黑色’ %方便下面的操作 Reverse_Image_BW = ~Optimized_Image_BW; figure,imshow(Reverse_Image_BW); title('【优化后二值化图象取反】');

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

相关文档
最新文档