浅谈无齿轮曳引机的优缺点

浅谈无齿轮曳引机的优缺点
浅谈无齿轮曳引机的优缺点

浅谈无齿轮曳引机的优缺点

1、正视无齿轮曳引机

无齿轮曳引机的产生,毕竟迎合了电梯的需求,迎合了环保的需要,迎合了厂家的利益。它的诞生不单单是为了无机房电梯的需求,同时也是为了节能、降噪的需要。适者生存,我们应当看到它的无限前景(无传动机构、磨损低、装配简单、噪音低、永磁同步能耗低、省油、无油污、运行平稳易维护),为其生存发展创造条件。我们当然也不能忽视永磁同步无齿轮曳引机的缺点和不足(成本造价高,永磁体寿命有限,还很难实现1∶1悬挂方式,编码器传输对变频器的影响、制动器力矩问题等),为完善无齿轮曳引机并坚持不懈的努力研究开发新材料、新技术。无齿轮曳引机已经“来到”我们面前,在宣传其优点的同时也要正视这些尚需解决的问题,尤其当今曳引机厂家林立、竞争激烈,要想摆脱窘境、要想转产、开发新产品,就应端正心态、直面现实、正视困难,以全新产品占领市场、扭转局面。

2、永磁同步无齿轮曳引机的优点

永磁同步无齿轮曳引机,一经面世就显示了它的勃勃生机。

1)永磁同步无齿轮曳引机无传动结构,体现如下几点好处:

(1)磨损低。无齿轮曳引机的最大优势在于没有任何传动结构,除了电机转子轴(它同时又是曳引轴)上有一组轴承之外,就再也没有什么机械磨损了,没有磨损,自然延长了曳引机的使用寿命。

(2)节能。无齿轮曳引机由于没有传动结构,也就没有了机械方面的功率损耗,相对来讲,也就节省了能量和运行开支。以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机(曳引比为1∶1)需11kW;韦伯无齿曳引机(曳引比为2∶1)只需6.7kW。

(3)安装简便。由于曳引轮直接固定在电动机的轴上,结构紧凑体积小、重量轻,便于吊装、运输,所以现场安装也就容易多了,仍以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机17CT,自重1300kg;韦伯无齿曳引机WEB-1.0-1000,自重300kg。

(4)运行平稳。由于没有传动结构,也就没有皮带传动的丢转、打滑,电梯平层精度高、运行可靠;也就没有齿轮啮合的噪音和震动,从而表现在电梯运行平稳、噪音低,这也是电梯绿色革命的突出特点。

(5)省油。无齿轮曳引机由于没有传动结构,也就省去了传统减速箱中的润滑油,它只在轴承内存有足量的润滑脂。日常维保不存在更换润滑油的烦琐,同时也避免了润滑油泄漏带来的污染和维护难度,又节省了润滑油费用。

(6)使用方便。由于无齿轮曳引机没有液态润滑油,亦无泄漏,不仅没有污染,而且可以任意姿态安装,比如底脚朝上悬挂于井道顶板处。

2)永磁同步无齿轮曳引机控制系统的好处

永磁同步无齿轮曳引机都设计了“断电短路”环节,利用“永磁同步电动机,短接三相绕组时可以作为发电机运行”的这一突出优点,有效地避免电梯失控溜车。这一环节体现了以下几个好处:

(1)当电梯失控(如电梯停止运行,又恰遇抱闸故障无法制动)发生溜车

时,由于绕组短路、发电制动,在很小的转速下就会产生很大的力矩,使电梯溜车的速度变得非常缓慢,不致造成梯毁人亡的悲剧。

(2)当无齿轮曳引机安装在井道内,遇有故障停梯在平层区域以外需要疏放乘客时,可以通过连接开闸搬手的钢丝拉索,很方便地在井道外操作:开闸、缓慢溜放到平层位置,很安全(这对于有齿曳引机,是根本不可能的)。

(3)当电梯严重超载(比如,超过额定载荷150%)造成电梯下沉时,其下沉速度也是非常缓慢的,不会引起乘客极度恐慌,提高了电梯的安全可靠性。

以上这些优点都是显而易见的,道理也是极简单的,勿庸赘言。

3、永磁同步无齿轮曳引机的缺点

既然无齿轮曳引机有这么多优点,各类刊物又在不遗余力地大力宣传。理应如雨后春笋般被广泛应用,然而实际情况却是雷声大雨点小,什么原因呢?问题在于人们对永磁同步无齿曳引机了解不够;从表象看价格太高,也是很重要的因素;然而了解它的人持观望的态度,原因在于这项新技术尚存一些问题。现就这些问题做一些探讨,以期更好、更全面地认识电梯驱动技术。

1)驱动技术的核心问题

在小于2.0m/s的中低速电梯中大多使用有齿轮结构,由电动机直接驱动。在这里减速箱成为人们关注的问题,表面看来是由于电动机的转速太高,因此要用减速机构降低其转速,但实际上配用适当的电气调速装置后的电动机的转速是可以调节的,不用减速箱照样可以得到需要的转速,因此问题的实质不在于转速。那么是什么因素决定了减速箱的采用与否呢?是转矩,在某种意义上,减速箱的名称并不确切,而应称其为“增力箱”,理解上也可将其看成“减速增力箱”。

作为机电能量转换装置的电动机,在磁感应强度和电流线密度一定的情况下,电动机转矩跟气隙所围成的圆柱体积成正比。事实上,转切应力跟磁感应强度和电流线密度直接相关。由于气隙圆柱的体积基本上决定了电动机的体积,而电动机的体积又基本上决定了其重量和价格。由此可见,比较电动机的最重要参数并非电动机的功率,应该是电动机的转矩。

要提高磁感应强度,受限于磁性材料的性能。在目前的技术条件下,铁芯中的磁感应强度在2.0T左右时就达到饱和,而通常交流异步电动机中实用的线性区的磁感应强度大约在 1.0T,直流电动机和同步电动机中的磁感应强度可以提高到1.5T。要更高的磁感应强度,一方面技术上有较大的难度,另一方面材料的价格也相当昂贵;要提高电流线密度,又要受限于导体的发热和绝缘问题,而且电流线密度的大小也必须考虑磁路材料的性能以避免磁性材料的过度饱和。在过度饱和的情况下,会带来电动机性能上的一系列问题。

要加大气隙长度或有效半径,电动机的外形尺寸和体积重量就必须增加。低速电梯在所需转矩确定的情况下,如果通过加大电动机长度或半径的方法达到所需的转矩,则电动机本身的允许转速又往往高于工作机构所需的转速,这样电动机就不能在最高转速(最高电压)下运行,也就是说电动机不能达到其最大的功率,导致电动机的功率利用律十分低下。总之,电动机要达到最高的功率利用律,转速(电压)也必须得到充分的利用,即转速要足够高。

综上所述,在电流发热受限的条件下,电动机中的磁感应强度不够强是电动机转矩不够大的根本原因,如果电动机中的磁感应强度能提高100倍,则现实中减速比为100以下的机械减速装置都可以取消,目前看来这只有靠将来超导技术

的突破来实现了。

2)减速箱的作用及缺点

下面我们举实际的例子来说明,电梯驱动系统的机电设计是如何实现相对最优的。假如电梯的基本参数和绕绳方式不变,某种用于低速电梯的蜗轮蜗杆减速箱的传动比为63∶2,由此可以估计该电动机的转矩跟曳引轮的转矩相差大约为30倍,这一数据可以作为我们以下讨论的基准。要将上述有齿轮电梯改成无齿轮电梯,前提是电动机的转矩必须设法提高30倍,如果不考虑电动机的容量利用律,只需简单增大电动机的长度和等效半径的平方的乘积到30倍就可实现,不过这台无齿轮曳引机的体积、重量和价格却是让人无法接受,显然要在体积和重量不增加或增加不多的条件下将电动机的转矩增大30倍,这几乎可以说比登天还难的技术,由此可见,蜗轮蜗杆在此起了非常重大的作用。由于电动机本身固有的“缺点”,要实现机电系统全局的最优化,在大多数情况下都要采用减速增力的机构。

电梯若要实现无齿轮驱动,就要增加电动机本身的输出力矩。为此采用高性能稀土永磁材料励磁、提高电动机有效功率即功率因素等,但不管如何改进设计,电动机本身的体积和重量都大大增加。

采用2∶1悬挂是国内外大多数电梯设计方案采用的悬挂方式。经常有人问,永磁同步无齿轮曳引机为什么不用1∶1悬挂?如果不考虑成本,仅需将电机的体积、重量增加1倍即可,这样电动机转矩也能增加1倍,就能实现1∶1悬挂,就没有价格优势可言了。

3)编码器和变频器

电动机力矩太大不仅导致成本过高,而且由于速度很低,相关的速度编码器分辨率也要相应提高。在低速运转时由于闭环失控时间的延长,将对拖动控制系统—变频器的工作带来难度,随之而来的就是电动机运行性能的大幅度降低。

为什么编码器会造成失控?这要从编码器的原理来分析,由于广泛使用的光电编码器输出的是离散脉冲信号,脉冲与脉冲之间总有一定的间隔,在相邻两个脉冲之间,编码器无法分辨位置的变化,当然也无法检测速度。由此可见,随着极数的增加编码器分辨率也成比例地增加,才能保证控制的精度,这无疑会大大增加其成本。

4)制动器问题

此外,无齿轮还带来制动器设计难度大大提高,在制动器系统中,主要的难点仍然在电的方面,即电磁铁的推力仍嫌不够大。为此世界各国的设计人员也是费尽了心机,甚至干脆采用液压系统来松闸。就电磁铁松闸形式来说,有的采用多级杠杆机构,有的采用了多盘式制动器,有的采用了V型槽制动轮,有的采用了非对称块式结构,有的采用加大制动轮直径的办法,这些措施降低了制动电梯对电磁铁推力的要求。就电磁铁本身来说,为了缓解推力和发热的矛盾,在制动器打开瞬间,对线圈供给超倍电压,在制动器打开后,如果不及时降低电压,由于线圈发热量是额定值的数倍,线圈将在短时间内烧毁,为此要通过电子线路在强励磁数秒钟内降压至可靠的维持电压,要完成这一功能一般都采用半导体变流装置,由此也带来系统复杂化和制造成本的上升。

制动器的制造成本、噪声和可维护性往往成为令人头疼的问题,综合考虑各方面的因素,如果没有特殊的情况,传统的外抱块式制动器仍然是首选的设计方案,这点已经在国内外曳引机的改型设计中得到有力的印证。

5)电动机的效率

无齿轮驱动系统的效率也不是很高,这点可能出乎大家意料之外,其实仔细分析一下很容易明白其原因。我们时常听到永磁电动机的效率很高,其实这仅适用于高速电动机的情况,对于低速电动机则不尽然。前文已述及,无齿轮曳引电动机的转速并没有用足,换句话来说就是功率容量没有得到充分利用,由此可见,低速永磁同步无齿轮电动机的效率不会很高,说句实话,要达到85%的效率都很难!

6)电动机的短路危险

大家都知道永磁同步电动机有一个突出的优点,就是短接三相绕组时可以作为发电机运行,从而使电梯避免失控溜车。这一特点常用于电梯的故障放人操作中:只要松开制动器,短接三相绕组,电梯轿厢在不平衡力作用下,滑行到需要的楼层。

永磁同步电动机的上述特点也带来了潜在的危险,试想如果在电动机满速运转时由于某种原因导致绕组短路呢?此时带来的后果将是极其严重的。在电动机绕组中将会产生巨大的短路电流,同时产生非常大的制动转矩迫使电动机停转。过大的短路电流将可能使永磁体失磁,这就是短路现象中的电磁稳定性问题;而过大的冲击制动转矩将使线圈端部变形甚至松散解体或者导致永磁体脱落,这就是短路现象中的机械稳定性问题。总之,发生短路时的机电磁稳定性问题是非常重要的,必须妥善地加以考虑和解决,否则发生短路时电动机将严重损毁。

为此在设计中应考虑削弱去磁的磁路结构,抑制短路电流的电路结构以及线圈端部和永磁体的可靠固定等,尤其重要的是制作完成的电动机均应进行短路试验,以检验在规定的短路电流作用下每台电动机实际的机电磁稳定性是否达到规定的要求。

4、如何对待无齿轮曳引机

通过对永磁同步无齿轮曳引机优缺点的描述,似乎让我们感到一头雾水,究竟是用还是弃?的确,永磁同步无齿轮曳引机的优点和缺点同样很明显,但是我要说,其缺点是会被逐步克服的,有些一时还解决不了的难题迟早是要被攻克的,而且,在用的永磁同步无齿轮曳引机,也并不是说缺点多到不能用、必须拆掉的地步,只不过还存在着这样那样的不足而已。这要求我们对它全面看待,即要承认它的不足,也要看到它的无限生机,它毕竟有着许多优点,有着许多其它形式的曳引机所不具备的优越性,就应该给它创造生存的环境和发展的空间。

至于前面说到的缺点和不足,解决的办法有以下几种。

1)关于力矩问题

在不过分加大电动机体积的前提下,没有“减速增力箱”的低转速电动机,要满足曳引力矩。

(1)为增加电动机本身的输出力矩,从电动机自身设计入手。①采用高性能稀土永磁材料励磁—虽然因价格影响现在还不能使用性能太高的材料,但总是在做着这方面的工作,这就是希望。②提高电动机有效功率即功率因素。

(2)为增加曳引力矩、减小体积,从曳引机整体设计入手。①减小曳引轮直径。在钢丝绳悬挂的条件下,由于钢丝绳的直径最小为8mm,而曳引轮的直径最少应为钢丝绳直径的40倍,因此曳引轮的直径最小为320mm。参考文献《论曳引钢丝绳直径越小越好》从技术经济的角度综合对比分析了钢丝绳直径对于电梯驱动系统的影响,结论就是钢丝绳越细越好!采用高分子纤维绳和扁平皮带作

为电梯的悬挂装置,目的无非是使曳引轮的驱动力矩减至最小,如奥的斯公司的Gen2系统的曳引轮直径仅为100mm。②采用复绕式曳引。这是个一举两得的办法。首先,2∶1复绕式与1∶1直拉式相比,对曳引力矩的要求减少了一半,就可以选用细钢丝绳;对曳引机的输出力矩的要求也减少了一半,就可以减小电动机的体积;再者,由于钢丝绳细了(柔性好、转弯半径小),曳引轮的直径就可以小了。当然了,电动机自身的转速高了,这在2∶1的曳引方式中得到补偿。我们完全可以把2∶1曳引看成是一个“减速增力”环节,即降低了速度又增加了曳引力矩,这不正是无齿轮曳引机应该追求的效果吗。

2)关于编码器和变频器问题

对于速度很低的电动机来说,编码器的分辨率、脉冲信号传输、变频器对电动机转速和电梯位置的识别,都是一个不好解决的问题,编码器分辨率太高、变频器选型配置都牵扯价格问题。幸运的是,最近安川公司推出了使用普通增量式编码器的变频器,大大简化了永磁同步电动机的反馈系统,也将从根本上影响到电动机的设计方案选型。其实用意义是非常巨大的,这种变频器将会得到大量的推广使用。

3)关于制动器问题

对于无齿轮曳引机来讲,制动器的确是个头疼的问题,这主要表现在电梯静载试验的效果上。其实,电梯运行中的紧急停车,即国标中的有效制停距离,很容易达标,这是因为电动机本身转速低、没有传动比,只要一拉闸,电梯立刻就能停下来;还有断电短路环节,可以说无齿轮电梯的制停距离几乎就是“零”。

问题是国标要求电梯在150%额定载荷的情况下,10min不能下沉,就很难达标了。这是因为无齿轮曳引机完全没有蜗轮蜗杆曳引机的自锁功能,如果没有“断电短路”环节,只要有一点不平衡力,就会溜车。而且,不溜车,短路环节的“发电制动”作用就发挥不出来。所以为了满足静载试验要求,就必须加大制动力矩,自然也就加大制动线圈的温升;为了保证线圈温度,就要加大线圈体积,即违反无机房电梯的发展要求、也违背经济规律。

除采用前文提到的几种形式的制动器外,还可采用其它方法。①选用摩擦系数高的闸皮材料;②加大闸皮面积;③适当提高制动力臂(支点、力点)的力矩比,不过,这是有限度的,因为力矩比大了,铁芯行程也大,同样会带动温升;

④电梯的平衡系数也可以设定得高一点(在国标规定40%~50%的范围内选50%);⑤电梯技术在不断进步,国标制定也应随之变化—依据无齿曳引机“断电短路、发电制动”的特点,将静载试验的指标放宽松一些。

由于制动器直接作用于低速轴上,且普遍采用了双备份的结构形式,这就避免了传动环节失效故障导致的飞车失控,也就自然满足了新版EN81-1:1998对于上行超速保护的要求,可以不必装设其它的诸如上行安全钳或者钢丝绳夹绳器之类的上行超速保护装置。这点将大大简化电梯整机厂商的安全配件设置,也节约了成本,一定程度上补偿了制动器因为加大力矩而增加的费用。

4)关于电动机短路危险的问题

虽然说短路危险确实存在,但是解决的办法也还是有的。首先是保护线路的设计,短路是靠“短路接触器”构成的,短路危险产生于接触器粘连、犯卡,也就是运行时不能断开,那么只要对该接触器实行监控即可—一旦发现接触器未释放,立即令电梯不能启动,也就不会对电动机构成威胁(因为在运行过程中这个处在释放状态的接触器是绝对不会粘连的),还可以将运行接触器与短路接触器组成有效互锁(包括线路互锁乃至机械互锁)。

5、结论

永磁同步无齿轮曳引机并不是当今电梯优化设计的唯一方案,与其它类型的无机房电梯(如薄型有齿轮曳引机、行星齿轮曳引机、摆线针轮曳引机、皮带传动曳引机)相比各有利弊,但它毕竟是没有任何传动结构(没有机械磨损),而是将电动机的转矩直接传递给电梯(没有传动损耗)。在设计和材料都理想的情况下,它属于制造、装配、安装和维护都是最简单的一种驱动方式,其前景是无限广阔的。只不过商家和厂家以及各级科研人员,都应该多在提高产品质量上做足文章,而不只是一味的跟风。

永磁同步无齿轮客梯-曳引机参数

GTW2 参考表 型号载重速度推荐高 度 轮子直径钢丝绳额定电压 额定电 流 额定转速 转 矩 额定频率功率极数工作制绝缘等级 防护等 级 Model Load Speed Height Sheave Dim Rope Rated Voltage Current Rated Speed Torque Frequency Power Pole Rating INS. Class IP Code (kg) (m/s) (m) (mm) (mm) (V) (A) (rpm) (Nm) (Hz) (kW) GTW2-60P5 630 0.5 ≤50 Φ400 4×Φ10×16 380 5.6 48 450 8 2.3 20 S5(40%) F IP41 GTW2-61P0 1.0 ≤50 4×Φ10×1610.6 96 450 16 4.5 GTW2-61P5 1.5 ≤80 4×Φ10×1616.5 144 450 24 6.8 GTW2-61P6 1.6 ≤80 4×Φ10×1616.5 153 450 25.5 7.2 GTW2-61P7 1.75 ≤80 4×Φ10×1618 167 450 27.8 7.9 GTW2-62P0 2.0 ≤80 4×Φ10×1620.3 192 450 32 9.0

GTW2-80P5 800 0.5 ≤50 Φ400 5×Φ10×16 380 6.8 48 550 8 2.8 20 S5(40%) F IP41 GTW2-81P0 1.0 ≤50 5×Φ10×1612.8 96 550 16 5.5 GTW2-81P5 1.5 ≤80 5×Φ10×1620.8 144 550 24 8.3 GTW2-81P6 1.6 ≤80 5×Φ10×1620.8 153 550 25.5 8.8 GTW2-81P7 1.75 ≤80 5×Φ10×1621.8 167 550 27.8 9.6 GTW2-82P0 2.0 ≤80 5×Φ10×1624.9 192 550 32 11.0 GTW2-100P5 1000 0.5 ≤50 Φ400 5×Φ10×16 380 8 48 670 8 3.4 20 S5(40%) F IP41 GTW2-101P0 1.0 ≤50 5×Φ10×1615.7 96 670 16 6.7 GTW2-101P5 1.5 ≤80 5×Φ10×1625.2 144 670 24 10.0 GTW2-101P6 1.6 ≤80 5×Φ10×1625.2 153 670 25.5 10.7 GTW2-101P7 1.75 ≤80 5×Φ10×1626.7 167 670 27.8 11.7

减速机保养及维护

Marketing \ Training \ Motors 1
SEW减速机电机产品培训 Orientation for new staff member
减速机电机基本知识和维护保养
Motor Dept. / Gong Fuguang / May 30, 2003
SERVICE SERVICE
Driving the world

Marketing \ Training \ Motors 2
SEW减速机电机产品培训
1.1 SEW减速机型号简介-1
Quatro CN Series
R系列——同轴斜齿轮减速电机
Geared Motors Customization Need
M Series Compact High
F系列——平行轴斜齿轮减速电机 K系列——垂直轴斜齿轮-伞齿轮减速电机 S系列——垂直轴斜齿轮-蜗轮蜗杆减速电机 W系列——垂直轴螺旋平面减速电机
Low
6 Torque Range kNm
40 60
650
1200
R系列
Motor Dept. / Gong Fuguang / May 30, 2003
F系列
K系列
S系列
W系列
Driving the world

Marketing \ Training \ Motors 3
SEW减速机电机产品培训
减速电机铭牌举例:
Motor Dept. / Gong Fuguang / May 30, 2003
Driving the world

各种传动方式优缺点

1、齿轮传动 分类:平面齿轮传动、空间齿轮传动。 优点:适用的圆周速度和功率范围广;传动比准确、稳定、效率高。;工作可靠性高、寿命长。;可实现平行轴、任意角相交轴和任意角交错轴之间的传动 缺点:要求较高的制造和安装精度、成本较高。;不适宜远距离两轴之间的传动。渐开线标准齿轮基本尺寸的名称有齿顶圆;齿根圆;分度圆;摸数;压力角等。 2、涡轮涡杆传动 适用于空间垂直而不相交的两轴间的运动和动力。 优点:传动比大。;结构尺寸紧凑。 缺点:轴向力大、易发热、效率低。;只能单向传动。 涡轮涡杆传动的主要参数有:模数;压力角;蜗轮分度圆;蜗杆分度圆;导程;蜗轮齿数;蜗杆头数;传动比等。 3、带传动 包括主动轮、从动轮;环形带 1)用于两轴平行回转方向相同的场合,称为开口运动,中心距和包角的概念。 2)带的型式按横截面形状可分为平带、V带和特殊带三大类。 3)应用时重点是:传动比的计算;带的应力分析计算;单根V带的许用功率。 优点:适用于两轴中心距较大的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防止损坏其他零部件;结构简单、成本低廉。 缺点:传动的外廓尺寸较大;、需张紧装置;由于打滑,不能保证固定不变的传动比;带的寿命较短;传动效率较低。 4、链传动 包括主动链、从动链;环形链条。 链传动与齿轮传动相比,其主要特点:制造和安装精度要求较低;中心距较大时,其传动结构简单;瞬时链速和瞬时传动比不是常数,传动平稳性较差。 5、轮系 1)轮系分为定轴轮系和周转轮系两种类型。 2)轮系中的输入轴与输出轴的角速度(或转速)之比称为轮系的传动比。等于各对啮合齿轮中所有从动齿轮齿数的乘积与所有主动齿轮齿数乘积之比。 3)在周转轮系中,轴线位置变动的齿轮,即既作自转,又作公转的齿轮,称为行星轮,轴线位置固定的齿轮则称为中心轮或太阳轮。

齿轮齿条传动机构设计规划介绍

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得m in /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80m in,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

齿轮齿条传动优缺点

齿轮齿条,同步带,丝杠对比 齿轮齿条,承载力大,传动精度较高,可达0.1mm,可无限长度对接延续,传动速度可以很高,>2m/s,缺点:若加工安装精度差,传动噪音大,磨损大。典型用途:大版面钢板、玻璃数控切割机,建筑施工升降机可达30层楼高。 同步带,承载力较大,负载再大就要加宽皮带,传动精度较高,传动长度不可太大,否则需要考虑较大的弹性变形和振动,传动距离大尤其不适合精确定位、连续性运动控制,如大版面数控设备的XY轴,但是可用于伺服电机到传动齿轮或伺服电机到丝杠的短距离传动。优点:短距离传动速度可以很高,噪音低。典型用途:小型数控设备、某些打印机 丝杠,(1)普通梯形丝杠可以自锁,这是最大优点,但是传动效率低下,比上述二者低许多,所以不适合高速往返传动。缺点是时间久了传动间隙大,回程精度差,用在垂直传动较合适。 (2)滚珠丝杠不能自锁,传动效率高,精度高,噪音低,适合高速往返传动,但是水平传动时跨距大了要考虑极限转速和自重下垂变形,所以传动长度不可太大,要么改用丝母旋转丝杠不动,但还是不能太长,要么就用齿轮齿条。典型用途:数控机床,小版面数控切割机 应用上的区别? 在长距离重负载直线运动上,丝杆有可能强度不够,就会导致机子出现震动、抖动等情况,严重的,会导致丝杆弯曲、变形、甚至断裂等等;而齿条就不会有这样的情况,齿条可以长距离无限接长并且高速运转而不影响齿条精度(当然这个跟装配、床身本身精度都有关系),丝杆就做不到这一点,但在短距离直线运动中,丝杆的精度明显要比齿条高得多。另外就是,齿条齿轮传动对于机子结构设计来讲要相对简单一些。反正,各有优劣,所以,丝杆有丝杆的市场,齿条有齿条的市场。互不影响。 当标准外齿轮的齿数增加到无穷多时,齿轮上的基圆和其它圆都变成了相互平行的直线,同侧渐开线齿廓也变成了相互平行的斜直线齿廓,这就是齿条。齿条与齿轮相比有以下两个特点: (1)由于齿条齿廓是直线,所以齿廓上各点的法线是平行的。又由于齿条在传动时作平动,齿廓上各点的速度大小、方向都相同,所以齿条上各点的压力角都相等,等于齿廓的倾斜角(齿形角),标准值是。 (2)与齿顶线平行的各直线上的齿距都相同,模数为同一标准值,其中齿厚与齿槽宽相等且与齿顶线平行的直线称为中线,它是确定齿条各部分尺寸的基准线。 标准齿条的齿部尺寸与,与标准齿轮相同。 但是在进行冲压的加工时,由于在冲压过程中冲压行程是工作行程,而返回时是非工作过程,则在加工工件时要尽量满足工件在返回时减少时间。所以要满足此机构有急回特性。但是齿轮齿条不能满足急回的特性,不能增加工件的冲压加工效率,齿轮齿条加工的运动形式不符合;则排除此工艺的加工方式。

浅析无齿轮永磁同步电梯曳引机

浅析无齿轮永磁同步电梯曳引机 摘要:无齿轮永磁同步曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。本文通过对永磁同步无齿轮曳引机的结构和工作原理阐述,分析了无齿轮永磁同步曳引机与传统曳引机相比的优点和缺点,但是作为新型的曳引机的发展方向,其以小型化和灵活性,为电梯行业的发展提供了更广阔的空间。 关键词:无齿轮永磁同步电梯曳引机;工作原理;优点;缺点 随着科技的进步,永磁材料和永磁电机技术有了长足的发展,永磁电机被各领域广泛应用,其中包括在电梯曳引机上的应用。这些年来我国高档电梯越来越多,这都与永磁同步调速电机和曳引机无齿轮化的有机结合分不开,永磁同步无齿轮曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。由于永磁同步无齿轮曳引机的小型化和灵活性,可以布置出各种曳引方式的无机房电梯,这样不仅大大节约了电梯成本,同样也减少了电梯对空间的占用,为电梯行业的发展提供了更广阔的空间。 1.无齿轮永磁同步电梯曳引机的结构 齿轮永磁同步电梯曳引机结构主要由永磁同步电动机、曳引轮及制动系统和盘车装置组成。曳引轮与制动轮为同轴固定联接,并直接安装在电动机的轴伸端。而曳引机的制动系统由制动体、制动轮、制动臂和制动瓦等组成。无齿轮曳引机由于采用的是电机直接驱动曳引轮,制动力矩很大,无法用手轮直接盘车。需通过齿轮比来减小盘车时需用的力,因此需专门设计盘车装置。 2.无齿轮永磁同步电梯曳引机的工作原理 永磁同步无齿曳引机工作原理是电动机动力由轴伸端通过曳引轮输出扭矩,再通过曳引轮和钢丝绳的摩擦来带动电梯轿厢的的上、下运动。当电梯停止运行时则由常闭制动器通过制动瓦刹住制动轮,从而保持轿厢静止不动。其动力控制其原理是通过电机上安装的变频装置(编码器)和高精度的速度传感器,对电机运行电流快速跟踪、检测、反馈和控制,控制永磁电机以同步转速进行转动,由于永磁电机具有线性、恒定转矩及可调节速度的特性,使曳引轮能够平稳运行。 3.无齿轮永磁同步电梯曳引机与传统曳引机的比较 3.1无齿轮永磁同步电梯曳引机的优点 3.1.1 结构简化 无齿轮曳引机没有机械减速装置,不同于有齿轮曳引机复杂的机械减速机构。有齿曳引机中的减速机构如蜗轮蜗杆、行星齿轮在加工过程中都需要机械加工精度,同时为了这些齿轮的正常运转必须配备复杂的润滑系统。而无齿曳引机

齿轮齿条的传动

齿轮齿条的传动计算 齿轮与齿条传动特点 齿轮作回转运动,齿条作直线运动,齿条可以看作一个齿数无穷多的齿轮的一部分,这时齿轮的各圆均变为直线,作为齿廓曲线的渐开线也变为直线。齿条直线的速度v 与齿轮分度圆直径d 、转速n 之间的关系为 v= (/)60 dn mm s π 式中 d ——齿轮分度圆直径,mm ; n ——齿轮转速,min r 。 其啮合线12N N 与齿轮的基圆相切1N ,由于齿条的基圆为无穷大,所以啮合线与齿条基圆的切点2N 在无穷远处。 齿轮与齿条啮合时,不论是否标准安装(齿轮与齿条标准安装即为齿轮的分度圆与齿条的分度圆相切),其啮合角'α恒等于齿轮分度圆压力角α,也等于齿条的齿形角;齿轮的节圆也恒与分度圆重合。只是在非标准安装时,齿条的节线与分度线不再重合。 齿轮与齿条正确啮合条件是基圆齿距相等,齿条的基圆齿距是其两相邻齿廓同侧直线的垂直距离,即cos cos b P P m απα==。 齿轮与齿条的实际啮合线为12B B ,即齿条顶线及齿轮齿顶圆与啮合线12N N 的交点2B 及1B 之间的长度。

齿轮齿条传动的几何尺寸计算 齿轮与齿条传动的尺寸计算见表表齿轮齿条传动的几何尺寸计算 项目名称计算公式及代号转90?齿轮齿条数 值转180?齿轮齿条数值 齿轮齿数 1 z4832模数m2mm2mm 螺旋角β0?0? 基本齿廓压力角α20?20?齿顶高 系数 * a h11顶隙系 数 * C 齿轮变位系数 1 x 尺宽齿轮 1 b10mm10mm

齿条的主要特点: (1)由于齿条齿廓为直线,所以齿廓上各点具有相同的压力角,且等于齿廓的倾斜角,此角称为齿形角,标准值为20°。(2)与齿顶线平行的任一条直线上具有相同的齿距和模数。 (3)与齿顶线平行且齿厚等于齿槽宽的直线称为分度线(中线),它是计算齿条尺寸的基准线。

减速机保养检修标准或注意事项

减速机保养检修标准或注意事项 齿轮减速机维护检修规程 1 总则 1.1 适用范围 本规程适用于渐开线圆柱齿轮、齿轮减速机、圆锥齿轮、圆弧齿轮减速器的维护与检修。 1.2 结构简述 本机由机壳、齿轮、轴和轴承等组成。结构形式为剖分全封式。 1.3 技术性能 1.3.1 高速轴的转速不大于3000r/min,工作环境温度为-40~+70℃,适用于正、反两向运转。 1.3.2 传动比为 2.5-50。 2 完好标准 2.1 零、部件 2.1.1 减速机主体零、部件完整齐全。 2.1.2 各部连接螺栓齐全,连接紧固。 2.1.3 安全防护装置齐全、牢固。 2.1.4 各部配合、安装间隙均符合要求。 2.2 运行性能 2.2.1 运行平稳、无异常振动、杂音等不正常现象,温度正常,电流稳定。 2.2.2 润滑良好,油质符合要求,轴承温度符合规定。 2.2.3 性能参数达到设计能力或查定能力。 2.3 技术资料 2.3.1 有总装配图、主要零件及易损配件图。

2.3.2 设备档案齐全、数据准确,包括: a.产品合格证或质量说明书、使用说明书o b.检修记录及验收记录; c.设备缺陷及事故记录。 2.4 设备及环境 2.4.1 器体油漆完整,清洁光亮、外表无灰尘、油垢。 2.4.2 基础整洁,表面及周围无积水、杂物,环境整齐清洁。 2.4.3 各连接面、油位计、视镜、轴封处均无渗漏。 3 设备的维护 3.1 日常维护 3.1.1 保持设备和周围场地洁净,无积次、无油垢。 3.1.2 随时注意减速器在运转中有无异声。 3.1.3 检查有无不正常的振动,温度是否合乎规定。 3.1.4 注意观察减速器的上、下结合面和轴端,有无渗油现象,如有渗漏及时消除。 3.1.5 通过油标尺或油面镜,检查油面应在规定位置,加油时严格执行“三级过滤”。 3.2 定期检查内容 3.2.1 每月测定减速器各轴承部位的振动情况,并做好记录。 3.2.2 大、中修前要进行一次全面状态监测分析。 3.3 常见故障处理方法 设备在运行过程中,遇有下列情况之一应急停车。 a.减速器内发出严重的不正常声音; b.电机电流超过额定值不下降; c.其他任何严重影响安全生产的情况 4 检修周期和检修内容

减速机维修保养制度

山东宇虹新颜料股份有限公司 摆线针轮减速机维护检修规范 1总则 本规程适用于摆线针轮减速机(以下简称减速机)的维护和检修;摆线针轮减速器的维护检修亦可参照执行。 2检修间隔期 2.1检修类别 检修类别分小修、中修和大修三类。 2.2检修间隔期 检修间隔期见表1 3检修内容 3.1小修 3.1.1清洗机体内部油垢及杂物,更换润滑油或润滑脂。 3.1.2检查,紧固各部位螺栓。 3.1.3检查、消除各结合面及密封处渗漏油情况。 3.2中修 3.2.1包括小修内容 3.2.2解体检查,清洗全部机件,冲洗机体油垢及杂物。 3.2.3拆检润滑油及疏通油路。 3.2.4检查,更换各部轴承(尤其是偏心轴承)及骨架式橡胶油封。 3.2.5检查,更换浸渍衬垫纸垫、耐油橡胶垫及0型密圭寸环。 3.2.6检查,更换针齿套、针齿销、输出轴之销轴及销轴套。 3.2.7找正联轴节,确保减速机轴与被驱动装置轴的同轴度。 3.3大修 3.3.1包括中修内容 3.3.2检查,修复或更换摆线齿轮、针齿壳、输出轴及偏心套等关键件。 3.3.3检查,修复或更换机座、紧固环、隔离环及凸轮等件。 4检修前的准备 4.1技术准备 4.1.1使用说明书、图样及有关标准等技术资料。 4.1.2运行、修理、缺陷、隐患、故障、功能失常等记录。 4.1.3减速机温升、噪声、振动、功率(通过测量工作电压及电流计算)及渗漏等技术性能预检,并记录。 4.1.4制定中修、大修方案。 4.2物资准备 4.2.1需要更换的常用备件:偏心轴承、摆线齿轮、针齿套、针齿销、柱销套、浸清衬垫纸垫、骨架橡胶油封、0型密封环及其它需要更换件。 4.2.2清洗用油,油盘及需加注润滑油(脂)。 4.2.3检测工具、量具和拆卸工具。 4.3安全技术准备 4.3.1切断电源,标志《禁止开启》警示牌。 4.3.2易燃、易爆岗位有关措施。 5检修方法

齿轮减速机安装使用及保养与维护

齿轮减速机安装使用及保养与维护. 齿轮减速机使用和维护 一.安装前的注意事项: 1. 本机在使用前应对安装轴进行清洗。并检查安装轴是否有碰伤、污物,若有应全部清除干净。 2.减速机的使用温度为0~40 ℃。 3.检查与减速机联接的孔(或轴)的配合尺寸是否符合要求,孔的公差应为H7(轴的公差为H6)。 4.使用前应将最高位处的堵塞换上排气螺塞,保证减速机运行时排出体内气体。 二.减速机的安装 1. 减速机只能安装在平的、减震的、抗扭的支撑结构上。 2. 在任何情况下,不允许用锤子将皮带轮、联轴器、小齿轮或链轮等敲入输出轴上,这样会损坏轴承和轴。 三.使用和维护 1. 减速机安装后,检查是否灵活。正式使用请必须进行空载试验,在运转正常的情况下,在逐步加载运转。 2.减速机严禁超过额定载荷使用。 3. 减速机在使用前和工作中应检查油位是否正常,本机在出厂前已加注润滑油,润滑油名称:中负荷工业齿轮油GB5903-86220 。 四.换油制度: 第一次换油本机运行300~400小时后应更换润滑油,以后每隔1500~2000小时更换润滑油。在工作环境恶劣、温度高、粉尘大的工 作场合下应每隔半个月对润滑油进行一次检查,发现润滑油有污物即更换润滑油,以保持润滑油清洁,延长减速机的使用寿命,提高经济效益。 五.油的更换 换油时要等待减速机冷却下来无燃烧危险为止,但仍应保持温热,因为完全冷却后,油的粘度增大,放油困难。(注意:要切断传动装置电源,防止无意间通电!) 锥齿加工机床主要用于加工直齿、斜齿、弧齿和延长外摆线齿等锥齿轮的齿部。 直齿锥齿轮刨齿机是以成对刨齿刀按展成法粗、精加工直齿锥齿轮的机床,有的机床还能刨制斜齿锥齿轮,在中小批量生产中应用最广。 双刀盘直齿锥齿轮铣齿机使用两把刀齿交错的铣刀盘,按展成法铣削同一齿槽中的左右两齿面,生产效率较高,适用于成批生产。由于铣刀盘与工件无齿长方向的相对运动,铣出的齿槽底部呈圆弧形,加工模数和齿宽均受到限制。这种机床也可配以自动上下料装置,实现单机自动化。 直齿锥齿轮拉铣机是在一把大直径的拉铣刀盘的一转中,从实体轮坯上用成形法切出一个齿槽的机床。它是锥齿轮切削加工机床中生产率最高的机床,由于刀具复杂,价格昂贵,而且每种工件都需要专用刀盘,只适用于大批大量生产。机床一般都带有自动上下料装置。 弧齿锥齿轮铣齿机以弧齿锥齿轮铣刀盘,按展成法粗、精加工弧齿锥齿轮和准双曲面齿轮的机床,有精切机、粗切机和拉齿机等变型。 弧齿锥齿轮磨齿机是用于磨削淬硬的弧齿锥齿轮,以提高精度和光洁程度的机床,其结构与弧齿锥齿轮铣齿机相似,但以砂轮代替铣刀盘,并装有砂轮修整器,也可磨削准双曲面齿轮。

永磁同步无齿轮曳引机常见故障处理法

永磁同步无齿轮曳引机常见故障处理法常见故障处理法

一、无机房电梯常见的井道布置形式 1.主机上置式 这种布置方式中,主机放在井道顶层轿厢和电梯井道壁之间的空间,为了使控制柜和主机之间的连线足够短,一般将控制柜放在顶层的厅门旁边,这样也便于检修和维护。 2.主机下置式 主机放在井道的底坑部分,放在底坑轿厢和对重之间的投影空间上,控制柜一般采取壁挂形式。这种放置方式给检修和维护也提供了方便. 3.主机放在轿厢上; 主机放在轿厢的顶部,控制柜放在轿厢侧面,这种布置方式,随行电缆的数量比较多。 4.主机和控制柜放在井道侧壁的开孔空间内这种方式对主机和控制柜的尺寸无特殊要求,但是要求开孔部份的建筑要有足够厚度,并要留有检修门. 二、无机房电梯对驱动主机和控制系统的要求 大家知道无机房电梯省去了传统的电梯机房,一般情况下将电梯驱动主机和控制系统以及一些其它的部件统统放到了井道中。相应的对电梯的主机和控制系

统提出了一些特殊的要求: 1、对主机的要求 A.结构紧凑,功率密度高,适于安装在井道内。 B.噪音低,振动小,运行平稳舒适。 C.可靠性高,平均无故障时间长。 D.高效率,维护费用少,运行成本低。 E.价格低。 2、对电梯控制系统的要求 A.结构紧凑,体积小,便于安装。 B.抗干扰,可靠性高,安全余量大。 C.检修方便。 D.省电高效。 三、阿尔法EPM曳引机的结构和特点 德国阿尔法高精密变速器制造责任有限公司是高精密变速器专业制造商,其行星齿轮箱的加工技术在世界机械加工行业处于领先地位。阿尔法公司生产的变速器是欧洲航空航天和军工技术的专用产品,广泛应用于航空航天技术、军用技术装置、高精密自动化设备(如机器人、自动化生产线等)。许多国际驰名公司如西门子、大众汽车公司等都是阿尔法公司的固定客户和合作伙伴。 EPM曳引机是采用交流永磁同步电机驱动的行星

减速机通用设备维修技术标准

减速机 1 齿侧间隙 1.1安装侧间隙 齿轮侧间隙,是指一对啮合齿轮的非工作表面,沿法线方向的距离,一对安装的啮合齿轮须留有齿侧间隙,以补偿齿轮由于制造与安装的精度公差,以及传动载荷时的弹性变形和 由于受温度影响的变形,并可储存一定量的润滑油,以改善齿轮表面的润滑状态。通常齿 轮的间隙在确保正常使用的情况下越小越好,在制造时是根据齿轮所使用要求的精度等级 来设定的。齿轮标准保证侧隙是基本的侧间隙范围。对于冶金机构设备的闭式传动采用Dc,对于开式传动则采用较大侧隙De,可根据表1、表2、表3 查取。 齿轮侧间隙也可按经验公式来选取:1)对于7 级精度的圆柱齿轮和圆锥齿轮侧间隙 Cn=(0.05~0.08)m;2)对于7 级精度的蜗轮传动的侧间隙Cn=(0.015~0.02)m

1.2安装侧间隙许用量 1.2.1定性使用极限 1.2.1.1运转中没有异常振动,噪音和温升。 1.2.1.2满足生产要求对产品无影响。 1.2.2定量使用极限:齿轮由于磨损,侧间隙增大,许用最大间隙为安装间隙的3~4倍。齿轮磨损的许用量是: 1.2.2.1一般设备齿轮 第一级小齿轮齿厚磨损20%;其他级齿轮齿厚磨损40% 蜗杆齿厚磨损20%;蜗轮齿厚磨损30% 1.2.2.2重要设备齿轮 第一级小齿轮齿厚磨损10%;其他级齿轮齿厚磨损20~30% 蜗杆齿厚磨损10%;蜗轮齿厚磨损20% 1.2.2.3起重机齿轮 卷扬传动:第一级小齿轮齿厚磨损5%;其他级齿轮齿厚磨损20% 走行传动:第一级小齿轮齿厚磨损10%;其他级齿轮齿厚磨损40% 齿轮表面通常是经过硬化处理的,齿面硬化层厚度t=0.1m。齿轮一旦磨去齿面 硬化层,磨损速度将大大加快,所以也可把齿面硬化层厚度作为齿轮试用许用量。齿轮齿厚磨损可以用固定弦齿厚仪(齿轮规)测得。 2齿接触 齿轮啮合时,齿的工作表面因相互滚压而留有可见的痕迹,所显示的接触斑点可以判 断齿轮的装配质量,齿啮合是否正确。

浅谈无齿轮曳引机的优缺点[参考文档]

浅谈无齿轮曳引机的优缺点 1、正视无齿轮曳引机 无齿轮曳引机的产生,毕竟迎合了电梯的需求,迎合了环保的需要,迎合了厂家的利益。它的诞生不单单是为了无机房电梯的需求,同时也是为了节能、降噪的需要。适者生存,我们应当看到它的无限前景(无传动机构、磨损低、装配简单、噪音低、永磁同步能耗低、省油、无油污、运行平稳易维护),为其生存发展创造条件。我们当然也不能忽视永磁同步无齿轮曳引机的缺点和不足(成本造价高,永磁体寿命有限,还很难实现1∶1悬挂方式,编码器传输对变频器的影响、制动器力矩问题等),为完善无齿轮曳引机并坚持不懈的努力研究开发新材料、新技术。无齿轮曳引机已经“来到”我们面前,在宣传其优点的同时也要正视这些尚需解决的问题,尤其当今曳引机厂家林立、竞争激烈,要想摆脱窘境、要想转产、开发新产品,就应端正心态、直面现实、正视困难,以全新产品占领市场、扭转局面。 2、永磁同步无齿轮曳引机的优点 永磁同步无齿轮曳引机,一经面世就显示了它的勃勃生机。 1)永磁同步无齿轮曳引机无传动结构,体现如下几点好处: (1)磨损低。无齿轮曳引机的最大优势在于没有任何传动结构,除了电机转子轴(它同时又是曳引轴)上有一组轴承之外,就再也没有什么机械磨损了,没有磨损,自然延长了曳引机的使用寿命。 (2)节能。无齿轮曳引机由于没有传动结构,也就没有了机械方面的功率损耗,相对来讲,也就节省了能量和运行开支。以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机(曳引比为1∶1)需11kW;韦伯无齿曳引机(曳引比为2∶1)只需6.7kW。 (3)安装简便。由于曳引轮直接固定在电动机的轴上,结构紧凑体积小、重量轻,便于吊装、运输,所以现场安装也就容易多了,仍以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机17CT,自重1300kg;韦伯无齿曳引机WEB-1.0-1000,自重300kg。 (4)运行平稳。由于没有传动结构,也就没有皮带传动的丢转、打滑,电梯平层精度高、运行可靠;也就没有齿轮啮合的噪音和震动,从而表现在电梯运行平稳、噪音低,这也是电梯绿色革命的突出特点。 (5)省油。无齿轮曳引机由于没有传动结构,也就省去了传统减速箱中的润滑油,它只在轴承内存有足量的润滑脂。日常维保不存在更换润滑油的烦琐,同时也避免了润滑油泄漏带来的污染和维护难度,又节省了润滑油费用。 (6)使用方便。由于无齿轮曳引机没有液态润滑油,亦无泄漏,不仅没有污染,而且可以任意姿态安装,比如底脚朝上悬挂于井道顶板处。 2)永磁同步无齿轮曳引机控制系统的好处 永磁同步无齿轮曳引机都设计了“断电短路”环节,利用“永磁同步电动机,短接三相绕组时可以作为发电机运行”的这一突出优点,有效地避免电梯失控溜车。这一环节体现了以下几个好处:

减速机保养与维护

减速机的保养和维护 概述:减速机是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩以满足各种工作机械的需要。减速机的种类很多,按照传动形式不同可分为齿轮减速机,蜗杆减速机和行星减速机;按照传动的级数可分为单级和多级减速机;按照传动的布置形式又可分为展开式,分流式和同轴式减速机轴承 轴承:是在机械传动过程中起固定和减小载荷摩擦系数的部件。当其它机件在轴上彼此产生相对运动时,用来降低传动过程中的摩擦系数和保持轴中心位置固定的机件,可分为滑动轴承和滚动轴承。我们车间减速机内的轴承主要是调心滚子轴承、双列圆柱滚子轴承。 减速机的日常保养:1、定期检查安装基础、密封件、传动轴等是否正常。 2、如正常使用时,需经常检查润滑油的油位(通过油窗观察),润滑油的最高温度应小于85℃。油温温升变化异常,产生不正常噪音等现象时,必须立即停机检查,排除故障后,方可继续使用。 3、更换新的备件必须经跑合和负载试验后再正式使用。 4、不得重力锤击减速机外壳,以免损坏。二、润滑油的使用检查和更换: 1、减速机工作环境温度为-40~+40℃。当环境温度低于0℃时,启动前润滑油必须加热到0℃以上或采用低凝固点的润滑油。2、第一次使用或新更换蜗杆副或减速齿轮副、运转150-400小时后更换润滑油,以后的换油周期小于或等于4000小时。3、定期检查油的份量和质量,保留足够润滑油,及时更换混入杂质或变质的油。4、注油量须按照要求,不同牌号的油禁止混用,牌号相同而粘度不同的油允许混用。 5、定期检查油的份量和质量,保留足够润滑油,及时更换混入杂质或变质的油。 附件 为了保证减速器的正常工作,应考虑到为减速器润滑油池注油、排油、检查油面高度、加工及拆装检修时箱盖与箱座的精确定位、吊装等辅助零件和部件的合理性。 检查孔(观察窗):为检查传动零件的啮合情况,并向箱内注入润滑油,应在箱体的适当位置设置检查孔。检查孔设在上箱盖顶部能直接观察到齿轮啮合部

无齿轮永磁同步曳引机优势对比2(从结构上)

随着电子技术和控制技术的发展,电梯用无齿轮永磁同步曳引机的控制技术日趋成熟,促进了永磁同步电动机的开发和应用。由于永磁同步电动机具有体积小,重量轻效率,高等一系列优点,所以这种电动机引起人们越来越多的重视。尤其与矢量控制技术结合以后,使其具有由低速到高速恒转矩输出的特性,能够满足了电梯驱动的要求,成为新一代电梯曳引机。 进入20世纪90年代以来,环保要求越来越高,绿色环保已经是电梯产品发展不可抗拒的趋势。另外重要的一点,中国是一个能源紧缺大国,节约能耗,走低成本发展之路是时代发展的必然要求。无齿轮永磁同步曳引机采用直接驱动方式,传动效率提高20%~30%,而且无需提供定子励磁电流,转子无电流、无损耗,这些总计可以节能30%以上。上述符合环保要求的特点,恰恰引导了电梯产品的新一代绿色环保革命。这就是说,该产品不仅为电梯安装者提供了方便,也为电梯所有者创造了价值,全面降低了物业管理成本。电梯用无齿轮永磁同步曳引机无疑会深受广大消费者的欢迎。 同传统的有齿曳引电梯相比,永磁同步曳引机具有高性能、低价格的特点,具体分析如下: ①机械结构简化。有齿轮曳引机包括有复杂的机械减速机构,如蜗轮蜗杆减速机构、行星齿轮减速机构等。为了保证曳引机的运行性能,对这些减速机构的机械加工精度提出了很高的要求。而无齿曳引机则不需机械减速机构,由电机直接带动曳引轮驱动电梯运行,使无齿永磁同步曳引机的机械结构变得非常简单。从而降低了机械制造费用,降低了生产成本。 免维护。无齿曳引机不需要复杂的润滑系统,彻底解决了漏油的麻烦,实现了免维护。减少了维护费用。同时没有了废弃油对环境的污染,避免了失火的危险,被誉为绿色电梯,它的环保价值更是不可估量。 ②节省空间。使用无齿轮永磁同步曳引机可以大大减少电梯的机房占用空间,甚至可以做到无机房运行,把影响建筑造型美观和人们居室日照的楼顶机房取消,既节省了建筑空间,又降低了制造成本。在寸土寸金、追求时尚的繁华大都市,这一点更显得尤为突出。无齿轮永磁同步曳引机已成为房地产开发商的首选电梯曳引机。 ③节约能源。首先,省去了机械减速机构相应的损耗。传统曳引机减速机

齿轮传动、蜗杆传动、带传动、链轮传动的优缺点超全

齿轮传动、蜗杆传动、带传动、链轮传动的优缺点超全

几种传动形式之间的比较齿轮传动用来传递任意两轴间的运动和动力 齿轮传动与带传动相比主要有以下优点: (1)传递动力大、效率高; (2)寿命长,工作平稳,可靠性高; (3)能保证恒定的传动比,能传递任意夹角两轴间的运动 齿轮传动与带传动相比主要缺点有: (1)制造、安装精度要求较高,因而成本也较高; (2)不宜作远距离传动。 (3 ) 无过载保护 (4 ) 需专门加工设备

蜗轮蜗杆用于传递交错轴之间的回转运动和动力 带传动和链传动都是通过中间挠性件(带或链)传递运动和力的,适用于传递两轴中心距较大的场合 链传动的特点:①和齿轮传动比较,它可以在两轴中心相距较远的情况下传递运动和动力;②能在低速、重载和高温条件下及灰土飞扬的不良环境中工作;③和带传动比较,它能保证准确的平均传动比,传递功率较大,且作用在轴和轴承上的力较小;④传递效率较高,一般可达~;⑤链条的铰链磨损后,使得节距变大造成脱落现象;⑥安装和维修要求较高.链轮材料一般是结构钢等. 带传动(皮带传动)特点(优点和缺点):①结构简单,适用于两轴中心距较大的传动场合;②传动平稳无噪声,能缓冲、吸振;③过载时带将会在带轮上打滑,可防止薄弱零部件损坏,起到安全保护作用;④不能保证精确的传动比.带轮材料一般是铸铁等. 齿轮传动的特点:①能保证瞬时传动比恒定,平稳性较高,传递运动准确可靠;②传递的功率和速度范围较大;③结构紧凑、工作可靠,可实现较大的传动比;④传动效率高,使用寿命长;⑤齿轮的制造、安装要求较高.齿轮材料一般是铸铁等. 涡轮蜗杆传动最主要的特点就是具有反向自锁的功能,而且相比其它传动具有较大的速比,涡轮蜗杆的输入、输出轴不在同一轴线上,甚至不在同一个平面上。自身的缺点,那就是涡轮蜗杆的传动效率不够高,精度也不是很高

齿轮减速机的维修维护验收规程

1 总则 1.1 适用范围 本规程适用于渐开线圆柱齿轮、圆锥齿轮、圆弧齿轮减速器的维护与检修。 1.2 结构简述 本机由机壳、齿轮、轴和轴承等组成。结构形式为剖分全封式。 1.3 技术性能 1.3.1 高速轴的转速不大于3000r/min,工作环境温度为-40~+70℃,适用于正、反两向运转。 1.3.2 传动比为 2.5-50。 2 完好标准 2.1 零、部件 2.1.1 减速机主体零、部件完整齐全。 2.1.2 各部连接螺栓齐全,连接紧固。 2.1.3 安全防护装置齐全、牢固。 2.1.4 各部配合、安装间隙均符合要求。 2.2 运行性能 2.2.1 运行平稳、无异常振动、杂音等不正常现象,温度正常,电流稳定。 2.2.2 润滑良好,油质符合要求,轴承温度符合规定。 2.2.3 性能参数达到设计能力或查定能力。 2.3 技术资料 标准

2.3.1 有总装配图、主要零件及易损配件图。 2.3.2 设备档案齐全、数据准确,包括: a.产品合格证或质量说明书、使用说明书o b.检修记录及验收记录; c.设备缺陷及事故记录。 2.4 设备及环境 2.4.1 器体油漆完整,清洁光亮、外表无灰尘、油垢。 2.4.2 基础整洁,表面及周围无积水、杂物,环境整齐清洁。 2.4.3 各连接面、油位计、视镜、轴封处均无渗漏。 3 设备的维护 3.1 日常维护 3.1.1 保持设备和周围场地洁净,无积次、无油垢。 3.1.2 随时注意减速器在运转中有无异声。 3.1.3 检查有无不正常的振动,温度是否合乎规定。 3.1.4 注意观察减速器的上、下结合面和轴端,有无渗油现象,如有渗漏及时消除。 3.1.5 通过油标尺或油面镜,检查油面应在规定位置,加油时严格执行“三级过滤”。 3.2 定期检查内容 3.2.1 每月测定减速器各轴承部位的振动情况,并做好记录。 3.2.2 大、中修前要进行一次全面状态监测分析。 3.3 常见故障处理方法 标准

关于齿轮传动与皮带传动的优缺点

关于齿轮传动与皮带传动的优缺点 【摘要】伴随科技技术的不断升级和创新,我国机械制造业的创新也在与时俱进,比如要求不断加强对传动领域的研究和投入。本文将从通过齿轮传动与皮带传动的对比,分析带齿皮带传动的重要作用。 【关键词】齿轮传动;皮带传动;机械制造 近些年来,在我国的机械制造领域,同步的皮带传动以其恒定和高效率的优点得到了更加广泛的应用。因为带齿皮带传动不仅能够够降低能,消耗费用,而且能够降低传动费用。 一、齿轮传动与皮带传动的概念区别 在空压机的传动系统中,一般可分为直接传动和皮带传动,长期以来,两种传动方式孰优孰劣一直是业界争论的焦点之一。螺杆式空压机的直接传动指的是马达主轴经由连轴器和齿轮箱变速来驱动转子,这实际上并不是真正意义上的直接传动。真正意义上的直接传动指的是马达与转子直接相连(同轴)且两者速度一样。这种情况显然是极少的。因此那种认为直接传动没有能量损耗的观点是不对的。只有1:1直联才是真正意义上的直联。另一种传动方式为皮带传动,这种传动方式允许通过不同直径的皮带轮来改变转子的转速。下面所讨论的皮带传动系统是指满足下列条件的代表最新科技的自动化系统:每一运转状态之皮带张力均达到优化值。通过避免过大的启动张力,大大延长了皮带之寿命,同时降低了马达和转子轴承的负荷。始终确保正确的皮带轮连接。更换皮带相当容易和快捷,且不须对原有设定作调整。整个皮带驱动系统安全无故障运转。值得一提的是,主张直接齿轮传动的制造商本身也有一部分产品采用皮带传动。 二、齿轮传动与皮带传动的优缺点比较 齿轮传动的过程与皮带传动的原理有着明显的区别。齿轮的传动主要是通过带有传动装置的多级变速器来完成的。齿轮传动的过程是通过双离合器来达到副轴齿轮传动的过程,通过这个过程形成了扭矩流,这种装置带有多个共面的齿轮组,这种齿轮组具有很多个副轴的齿轮。这些齿轮可以带动其他的齿轮进行传动。而皮带传动是可广泛替代已有扰性传动和齿轮传动的传动机构,由杆轮和作为扰性曳引元件的杆共同构成。作为传统的链传动的替代解决方案,本文所述的带齿皮带在同步传动时撇示了它的高效性:可提高传动功率60%;相对于传统的传动解决方案在传递相同功率情况下可减少30%的重量。此外,均匀的功率传递、运行时的平稳性、运行时的洁净度和不需经常维护保养等是进一步的在经济和生态方面的特性。带齿皮带传动能满足远多于对传统的传动所提出的要求:传动系统的功率范围可以从具有很高回转矩的慢速运行传动(例如象重型的链传动)一直延伸到具有几百千瓦的功率传动。 1、效率

减速机常见故障全集

减速机常见故障合集 1基础 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转10-15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况,发现不符合要求时应立即更换,一般至少每半年换油一次。 2简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因?

答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b.齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动精度较差等。还有圆弧齿轮的壳体中心距误差太大。 c.润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润滑性能较差。 d.油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b.是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c.减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因? 答:a.润滑油不合格或使用时间过长。 b.润滑油过多,不利于齿轮箱内机构散热。

行星齿轮减速器的优缺点

行星齿轮减速机主要传动结构为:行星轮,太阳轮,外齿圈。行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速。相对其他减速机,行星减速机具有高刚性、高精度(单级可做到1分以内)、高传动效率(单级在97%-98%)、高的扭矩/体积比、终身免维护等特点。因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量。行星减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000Nm以上。工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度。 行星齿轮减速机构成及意义、特点 行星减速机主要传动结构为:行星轮,太阳轮,外齿圈. 行星减速机因为结构原因,单级减速最小为3,最大一般不超过10,常见减速比为:3.4.5.6.8.10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速. 相对其他减速机,行星减速机具有高刚性,高精度(单级可做到1分以内),高传动效率(单级在97%-98%),高的扭矩/体积比,终身免维护等特点. 因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量. 减速机额定输入转速最高可达到18000rpm(与减速机本身大小有关,减速机越大,额定输入转速越小)以上,工业级行星减速机输出扭矩一般不超过2000Nm,特制超大扭矩行星减速机可做到10000Nm以上.工作温度一般在-25℃到100℃左右,通过改变润滑脂可改变其工作温度. 行星减速机的几个概念: 级数:行星齿轮的套数.由于一套星星齿轮无法满足较大的传动比,有时需要2套或者3套来满足拥护较大的传动比的要求.由于增加了星星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降. 回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙. 行星减速机是一种用途广泛的工业产品,其性能可与其它军品级减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。 该减速器体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低。具有功率分流、多齿啮合独用的特性。最大输入功率可达104kW。适用于起重运输、工程机械、冶金、矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器和航空航

相关文档
最新文档