新型刀具的发展与前景

新型刀具的发展与前景
新型刀具的发展与前景

新型刀具的发展与前景专业年级:16农机

姓名:郑子豪

学号:3166103028

指导教师:郑书河

一、新型刀具材料的基本要求

刀具材料性能的优劣是影响切削加工能否正常运作的直接原因。

为了适应当今社会更高的要求,新型刀具必须在保证提高加工效率和加工质量的同时,降低加工费用。材料、结构和几何形状是决定刀具加工性能的三个重要因素。其中,刀具材料最为重要。刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工成本、加工质量以及刀具使用寿命等都影响很大。性能优良的刀具材料,是保证刀具高效工作的基本条件。造成刀具损坏最主

要的原因是切削力和切削温度作用下的机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等磨损和破损。因此高速切削刀具材料最主要的要求是高温时的力学性能、热物理性能、抗粘结性能、化学稳定性(氧化性、扩散性、溶解度等)和抗热震性能以及抗涂层破裂性能等。

二、陶瓷刀具材料

陶瓷刀具材料是以人造化合物(主要成分为氧化铝和氮化硅)为原料,加微量添加剂,在高压高温下烧结而成,是一种廉价的非金属刀具材料。它有很高的硬度、耐磨性和耐热性,化学稳定性好,与金属的亲和力小,可提高切削速度3—5倍。但是陶瓷刀具材料的抗弯强度低,冲击韧性差,因此主要用于钢、铸铁、有色金属等材料的精加工和半精加工。

陶瓷刀具一般有以下几种:

1.氮化硅基陶瓷刀具

1.1单一Si3N4陶瓷刀

此类陶瓷刀具主要是以氧化镁(Mgo)为添加剂的热压陶瓷。其硬度为9l一93HRA,耐磨性与抗弯强度均高于一般陶瓷,冲击韧度相当于Y130,耐热性可达1300—1400℃,具有良好的抗氧化性。此外,Si3N4陶瓷有自润滑性能,摩擦系数较小,抗粘接能力强,不易产生积屑瘤,且切削刃可磨得锋利。能加工出良好的表面质量,特别适合于车削易形成积屑瘤的工件材料。

1.2复台Si3N4陶瓷刀具Si3N4陶瓷以共价键结合,晶粒是长柱状的,有着较高的硬度、强度和断裂韧性,同时它的热膨胀系数小,所以有较好的抗机械冲击性和抗热冲击性。Si3N4刀具特别适合于铸铁、高温合金的粗精加工、高速切削和重切削,其切削耐用度比硬质合金刀具高几倍至十几倍。在汽车发动机铸铁缸体等加工中应用越来越普遍。

1.3

SiMon陶瓷刀具

该类合金以Si3N4为硬质相Al203为耐磨相,并添加少量助烧剂Y203,经热压烧结而成。该合金不仅强度韧性高,而且具有有良好的抗热冲击性能,化学性能稳定,耐高温。其冲击强度接近于涂层硬质合金刀具,巳成功应用于铸铁和高温合金等难加工材料的加工。

1.4

Si3N4晶须增韧陶瓷刀具晶须增韧陶瓷是在Si3N4基体中加入一定量的碳化物晶须而成,从而可提高陶瓷刀具的断裂韧性。

超硬刀具材料

超硬刀具是现代工程材料的加工在硬度方面提出的更高要求而应运而生,

20世纪的后40年中有了较大的发展。超硬材料的化学成分及其形成硬度的规律与其他刀具材料不同,立方氮化硼是非金属的硼化物,晶体结构为面心立方体;而金刚石由碳元素转化而成,其晶体结构与立方氮化硼相似。它们的硬度大大高于其他物质。

三、

1.金刚石类超硬刀具材料

1.1

天然单晶金刚石

这是一种各向异性的单晶体。硬度达9000~10000HV,是自然界中最硬的物质。它耐磨性极好,有很长的刀具寿命。但在不同晶面上硬度和耐磨性有较大差异,材料韧性很差,抗弯强度很低,热稳定性差(700~800℃时就会失去硬度),温度再高就会碳化。另外,它与铁有很强的亲和力,不适于加工钢铁。

1.2

人造单晶金刚石

该材料除硬度比天然金刚石稍差外,其它性能都与天然金刚石接近。由于是人工制造,其解理方向和尺寸变得可控和统一,材料中晶体有相对较好的一致性,且成本较低,作为替代天然金刚石的新材料,人造单晶金刚石必将会有广阔的应用前景。

1.3

人造聚晶金刚石

人造聚晶金刚石是将粒度为微米级的金刚石微粉与少量金属粉末溶剂混合

后在高温(1400℃)高压(6000Mpa)下烧结而成的聚晶体。它的硬度达6000HV 左右,耐磨性好,抗弯强度、抗冲击和抗震性能比天然金刚石高很多;高导热性和低热膨胀系数,切削时散热快,切削温度低,热变形小;摩擦系数小,切削效率高、加工精度稳定,表面质量好。

1.4

金刚石烧结体

在硬质合金基体上烧结一层0.5~0.7μm厚的聚晶金刚石(PCD)可得到金刚石烧结体,它兼具了PCD的高硬度、高耐磨性和硬质合金的良好强度与韧性。能进行断续切削,可多次刃磨。但刃磨相当困难,主要体现为材料磨除率小、效率低、砂轮损耗大、刃口呈锯齿状。

1.5

CVD金刚石膜

CVD金刚石膜是一种化学气相沉积法制成的金刚石材料。其硬度高,不含金属结合剂,有很高的热传导率和抗高温氧化性能。但韧性比较差,刃口极难磨出像天然金刚石和人造单晶金刚石一样锋利。

四、

结语

无疑在21世纪的未来的一段岁月里,切削加工依然是机械加工的最主要的加工方法。而作为其中起重要作用的刀具,其性能也十分重要。近年来,随着科技的发达,对切削技术的要求也越来越高。高速切削、硬态切削、微雾润滑切削、干式切削、复合切削等领域在迅速发展。为了满足这些技术的要求,刀具材料也进入了飞速发展的时代。为实现以最小限度生产设备高效率、低成本加工零件的生产方式的核心,越来越多的新型刀具材料被研发出来。相应的,这些性能优秀的材料也是工业的发展进入了一个新的篇章。

面对这些新型的材料,我们所要做的是充分地去了解这些材料的性能也特征,研究出各种材料的优异。才能在越来越多的材料中选出最符合条件的材料,制作出满意的刀具。同时,新型刀具材料的需求推动了对于新型材料的研发。近年来,人们在新型刀具材料的应用、刀具涂层技术以及新型刀具切削性能方面进行了大量的研究与应用工作。在未来刀具材料主要的发展趋势是“细晶粒的基体材料+复合涂层”,以适应高速切削、干式切削、高精度加工的基本需求。

机加工中刀具材料的应用及发展趋势

机加工中刀具材料的应用及发展趋势 金属切削加工是现代机械制造工业中一种最基本的加工方法,在其过程中,刀具直接完成切削余量和形成已加工表面的任务,而刀具材料又是决定刀具切削性能的根本因素,它对加工效率、加工质量、加工成本以及刀具耐用度的影响极大。就拿切削速度来说,在最初使用碳素工具钢作为刀具材料时,切削速度只有每分钟10米左右;19世纪末20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟100~500米;20世纪中叶以后又出现了复合陶瓷、金刚石、CBN超硬刀具材料等,高速钢和硬质合金则发展了许多新品种。迄今,已使切削速度提高到每分钟一千米以上。历史事实表明,在切削加工的发展过程中,刀具材料始终是最积极的因素。同时,被加工材料的发展也大大地推动了刀具材料的发展。因此,我们应当重视刀具材料的正确选择和合理使用,关注新型刀具材料的研制和发展趋势。1刀具材料应具备的性能性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求:一是高硬度和高耐磨性;二是足够的强度与冲击韧性;三是高耐热性、导热性和小的膨胀系数;四是良好的工艺性和经济性。2常用刀具材料常用刀具材料有工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、超硬刀具材料和陶瓷。碳素工具钢和合金工具钢因其耐热性很差,仅用于手工工具。陶瓷和超硬刀具材料则由于性质脆、工艺性差及价格昂贵等原因,目前尚在有限的范围内使用。当今,用得最多

的为高速钢和硬质合金, 几乎各占一半。2.1高速钢高速钢是一种加入了较多的钨、铬、钒、钼等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃,锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。2.2硬质合金硬质合金是高强度难溶的金属化合物(主要是WC、TiC等,又称高温碳化物)微米级的粉末,用钴或镍等金属作粘结剂烧结而成的粉末冶金制品。其中高温碳化物的含量超过高速钢,绝大多数车刀、端铣刀和部分立铣刀、钻孔绞刀等均已采用其制造,切削速度可达到100~200m/min以上,是最主要的刀具材料之一。但因其工艺性较差,用于复杂刀具尚受到很大限制。3新型刀具材料3.1涂层刀具涂层刀具材料是近20年出现的一种新型刀具材料。它是在一些韧性较好的硬质合金或高速钢刀具基体上,涂覆一层耐磨性高的难熔化金属化合物而获得的,是刀具材料发展中的一项重要突破。涂层技术可提高刀具的耐磨性而不降低其韧性,较好的解决了刀具材料存在的强度和韧性之间的矛盾,是切削刀具发展的一次革命。从上世纪70年代初首次在硬质合金基体上涂覆一层碳化钛(TiC)后,到1981年就把普通硬质合金刀具的切削速度从80m /min提高到300m/min。在高速钢基体上刀具涂层多为TiN,常用物理气相沉积法(PVD法)涂覆,相当于一般硬质合金的硬度,耐用度可提高2~5倍,切削速度可提高20%~40%;在韧性较好的硬质合金基体上,涂层多为高耐磨、难熔化的金属化合物,一般采用化学

常用刀具材料分类、特点及应用

常用刀具材料分类、特点及应用 刀具材料的切削性能直接影响着生产效率、工件的加工精度、已加工表面质量和加工成本等,所以正确选择刀具材料是设计和选用刀具的重要容之一。 1.刀具材料应具备的性能 金属切削时,刀具切削部分直接和工件及切屑相接触,承受着很大的切削压力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度,即刀具切削部分是在高温、高压及剧烈摩擦的恶劣条件下工作的。因此,刀具切削部分材料应具备以下基本性能。 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。 耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,耐磨性就越好。组织中硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越高。但刀具材料的耐磨性实际上不仅取决于它的硬度,而且也和它的化学成分、强度、纤维组织及摩擦区的温度有关。 1.2 足够的强度和韧性 要使刀具在承受很大压力,以及在切削过程常要出现的冲击和振动的条件下工作,而不产生崩刃和折断,刀具材料就必须具有足够的强度和韧性。 1.3 高的耐热性 耐热性是衡量刀具材料切削性能的主要标志。它是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能。 1.4 导热性好 刀具材料的导热性越好,切削热越容易从切削区散走,有利于降低切削温度。刀具材料的导热性用热导率表示。热导率大,表示导热性好,切削时产生的热量就容易传散出去,从而降低切削部分的温度,减轻刀具磨损。

1.5 具有良好的工艺性和经济性 既要求刀具材料本身的可切削性能、耐磨性能、热处理性能、焊接性能等要好,且又要资源丰富,价格低廉。 2.常用刀具材料分类、特点及应用 刀具材料可分为工具钢、高速钢、硬质合金、瓷和超硬材料等五大类。常用刀具材料的主要性能及用途见表2-1。

刀具涂层技术的现状与发展 PVD CVD

刀具涂层技术的现状与发展 摘要:刀具涂层技术是一种受刀具市场需求而产生的一种表面改性技术,该项技术能改变切削刀具的综合机械性能,大幅度提升加工效率以及刀具寿命,刀具涂层技术成为高效率、高精度、高可靠性要求的关键机械加工技术之一。本文着重介绍了刀具涂层技术的涂层材料的制备方法及种类,并对刀具涂层技术的应用前景及发展趋势进行了展望。从工艺、装备、技术开发、推广应用、售后服务等方面分析我国刀具涂层技术与工业发达国家的差距;文中建议我国工具行业应针对国内刀具涂层技术现状,建立统一的研究、开发、服务体系,系统地引进国际先进技术,通过消化吸收逐步达到自我开发的能力,最终实现参与国际市场竞争的目的。 关键词:刀具;涂层技术;PVD;CVD 1 引言 刀具涂层技术是一种受刀具市场需求而产生的一种表面改性技术,该项技术能改变切削刀具的综合机械性能,大幅度提升加工效率以及刀具寿命,因此该项技术已与材料、加工工艺并称为切削刀具制造的三大关键技术。为了满足机械加工的高效率、高精度、高可靠性的要求,各个国家都十分注重刀具涂层技术的发展。当前,我国刀具涂层技术正处于一个发展的十分关键的时期,特别是PVD涂层技术,使用原有的涂层技术生产的刀具已不能满足切削加工要求;发展PVD技术,能提高我国切削刀具的水平,获得巨大的经济效益,提高我国的综合国力。 2 国内外刀具涂层技术的现状及发展趋势 刀具涂层技术目前分为两大类,即化学气相沉积(CVD)和物理气相沉积(PVD)技术。 2.1 物理气相沉积(PVD)技术的发展 习惯上,把固体(液态)镀料通过高温蒸发、溅射、电子束、等离子体、激光束、电弧等能量形式产生气相原子、分子、离子(气态,等离子态)进行输运,在固态表面上沉积凝聚,生成固相薄膜的过程称为物理气相沉积(PVD)。 物理气相沉积(PVD)技术产生于上世纪七十年代末,因为它的工艺温度控制在500℃以下,,可作为最终处理工艺用于高速钢类刀具的涂层。PVD技术大大提高了高速钢刀具切削性能,该项技术与八十年代得到迅速推广。八十年代后期,一些发达国家PVD涂层高速钢刀具比例已占市场已超过了60%。 高速钢刀具成功应用PVD技术,引起了世界各国的青睐与重视,各国研究者在不断开发高的性能、高可靠性涂层装备的同时,也对其应用领域进行了更加深入的研究,以进行扩大,特别是在硬质合金刀具、陶瓷刀具方面的应用。与CVD涂层技术相比,PVD技术的处理温度低,刀具材料抗弯强度通常温度在600℃以下不会产生影响;薄膜的内部为压应力,因此,适合涂层硬质合金精密复杂类刀具,PVD技术对环境不会产生不利影响,更加符合绿色工业发展的方向。伴随着高速加工时代的到来,硬质合金刀具、陶瓷刀具使用的比例必然上升,高速钢刀具使用的比例必然下降。因此,一些发达国家在九十年代初便将重心转向硬质合金刀具PVD涂层技术的研究,九十年代中期,PVD涂层技术在硬质合金刀具上的应用已取得了突破性的进展,当时已普遍在铣刀、铣刀片、各种钻头、铰刀、丝锥、等的刀具上应用。 从大的方面来看,现在国际上的PVD涂层技术大致可分成真空蒸镀、溅射、离子镀,但从这三种主要的镀膜技术衍生出了各式各样的新技术。伴随着PVD技术的进一步发展,科学家们把离子束、等离子体引入到PVD涂层技术上,同时通入某些反应气体,由化学反应来制备金属镀层,因此,当前的PVD涂层技术已不是原先单纯的物理制备过程,PVD涂层技术和CVD涂层技术已经相互交融。单一的涂层材料显然无法满足综合刀具机械性能的要求,无法被市场接受,涂层材料正向着多元不断的发展。为实现不同的高性

刀具材料的研究现状及展望

刀具材料的研究现状及展望 2012034110 李贺 【摘要】随着难加工材料的日益增多以及对加工效率的要求的提高,刀具的发展对提高生产效率和加工质量具有直接影响。本文以刀具材料为主线,介绍了高速钢、硬质合金、陶瓷、超硬材料等刀具材料的性能以及现状。根据刀具材料的优缺点提出其适合的加工切削条件,同时在理论层面提出对未来发展的思考。 【关键词】高速钢;硬质合金;陶瓷;超硬材料;研究现状;展望 1 刀具失效形式和性能要求 刀具磨损是刀具的主要失效形式,常见的失效形式有:磨粒磨损、氧化磨损、粘结磨损、扩散磨损等正常磨损;卷刀、崩刃、崩碎、打刀等非正常磨损[1]。由此,刀具材料应具有良好的力学性能,另外还应具有良好的工艺性能以及可最大限度降低刀具成本的经济性[2]。 2 高速钢刀具材料 高速钢刀具材料可分为传统熔融高速钢、粉末冶金高速钢和少无莱氏体高速钢。但随着加工材料的发展,虽然其能满足通用工程材料切削加工的要求,但其性能已不够先进。 2.1 传统熔融高速钢 熔融高速钢刀具材料分为:普通高速钢;高性能高速钢。普通高速钢具有较好的塑性,常温硬度63~66HRC,而在高温下,硬度很差。高性能高速钢的硬度普遍比普通高速钢提高2~4 个HRC,高温硬度也较好,但是其抗弯强度、韧性较低[3]。 2.2 粉末冶金高速钢、少无莱氏体高速钢 粉末冶金高速钢及少无莱氏体高速钢解决了熔炼高速钢在冷凝过程中产生的粗大碳化物偏析及碳化物粗大问题。 少无莱氏体钢在热处理时需要进行渗碳处理提高表层的含碳量,以增加硬度,表层经淬火及回火后硬度可达66~67HRC 以上,成为超硬高速钢。少无莱氏体高速钢刀具有芯韧表硬的特点,具有好的综合性能[4]。 3 硬质合金刀具材料 硬质合金是由硬度和熔点很高的碳化物(称硬质相)和金属(称粘结相)。近年来随着材料技术的发展,将其分为P、M、K、H、S、N 六个系列[5]。P 类,主要用于切削钢材;K 类,主要用于切削铸铁;M 类,为普通型硬质 合金;H 类,主要用于切削高硬材料,如淬硬钢,冷硬铸铁等;S 类,用于切削耐热材料、高温合金等;N 类,用于切削有色金属[6]。 3.1 传统硬质合金刀具材料 分类:碳化钨基硬质合金、碳(氮)化钛基硬质合金。 性能:硬度为89.5~94HRA,具有较好的红硬性、耐磨性等综合性能,其适于加工未淬火的钢材。

刀具涂层技术的现状及其发展趋势

刀具涂层技术的现状及其发展 趋势 机电商情网添加时间:2007-2-6 15:57:24 添加到我的收藏 1 引言 众所周知,刀具表面涂层技术是应市场需求而发展起来的一项优质表面改性技术,由于该项技术可使切削刀具获得优良的综合机械性能,不仅可有效地提高刀具使用寿命,而且还能大幅度地提高机械加工效率,因此该项技术已与材料、加工工艺并称为切削刀具制造的三大关键技术。为满足现代机械加工高效率、高精度、高可靠性的要求,世界各国都十分注重涂层技术的发展。目前我国刀具涂层技术的发展正处在一个十分关键的时刻,尤其是PVD 涂层技术,一方面原有的技术已不能满足切削加工日益变化的要求;另一方面国内各大工具厂涂层设

备已到了必须更新换代的时期,因此有计划、按步骤的发展PVD技术,不仅能促进我国切削刀具产品技术水平的提高,而且还可获得巨大的经济效益和社会效益。 2 国际刀具涂层技术的现状及发展趋势 刀具涂层技术目前仍可划分为两大类,即 CVD(化学气相沉积)和PVD技术(物理气相沉积)。 2.1 国际CVD技术的发展 CVD技术自上世纪六十年代出现以来,在硬质合金可转位刀具上得到了极为广泛的应用。在CVD工艺中,气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、Al2O3等单层及多元多层复合涂层,其涂层与基体结合强度高,薄膜厚度可达7~9μm,相对而言,CVD涂层具有更好的耐磨性。八十年代中后期,美国85%的硬质合金

工具采用了涂层处理,其中CVD涂层占到了99%;九十年代中期,CVD涂层硬质合金刀片在涂层硬质合金刀具中仍占到了80%以上。但CVD工艺也有其先天性的缺陷,一是工艺处理温度高,易造成刀具材料抗弯强度的下降;二是薄膜内部为拉应力状态,使用中易导致微裂纹的产生;三是CVD工艺所排放的废气、废液会造成工业污染,对环境影响较大,与目前所提倡的绿色工业相抵触,因此九十年代中期后高温CVD技术的发展受到了一定的制约。 八十年代末Krupp Widia开发的PCVD(低温化学气相沉积)技术达到了实用水平,其工艺处理温度已降至450℃~650℃,有效地抑制了η相的产生,可进行TiN、TiCN、TiC等涂层,用于螺纹刀具、铣刀、模具等,但到目前为止PCVD工艺在刀具涂层领域内的应用并不十分广泛。 真正引起CVD技术发生突变的是九十年代中期新

刀具涂层特点及应用

目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD和CVD的复合涂层等,从刀具制造商或涂层供应商那里可以很容易地获得这些涂层。本文将介绍一些刀具涂层共有的属性以及一些常用的PVD、CVD涂层选择方案。在确定选用何种涂层对于切削加工最为有益时,涂层的每一种特性都起着十分重要的作用。 1.涂层的特性 (1)硬度 涂层带来的高表面硬度是提高刀具寿命的最佳方式之一。一般而言,材料或表面的硬度越高,刀具的寿命越长。氮碳化钛(TiCN)涂层比氮化钛(TiN)涂层具有更高的硬度。由于增加了含碳量,使TiCN涂层的硬度提高了33%,其硬度变化范围约为Hv3000~4000(取决于制造商)。表面硬度高达Hv9000的CVD金刚石涂层在刀具上的应用已较为成熟,与PVD涂层刀具相比,CVD 金刚石涂层刀具的寿命提高了10~20倍。金刚石涂层的高硬度和切削速度可比未涂层刀具提高2~3倍的能力使其成为非铁族材料切削加工的不错选择。 (2)耐磨性 耐磨性是指涂层抵抗磨损的能力。虽然某些工件材料本身硬度可能并不太高,但在生产过程中添加的元素和采用的工艺可能会引起刀具切削刃崩裂或磨钝。 (3)表面润滑性 高摩擦系数会增加切削热,导致涂层寿命缩短甚至失效。而降低摩擦系数可以大大延长刀具寿命。细腻光滑或纹理规则的涂层表面有助于降低切削热,因为光滑的表面可使切屑迅速滑离前刀面而减少热量的产生。与未涂层刀具相比,表面润滑性更好的涂层刀具还能以更高的切削速度进行加工,从而进一步避免与工件材料发生高温熔焊。 (4)氧化温度 氧化温度是指涂层开始分解时的温度值。氧化温度值越高,对在高温条件下的切削加工越有利。虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证明它在高温加工中要比TiCN有效得多。TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVD TiAlN 涂层。 (5)抗粘结性 涂层的抗粘结性可防止或减轻刀具与被加工材料发生化学反应,避免工件材料沉积在刀具上。在加工非铁族金属(如铝、黄铜等)时,刀具上经常会产生积屑瘤(BUE),从而造成刀具崩刃或工件尺寸超差。一旦被加工材料开始粘附在刀具上,粘附就会不断扩大。例如,用成型丝锥加工铝质工件时,加工完每个孔后丝锥上粘附的铝都会增加,以至最后使得丝锥直径变得过大,造成工件尺寸超差报废。具有良好抗粘结性的涂层甚至在冷却液性能不良或浓度不足的加工场合也能起

硬质合金刀具材料发展现状与趋势_陶国林

第18卷 第3期2011年6月 金属功能材料M etallic Functional M aterials Vol .18, No .3 June , 2011 硬质合金刀具材料发展现状与趋势 陶国林 1,2 ,蒋显全2,黄 靖 3 (1.重庆工商大学,重庆400067;2.重庆市科学技术研究院 新材料研究中心,重庆400020; 3.重庆机械电子技师学院,重庆400030) 摘 要:回顾了各种硬质合金刀具材料的基本性能和发展现状,并对各种刀具材料技术的研究成果及发展趋势进行了探讨,同时提出了今后的发展方向。关键词:硬质合金;刀具材料;涂层 中图分类号:T G135.5 文献标识码:A 文章编号:1005-8192(2011)03-0079-05 Research Status and Developing Trend of Cemented Carbide Tool TA O G uo -lin 1,2,JIA NG Xian -quan 2,H U A NG Jing 3 (1.Chongqing Technolo gy and Business U niv ersity ,Chongqing 400067,China ;2.Cho ng qing A cademy o f Science and T echno lo gy ,Chongqing 400020,China ;3.Chongqing M echanical Elec trical A rtificer Co llege ,Cho ng qing 400030,China ) Abstract :Co nventio na l pe rfor mances and resea rch status o f many kinds of cemented car bide cutting too l material are rev iewed ,and the resea rch achievement o f cemented ca rbide too ls in recent year s are discussed ;M eanw hile ,develop -ment trend in the future is put fo rw ard . Key words :ceme nted ca rbide ;cutting to ol ma te rial ;coa ting 作者简介:陶国林(1975-),男,四川德阳人,硕士,助理研究员,主要从事碳化钨硬质合金方面的研究。 随着加工业的发展,难加工材料的使用日益增多,对加工效率的要求也不断提高。刀具的发展对 提高生产效率和加工质量具有直接影响。材料成分和结构以及几何形状是决定刀具性能的3要素,其中刀具材料的性能起着关键性作用。目前虽然可供使用的品种很多,新型的刀具材料也不断出现,但硬质合金是最受欢迎的一种刀具材料[1]。 硬质合金是由高硬度、难熔的金属碳化物(WC 、TiC 等)微米级粉末采用Co 、Mo 、Ni 等作粘结剂烧结而成的粉末冶金制品,。其高温碳化物含量超过高速钢,允许的切削温度高达800~1000℃,常温硬度达89~93H RA ;在540℃时为82~87H RA ,与高速钢常温时硬度(83~86H RA )相同;760℃时硬度达77~85H RA ,并具有化学稳定性好、耐热性高等优点。硬质合金刀具切削速度可达 100~300m /min ,远远超过高速钢,寿命是高速钢的几倍到几十倍[2] 。发达国家90%以上的车刀和 55%以上的铣刀都采用硬质合金材料制造,目前使用比重仍在增加[3]。另外,硬质合金也用来制造钻头、铣刀、齿轮刀具、铰刀等复杂刀具,硬质合金以其优良的性能正在更多的场合替代其他的刀具材料,现在已成为主要的刀具材料之一。 目前世界上硬质合金刀具已占刀具主导地位,占比达70%;金刚石、立方氮化硼等超硬刀具占比约为3%左右;而高速钢刀具正以每年1%~2%速度缩减,目前所占比例已降至30%以下。我国目前年产硬质合金1.6万t ,占全球总产量40%左右。但硬质合金制品附加值最高的切削刀片产量只有 3000余t ,只占20%[4,5] 。 从经济效益方面比较,我国刀具年销售额为

刀具的材料及其应具备的性能

刀具的材料及其应具备的性能 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。 高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加人了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。 高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的1.5-3倍。 粉末冶金高速钢是70年代投入市场的一种高速钢,其强度与韧性分别提高30%-40%和80%-90%.耐用度可提高2-3倍。目前我国尚处于试验研究阶段,生产和使用尚少。

涂层刀具的应用现状及发展趋势

涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层可以提高切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高金属切削效率。本期话题, 主要讨论刀具涂层技术的最新进展情况和发展前景。 涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层提高了切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高了金属切削效率。今天,在切削刀具主流材料的硬质合金中,涂层硬质合金刀具占了80%,而其中CVD(化学涂层)又占了60%~ 65%,其余为PVD(物理涂层)。 在CVD涂层方面,包括TiCN、TiC、TiN、ZrCN和Al2O3等各种化合物的多层复合涂层对改善涂层的综合性能,如结合强度、韧性、耐磨性和抗磨性及耐腐蚀性具有良好的效果。现在典型的VCDTiN(外层)+ Al2O3(中层)+TiCN(内层)多层式结构正在从涂层工艺上和涂膜的厚度上得到进一步改善。MTCVD (中温化学涂层)因有较低的工艺温度和较快的沉积速率使得涂层与基体分界面上的脆性η相最小化,同时减少了在高温CVD涂层中常见的由高温导致的拉伸裂纹,因此,MTCVD TiCN涂层已成为CVD多层涂层中的一个主要构成,这种MTVCD已用于α- Al2O3涂层,如ISCAR的α-IC9150、α-IC9250、α-IC9350和α-IC4100等,提升了涂层与基体的结合强度和抗后面磨损、前面磨损和抗粘附的能力。 在PVD涂层方面,也从单一的TiN或TiCN或TiAlN涂层发展到现在的复合涂层即硬涂层+软涂层。为适应更高切削速度和干式切削的要求,涂层刀具的红硬性成为近几年PVD技术的开发热点。TiAlN的改进涂层AlTiN提高了薄膜中Al的含量(Al含量大于50%),提升了涂层的红硬性、化学稳定性和抗氧化的性能,如ISCAR的Al-IC910(加工铸铁和钢)、Al-IC900、Al-IC930(加工钢、不锈钢、硬钢、铸铁、 高温合金等)。 现代刀具涂层发展的一个重要特征就是复合化,为了提高其综合性能,涂层材料复合、涂层层复合以及CVD 与PVD复合,如ISCAR的DT7150(K05-K25)通过MTCVD Al2O3和PVD TiAlN复合涂层,提高了材质的综合性能,用于高速加工灰铸铁和球墨铸铁。而多样化是刀具涂层发展的另一个趋势,有各种氮化物、氧化物涂层材料,还有TiB、SN涂层、金刚石涂层、立方氮化硼涂层等等。多样化的深层次原因是专业化,即针对不同的需求采用不同的涂层,并能对涂层的组分、百分比、结构及厚度在更大范围内加以控制和改变,以适应不同的被加工材料和不同的切削条件,从而显著地提高刀具的切削性能。如CrAlN涂层,以Cr 元素替代Ti元素,具有3200HV硬度和1100℃的氧化温度,与TiAlN相比韧性更好,更适合断续切削和难加工材料的加工;以Si元素代替Al元素的涂层可获得用于硬切削的TiSiN,也可获得有润滑性的CrSiN,更适合用于铝、不锈钢等粘附性强的材料加工。此外,涂层材料的细微化是现代刀具涂层发展的另一个令人关注的趋势,纳米复合涂层正在越来越多的地方得到应用。在未来,刀具涂层将是一个系统的概念,即刀具涂层必须根据不断变化的现代切削应用条件来进行系统的组合,这是一种与传统观念中的“在刀具上涂覆一层薄膜”截然不同且复杂得多的系统工程方法,这需要我们进行系统思考。 刀具涂层进展概况 现代切削面临着不断发展的高速、高效、高精加工要求和愈来愈多的高强度、高韧性、难切削等高能级材

数控刀具材料及选用

数控刀具材料及选用,再也不用盲目选刀 加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。 一. 刀具材料应具备基本性能 刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能: (1) 硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。 (2) 强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。 (3) 耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。 (4) 工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。 二.刀具材料的种类、性能、特点、应用 1.金刚石刀具材料的种类、性能和特点及刀具应用 金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。 ⑴金刚石刀具的种类 ①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002靘,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。 ②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石

四大材料刀具的性能与选择

四大材料刀具的性能与选择 刀具材料的发展对切削技术的进步起着决定性的作用。本文介绍了切削中所使用的金刚石、聚晶立方氮化硼、陶瓷、硬质合金、高速钢等刀具材料的性能及适用范围。刀具损坏机理是刀具材料合理选用的理论基础,刀具材料与工件材料的性能匹配合理是切削刀具材料选择的关键依据,要根据刀具材料与工件材料的力学、物理和化学性能选择刀具材料,才能获得良好的切削效果。就活塞在切削加工时的刀具材料选用作了阐述。 高速钢:活塞加工中铣浇冒口、铣横槽及铣膨胀槽用铣刀,钻油孔用钻头等都为高速钢材料。 硬质合金:YG、YD系列硬质合金刀具被广泛应用于铝活塞加工的各个工序中,特别是活塞粗加工和半精加工工序。 立方氮化硼:立方氮化硼刀具被用于镶铸铁环活塞的车削铸铁环槽工序中。同时也应用于活塞立体靠模的加工中。 金刚石:金刚石刀具可利用金刚石材料的高硬度、高耐磨性、高导热性及低摩擦系数实现有色金属及耐磨非金属材料的高精度、高效率、高稳定性和高表面光洁度加工。在切削铝合金时,PCD刀具的寿命是硬质合金刀具的几十倍甚至几百倍https://www.360docs.net/doc/b613199644.html,,是目前铝活塞精密加工的理想刀具,已经应用于精车活塞环槽、精镗活塞销孔、精车活塞外圆、精车活塞顶面及精车活塞燃烧室等精加工工序中。 刀具材料性能的优劣是影响加工表面质量、切削加工效率、刀具寿命的基本因素。切削加工时,直接担负切削工作的是刀具的切削部分。刀具切削性能的好坏大多取决于构成刀具切削部分的材料、切削部分的几何参数及刀具结构的选择和设计是否合理。切削加工生产率和刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大程度上都取决于刀具材料的合理选择。正确选择刀具材料是设计和选用刀具的重要内容之一。 每一品种刀具材料都有其特定的加工范围,只能适用于一定的工件材料和切削速度范围。不同的刀具材料和同种刀具加工不同的工件材料时刀具寿命往往存在很大的差别,例如:加工铝活塞时,金刚石刀具的寿命是YG类硬质合金刀具寿命的几倍到几十倍;YG类硬质合金刀具加工含硅量高、中、低的铝合金时其寿命也有很大的差别。所以,合理选用刀具是成功进行切削加工的关键。每一种刀具材料都有其最佳的加工对象,即存在切削刀具与加工对象的合理匹配问题。 1 刀具材料应具备的性能 1.1 高的硬度和耐磨性 硬度是刀具材料应具备的基本特性。刀具要从工件上切下切屑,其硬度必须比工件材料的硬度大。切削金属所用刀具的切削刃硬度,一般都在60HRC以上。耐磨性是材料抵抗磨损的能力。一般来说,刀具材料的硬度越高,其耐磨性就越好。组织中的硬质点(碳化物、氮化物等)的硬度越高,数量越多,颗粒越小,分布越均匀,则耐磨性越好。耐磨性还与材料的化学成分、强度、显微组织及摩擦区的温度有关。可用公式表示材料的耐磨性WR:WR=KIC0.5E-0.8H1.43式中:H——材料硬度(GPa)。硬度愈高,耐磨性愈好。

现代刀具的发展及其趋势

目录 1 先进刀具使用现状 (1) 1.1 刀具的材料 (1) 1.2 刀具涂层技术 (2) 1.3 立铣刀、丝锥、钻头等传统刀具进入高速切削发展阶段 (4) 1.4 可转位刀具的新进展 (4) 1.5 切削加工新的配套技术 (5) 2 先进刀具的发展趋势 (7) 2.1 数控切削技术的发展对刀具工业提出了更高的要求 (7) 2.2 刀具新技术、新结构、新品种的发展及趋势 (8) 2.3 与刀具相关新技术的发展 (10) 附录:参考文献 (12)

1 先进刀具使用现状 1.1 刀具的材料 当前,刀具材料进展的主要特点是:一方面硬质合金取代高速钢成为主要的刀具材料;另一方面超硬刀具材料使用比重大幅增加。 1.硬质合金基体方面 硬质合金新牌号的开发越来越具有很强的针对性,如美国Kennametal公司 仅针对不同被加工材料的车削加工牌号就有:加工钢材的KC9110、加工不锈钢的KC9225、加工铸铁的KY1310、加工耐热合金的KC5410、加工淬硬材料的KC5510、加工非铁材料的KY1615,新牌号比原牌号平均可提高切削效率15%~20%。山高公司推出的加工铸铁的TK1000、TK2000新牌号,可提高切削速度20%~30%,而该公司为加工钢件开发的TP3000在重切削、断续切削、大进给的应用中则有很好的可靠性。 铸铁和不锈钢是目前两种应用较多的工件材料,然而两者的可加工性有很大的差异,很多公司都开发出了加工这两种材料的专用牌号。如株洲钻石切削刀具股份有限公司开发的黑金刚刀片系列,是专门加工铸铁的硬质合金刀片,包括可干式高速加工灰铸铁的YBD052、可高速加工球墨铸铁的YBD102、可用于中高速或铣削的YBD152及适用中低速湿式铣削或断续条件下车削的YBD252等牌号。这些新牌号比原有的牌号可提高切削速度30%~40%,使用寿命可提高将近40%~50%。在加工不锈钢方面,瑞典Sandvik公司车削奥氏体不锈钢的GC2015是具有梯度区的抗塑性变形和改进热硬性的基体,加上专为此牌号而设计的 TiN-TiN/Al2O3(多层)-TiCN涂层,并对涂层表面进行平滑处理,提高了抗磨料磨损、抗剥落、抗积屑瘤的能力。而韩国KORLOY公司的PC9530为铣削不锈钢的牌号,采用超细颗粒的基体和PVD涂层。 2.在新牌号的开发中重视基体和涂层的优化组合 对于适合高速加工的牌号,其基体应有较高抗塑性变形的能力和富钴的表层及抗月牙磨损的涂层;对于适合断续切削的牌号,基体和涂层都要有较好的韧性。Sandvik公司车削铸铁的专用牌号GC3205、GC3210、GC3215为CVD涂层硬质合金,

常用刀具材料分类、特点、应用及发展

金属切削原理 读书报告 《常用刀具材料分类、特点及应用》 姓名 学号 班级 学院 二○一五年五月

摘要 机械制造工业是制造业最重要的组成之一,它担负着向国民经济的各个部门提供机械装备的任务。我国现代化建设的发展速度在很大程度上要取决于机械制造工业的发展水平,因此,从这个意义上说,机械制造工业的发展水平是关系全局的。机械制造中的加工方法很多,其中材料去除加工精度较高、表面质量较好,有很强的加工适应性,是目前机械制造中应用最广泛的加工方法。材料去除加工时,刀具在工作时,要承受很大的压力。同时,由于切削产生的金属塑性变形以及各部的摩擦,使刀具切削刃上产生很高的温度和受到很大的应力,在这样的条件下,刀具将迅速磨损或破损。因此刀具材料性能应满足;高的硬度和耐磨性、足够的强度和韧性、高的耐热性、良好的热物理性能和耐热冲击性能、良好的工艺性能和经济性等要求。常用的刀具材料有高速钢、硬质合金、涂层刀具以及其他刀具材料包括陶瓷、金刚石和立方氮化硼等。其中陶瓷材料和超硬刀具材料对常规刀具材料的竞争越来越激烈,且所占比重快速增长。随着上述刀具材料的发展,使车削加工的切削速度提高了100多倍,而且新刀具材料出现的周期也越来越短。但在较长时间内,各种刀具材料将仍是相互补充,相互竞争。 关键词:刀具材料性能,刀具材料分类,刀具材料特点,刀具材料应用

目录 引言 (3) 第一章绪论 (3) 1.1金属切削技术的发展概况 (3) 1.2金属切削材料的研究意义 (4) 第二章刀具材料性能 (4) 2.1刀具切削环境 (4) 2.2刀具材料性能要求 (4) 2.3刀具材料主要性能 (6) 第三章刀具材料分类 (7) 3.1高速钢 (7) 3.1.1 普通高速钢 (8) 3.1.2高性能高速钢 (8) 3.1.3粉末冶金高速钢 (9) 3.2硬质合金 (9) 3.2.1钨钴类硬质合金 (10) 3.2.2钨钛钴类硬质合金 (10) 3.2.3钨钛钽(铌)钴类硬质合金 (11) 3.2.4硬质合金的选用 (11) 3.3涂层刀具 (12) 3.4其它刀具材料 (13) 3.4.1陶瓷材料 (13) 3.4.2金刚石 (14) 3.4.3立方氮化硼(简称CBN) (15) 第四章刀具材料发展 (15) 参考文献 (16)

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

机加工刀具材料性能说明

机加工刀具材料性能说明 关键词高硬度高耐热性经济性 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m人nln左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上G被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 1)高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 2)足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。 冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。 3)高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 4)良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。表6—2为常用刀具材料的牌号、性能及用途。 1)高速钢

刀具行业的发展趋势

刀具行业的发展趋势 刀具行业是一个比较特殊的行业,肩负着为制造业提供关键装备---数控刀具的重任。制造业的水平往往受刀具行业整体水平的影响较大,而制造业的发展也会促进刀具行业的发展,两者可以说是相互促进相互制约。随着制造业的持续发展,刀具行业必将快速、稳步发展。根据制造业发展的需要,多功能复合刀具、智能刀具、高速高效刀具将成为时代的新宠。面对日益增多的难加工材料,刀具行业必须在改进原有的刀具材料、研发新的刀具材料及寻找更合理的刀具结构方面多下功夫,以解决制造业面临的越来越多的加工难题。2006年,刀具行业主要呈现以下七大发展趋势: 硬质合金材料增多 硬质合金材料依然是刀具材料中的主要成员,也是各国刀具制造厂商着力发展的刀具材料之一。目前,硬质合金材料的应用已有显著进展,细颗粒、超细颗粒硬质合金材料的开发是进一步提高刀具使用可靠性的发展方向,纳米涂层、梯度结构涂层及全新结构、材料的涂层是提高刀具使用性能的发展方向,物理涂层的应用将会继续增多,纯陶瓷、金属陶瓷、氮化硅陶瓷、PCBN、PCD等刀具材料的韧性将得到进一步增强,可应用场合逐渐增多。 研发更具针对性 通用牌号、通用结构不再是刀具制造厂商研发的重点,面对复杂多变的应用场合和加工条件,针对性更强的刀片槽形结构、牌号及配套刀具将取代通用的槽形、牌号的刀片及刀具。这在提高加工效率、加工质量、降低切削成本方面将会收到显著效果。 切削技术快速发展 高速切削、硬切削、干切削继续快速发展。高速切削以其不同于传统速度切削的独特机理以及在提高加工效率、提高加工质量、减少切削变形、缩短加工周期方面的显著效果,在制造业的应用必将进一步增多,高速切削刀具的需求将进一步增多。硬切削是一种新的加工工艺,在提高加工效率、降低加工成本、减少设备资金投入方面的作用独树一帜,对传统的磨削工艺提出了挑战,"以切代磨"将成为发展趋势之一。干切削作为一种绿色制造工艺与湿式切削相比有许多优点,但也存在切削力增大、切削变形加剧、耐用度降低、工件加工质量不易保证等缺点,但是通过分析干切削的各种特定边界条件和影响干切削的各种因素,寻

相关文档
最新文档