从半导体器件寿命的测量分析发射极饱和电流密度

从半导体器件寿命的测量分析发射极饱和电流密度
从半导体器件寿命的测量分析发射极饱和电流密度

从半导体器件寿命的测量分析发射极饱和电流密度

摘要:

发射极饱和电流密度oe J 的测量通常用非接触光电导测量方法。我们回顾oe J 的物理现象并且将常用的近似方法和使用二维器件模拟的方法作对比。在不同实验条件下(比如:不同照明条件、表面性质)我们量化在这种近似下的误差。从发射极到体电极的黑空穴模拟oe J 接近于由后掺杂的光电导测量值决定的模拟oe J 。只有当样本在接近。。。的情况下,前发射极的模拟oe J 才和后发射极的oe J 等价。在光照条件下(比如:可见光)前发射极的oe J 小于后发射极的oe J 。来自后发射极的oe J 和来自发射极黑空穴的oe J 在大范围基区参杂浓度变化时几乎为常数。来自光电导测量值oe J 的近似使得oe J 和多余少数载流子无关。寿命测量值表明,即使在高质量硅中,oe J 应该当分析方法作为测量多余少数载流子浓度(包括肖特基-李德-霍尔复合)时被得出。

关键字:硅、光电测量、少子寿命、发射极复合电流、太阳能电池

1.介绍:

在太阳能电池中,扩散的区域,比如发射区和表面区是无所不在的。对于高效率太阳能电池,两个分别在手指之间和在接触之下的发射区是有选择性的扩散。首先,低掺杂的发射极用于促进开路电压和短路电流。第二,重掺杂区用于降低接触电阻。在标准的工业太阳能电池中,后部镀金的淬火用于扩散铝到硅中形成后表面区域的承载。在后结点和后接触太阳能电池中,相反地,前表面区域是在前表面重掺杂引起的。所有这些区域有一个共同点就是它们是主要的复合源,限制开路电压因而获得效率。由于高表面掺杂浓度使得重掺杂发射极和前表面区域提供了一个相对较好的表面钝化,这样可以抑制一种电荷载流子并因此降低表面复合。相反的是,在前手指之间的低掺杂发射极中,这种作用被削减使得被一层薄电介质层覆盖的表面绝缘很重要。

描述扩散区的复合是一件很复杂的事,因为分清它的两个主要部分通常是不可能的:体复合和在重掺杂表面的复合。对于太阳能电池的模拟来说,表面复合是最重要的参数。对于器件的优化,表面的反应或复合和扩散层的体复合是更为重要的信息。发射极饱和电流密度oe J 是将发射层的体复合和重掺杂表面的复合结合在一起的参数。这个参数的测量因此是描述扩散层复合的很好方法。

在1985年,凯恩和斯旺森引进了一项强大的技术,可以从有效寿命的测量方法中得到发射极饱和电流密度【1】。这项技术的主要优点是简单的测量装置和直接的分析。这种方法不需要欧姆接触并且可以被应用到没有钝化层的样品或是退火的样品中。用电感耦合原理测量那里的有效寿命,as 在准稳态光电导QSSPC 【2】或是在微波光电导衰减中【3】。事实上,QSSPC 的引入,通过寿命测量出的oe J 对于发射极和场效应特性来说是标准的。这对磷和

硼掺杂的发射【4】}的扩散过程来说是最好的优化方法。这种方法被普遍地应用于铝后表面区域【5】和前表面区域【6】的表征。

oe J 也有时被应用于介电表面钝化,as 在介电硅表面的高表面电荷导致耗尽区【7】。

在太阳能电池模拟中,表面复合速度SRV 的知识作为表面掺杂剂密度的函数对模拟发射区来说很重要。自从发射区饱和电流密度包含所有的复合损失,理论模型被应用从而将表面损失和发生在发射集体的复合区分开来。这一概念被广泛应用于磷和硼掺杂的发射极

【4,8-16】,所用的仿真工具为PC1D 【17】或sentaurus TCAD 【18】。

oe J 的标准公式表示如下:

2,,,)()(1111

eff ni av dop back oe front oe SRH rad Auger eff qW n N J J ?+++=--ττττ(1)

在这个表达式中,eff τ是被测量的寿命,Auger τ,rad τ和eff τ分别是俄歇复合,辐射复合和肖

特基-李德-霍尔复合的寿命值。dop N 代表硅片的基区掺杂浓度,av n ?代表多余载流子浓度,

q 代表电荷电量,W 代表晶片厚度,

eff i n ,代表有效本征载流子浓度。front oe J ,和back oe J ,代表发射区前和后饱和电流密度,“前”指的是冲击光进入器件的区域。这个表达式是基于基本近似并且包含发射极饱和电流的定义,来自于连续性方程,以此来计算寿命【1】。计算细节将在之后的理论部分详述。 虽然不同的复合机制在有效寿命的结果上不同,但可以通过各自对于多余载流子浓度的dependence 将它们区分。俄歇复合,和n ?的立方成正比,可以通过理论模型被任何给定的载流子密度减掉。辐射复合同样是载流子密度的函数。通过检测发射区复合决定的余下SRH

复合所涉及的注入水平范围,oe J 可以得出。尤其在高注入regime 的中间,在这里,SRH 复合的影响是最小的。凯恩和斯文森的分析通过对载流子密度按等式(1)进行绘图,并且根据斜线计算oe J (见图1)。发射极饱和电流密度在低注入情况下可以精确得出,如

果为了获得更高质量,实验中使用高掺杂

FZ (区熔)材料。在此例中,用高纯FZ 硅【19】或是低注入【20】的俄歇复合的简单表达式可以估算SRH 复合,oe J 可以直接用等式(1)计算。即使凯恩和斯文森用瞬态实验验证他们的理论,他们的方法同样适用于准稳态测量方法【21】。

图1:从inverse llifetime (

)111(rad Auger eff τττ--)的斜线用施恩的方法计算oe J 。Open dots 是作为dop N n +?函数的被测inverse llifetime ,并且黑线和斜线的误差大约为

%3010316±=?-cm n

高注入方法的基本形式已经被应用自从它被凯恩和斯文森提出并且此方法已经很少被仔细检查。但是,正如作者在文中强调的,此方法还有许多局限。一种重要的假设认为,in the injection level of interest,样本中相当统一的载流子浓度被建立。这是很重的一个条件,因为oe J 是在耗尽区域边缘被确立的,然而寿命测量值仅允许平均载流子浓度的测量。实际上,迁移是有限的,以至于载流子密度不被严格统一甚至是发射极的非零负荷电流【1】。同样地,Bueno et al.认为载流子密度profile 的弯曲度和

SRH 寿命的载流子密度denpendency 挑战了oe J 可以从等式(1)的斜线得出的假设【22】。Fischer et al.模拟反寿命作为不同产生

profile 的多余载流子密度的函数【23】。他总结道暂态的,一致的产生会从一条直线产生强烈的derivations 。他也认为当负电荷通过电晕充电被淀积在

2SiO 钝化层时斜线被改变。他注意到a strong ...high-rear recombination 【21-24】

但是,精确计算oe J 的困难并不仅仅局限于此。在使用高纯度FZ 制法得到的材料时,

SRH 复合会在大注入条件下被严重抑制。低参杂时,情况恰恰相反,此时它对有效寿命的影响不能完全忽视。在mid-injection 条件下,SRH 复合通常强烈取决于载流子浓度。如果这种情况被忽略,会引起发射极饱和电流密度(发射极饱和电流密度取决于载流子密度)。Kane 因此建议extract oe J at 载流子密度>dop N ?10。谨记一件事,强度越高,会有越少的载流子扩散到表面,和全部的过剩载流子相比。 因此从剖面看,载流子密度很快地弯向表面,导致oe J 的低估。最后,从等式1中可以发现决定oe J 的主要因素是要正确选择模型(有效本证载流子浓度和俄歇寿命的模型)。

在这项研究中,我们可以从寿命的测量中计算发射极饱和电流密度。使用二维器件模拟,我们可以对从连续性方程到最后公式进行跟踪。和一般定义对比,我们可以分析出每一步近似对计算oe J 的影响。我们可以提前得出的结论是,由Kane 和Swanson 提出的方法得到的oe

J 和一般定义计算的

oe J 相背离。另一个结果是,载流子强烈依赖于SRH 寿命,并且uniform 载流子profile 会导致oe J 不得不成为流子密度的function 。我们检验光谱对计算oe J 的精确度

的影响,并且重点看载流子的范围,这些均取决于衬底的体复合。模拟结果最终被大量的工业发射极所证实。

2.理论:

如下,我们只考虑发射极,但这个术语会被某些注入或杂质扩散区所取代。比如,前或后表面场。我们以发射极饱和电流密度oe J 的一般定义来开始分析。【25】

)()

()()()x (J ,2,2e eff i e eff i e e e n oe x n x n x p x n J -≡ (2)

)(J e n x 是空间电荷区的电子复合电流,n 和p 是电子、空穴电流密度,eff i ,n 是本征载流子浓度,考虑带隙宽度变窄(BGN ),正如【13,25】所示。在准稳态和暂态条件下的发射极可以被等式(2)定义,基本假设如下:(a )发射区的材料常数和少数载流子密度无关,(b )耗尽区的费米能级是恒定的,(c )空间电荷区的复合可以忽略【1】。oe J 和在e x 处的复合

及电荷密度有关,在不借助于器件模拟的情况下,很难从一般定义中计算

oe J 。但是,在photoconductance-based 寿命测量分析的主要假设是恒定的载流子剖面prevails 整个基区。从这个意义上来说,oe J 表示体电极的平均载流子浓度,可以通过寿命测量来计算oe J 。 我们这里用的迁移模型,Klaassen 的参数化【26】,实际上取决于少子密度,contravening 的条件下(a)。但是,和基区相比扩散区很窄,并且和体相比到处exhibit 更少的过剩载流子浓度。这意味着发射极对光电导的贡献可以忽略。因此,在如下分析中,我们可以安全地忽略发射极的材料常数对载流子的影响。由于相同的原因,我们可以将连续性方程的分析局限于体电极,并且一起lump 表面和发射区。为了简便,我们将体的前和后置于0=x 和w x =的位置,w 是体区的厚度。我们只研究p 型材料的体电极,然而n 型硅可能更适用。因为半导体中的generation 是通过电荷载流子被产生的过程,复合指的是这种电荷载流子的消失,多余能量以光子或声子的形式释放。连续性方程包括在衬底中govern 半导体的机制,比如:产生、复合和载流子扩散。在p 型半导体材料中,

2

2),(),(),(),(),(),(G x t x n t x D t x t x n t t x n t x n b ???+?=???-τ (3) ),(n t x ?是过剩少子浓度,),(G t x 是产生率,),(b t x τ是体的复合寿命。),(t x D n 是电子的

扩散系数,也取决于x 和t(通过迁移率的载流子dependency)。

b τ是体电极复合机制的组合:SRH ,俄歇和辐射复合。b τ可以因此被表示如下:

rad Auger SRH ττττ1111

b ++= (4)

n 型发射极的p 型衬底,在每个表面和衬底形成结,结电流表明了等式(3)的边界情况: w x x

t x n t x qD t x n n ,0),(),(),(J =???= (5) 结合等式(2)和(5)得如下:

w x t x n t x n t x p t x n J w x x t x n t x qD eff i eff i oe n ,0)

,(),(),(),(,0),(),(,2,2=-==??? (6) 在边界条件下的连续性方程现在用于从寿命(方程1)的测量中推导oe J 的标准方程。从每一步近似条件中,比如近似1,、2等等,可以用器件模拟计算oe J ,并因此和一般定义计

算的oe J 进行比较。

总复合表明很多特定的复合机制同时发生在体和表面,一般用有效寿命

eff τ来描述。我们定义eff τ为关于n ?profile 的产生或复合:

?

??????-=dx t x n dx t x n t dx t x G t w w w ),(),(),()(1eff τ (7) 有效寿命不同复合机制的精确dependence 可以通过样品宽度w 和积分等式(3)算出。因此引出平均过剩载流子浓度av n ?,

dx x n w av ?

?=?)(1n (8) 在第一个近似中,我们假定

b τ是和x 无关的。为了化简,我们忽略时间相关性,然后可

以得到: )()()()()0()0()0()0(11

,2,2,,2,2,eff W n W n W p W n n qW J n n p n n qW J eff i eff i av rear oe eff i eff i av front

oe b -??+-??=-ττ (9)近似1

等式(9)表明eff τ精确计算的n ?profile 的重要性。假定n ?≈n ,eff i A n n N ,2p ???+=

)(np ,2n N n n A eff i ?+?≈- (10)

A N 表示基极参杂的受主浓度,可以将等式(9)转换如下:

)

())()(()0())0()(0(11

,2,,2,eff W n W n N W n n qW J n n N n n qW J eff i A av rear oe eff i A av front oe b ?+???+?+???=-ττ(11)近似2 当样品遭遇光照provoking 归一化的产生profile ,

n ?profile 也可以是相对归一化的,这意味着)()0(n W n n av ?≈?≈?【21】。器件的对称性使得)()0(n ,2,2W n eff i eff i ≈,因此允许

简化,得到等式(1)(近似3)。

到现在为止,我们已经假定体寿命和载流子浓度无关。实际上,俄歇复合,辐射复合和SRH 寿命随着载流子密度变化的变化有很大不同。因为n ?和体寿命的空间dependence 是

先前不知道的。我们计算体寿命作为过剩载流子平均密度:)(b av b n ?=ττ,这导致近似(4)。

正如在简介中提过的,这个基本等式用于计算小注入或大注入条件下的oe J 。唯一不知道的参数是SRH 寿命。在小注入regime 时,有时候会近似使用高SRH 体寿命【19】或使用

俄歇寿命作为上限【20】。在大注入条件下,由于其被广泛地使用而有更大的利润,有效寿命通常被发射极和俄歇复合dominated 。因此SRH 复合可以被忽略,导致接下来的近似: eff

i n av A rear oe front oe Rad Auger qW n N J J ,2)()(111

,,eff ?++=--τττ (12) (近似5) 值得注意的是,

载流子寿命

载流子寿命 半导体中的非平衡载流子寿命是半导体的一个基本特性参数,它的长短将直接影响到依靠少数载流子来工作的半导体器件的性能,这种器件有双极型器件和p-n结光电子器件等。但是,对于在结构上包含有p-n结的单极型器件(例如MOSFET)也会受到载流子寿命的影响。 非平衡载流子寿命主要是指非平衡少数载流子的寿命。影响少子寿命的主要因素是半导体能带结构和非平衡载流子的复合机理;对于Si、Ge、GaP等间接禁带半导体,一般决定寿命的主要因素是半导体中的杂质和缺陷。 对于少子寿命有明显依赖关系的电子器件特性,主要有双极型器件的开关特性、导通特性和阻断特性;对于光电池、光电探测器等之类光电子器件,与少子寿命直接有关的特性主要有光生电流、光生电动势等。 (1)少子寿命对半导体器件性能的影响: ①双极型器件的开关特性与少子寿命的关系: 双极型器件的开关特性在本质上可归结为p-n结的开关性能。 p-n结的开关时间主要是关断时间,而关断时间基本上就是导通时注入到扩散区中的少子电荷消失的过程时间(包括有存储时间和下降时间两个过程)。少子寿命越短,开关速度就越快。因此,为了提高器件的开关速度,就应该减短少子寿命。 ②器件的阻断特性与少子寿命的关系: 半导体器件在截止状态时的特性——阻断特性,实际上也就是p-n结在反向电压下反向漏电流大小的一种反映。因此,这里器件的阻断特性不单指双极型器件,而且也包括场效应器件在内。 p-n结的反向漏电流含有两个分量:一是两边扩散区的少子扩散电流,二是势垒区中复合中心的产生电流;这些电流都与少子寿命有关,载流子寿命越长,反向漏电流就越小,则器件的阻断特性也就越好。当载流子寿命减短到一定程度时,反向电流即大幅度地上升,就会产生反向电流不饱和的“软”的阻断特性。 一般,硅p-n结的反向漏电流主要是势垒区复合中心的产生电流,因此载流子的产生寿命将严重地影响到器件的阻断特性。所以注意工艺控制,减小杂质和缺陷的不良影响,对于提高器件的阻断特性至关重要。 总之,为了获得良好的器件阻断特性,要求器件应该具有较长的少数载流子寿命。为此,

半导体器件(附答案)

第一章、半导体器件(附答案) 一、选择题 1.PN 结加正向电压时,空间电荷区将 ________ A. 变窄 B. 基本不变 C. 变宽 2.设二极管的端电压为 u ,则二极管的电流方程是 ________ A. B. C. 3.稳压管的稳压是其工作在 ________ A. 正向导通 B. 反向截止 C. 反向击穿区 4.V U GS 0=时,能够工作在恒流区的场效应管有 ________ A. 结型场效应管 B. 增强型 MOS 管 C. 耗尽型 MOS 管 5.对PN 结增加反向电压时,参与导电的是 ________ A. 多数载流子 B. 少数载流子 C. 既有多数载流子又有少数载流子 6.当温度增加时,本征半导体中的自由电子和空穴的数量 _____ A. 增加 B. 减少 C. 不变 7.用万用表的 R × 100 Ω档和 R × 1K Ω档分别测量一个正常二极管的正向电阻,两次测 量结果 ______ A. 相同 B. 第一次测量植比第二次大 C. 第一次测量植比第二次小 8.面接触型二极管适用于 ____ A. 高频检波电路 B. 工频整流电路 9.下列型号的二极管中可用于检波电路的锗二极管是: ____ A. 2CZ11 B. 2CP10 C. 2CW11 D.2AP6 10.当温度为20℃时测得某二极管的在路电压为V U D 7.0=。若其他参数不变,当温度上 升到40℃,则D U 的大小将 ____ A. 等于 0.7V B. 大于 0.7V C. 小于 0.7V 11.当两个稳压值不同的稳压二极管用不同的方式串联起来,可组成的稳压值有 _____ A. 两种 B. 三种 C. 四种 12.在图中,稳压管1W V 和2W V 的稳压值分别为6V 和7V ,且工作在稳压状态,由此可知输 出电压O U 为 _____ A. 6V B. 7V C. 0V D. 1V

半导体器件基本结构

课题4.1 半导体器件基本结构 4.2晶体二极管 教学目标【知识目标】掌握PN结单向导体的原理 【能力目标】1.懂得什么是半导体 2.理解PN结的单向导电性 3.掌握半导体的分类 4.懂得半导体的主要参数【德育目标】培养学生的抽象理解能力 教 学重点半导体的主要参数 教 学 难 点 PN结单向导体的原理 教 学时间2课时(第11周) 教 具 准 备 半导体、电阻、电流表 教学组织与实施 教师活动学生活动 【新课导入】 提问1: 【新课讲授】 1.导体绝缘体和半导体 各种物体对电流的通过有着不同的阻碍能力,这种不同的物体允许电流通过的能力叫做物体的导电性能。 通常把电阻系数小的(电阻系数的范围约在0.01~1欧毫米/米)、导电性能好的物体叫做导体。例如:银、铜、铝是良导体。 含有杂质的水、人体、潮湿的树木、钢筋混凝土电杆、墙壁、大地等,也是导体,但不是良导体。 电阻系数很大的(电阻系数的范围约为10~10欧姆·毫米/米)、导电性能很差的物体叫做绝缘体。例如:陶瓷、云母、玻璃、橡胶、塑料、电木、纸、棉纱、树脂等物体,以及干燥的木材等都是绝缘体(也叫电介质)。 举例说明哪些是导体哪些是绝缘体哪些是半导体

导电性能介于导体和绝缘体之间的物体叫做半导体。例如:硅、锗、硒、氧化铜等都是半导体。半导体在电子技术领域应用越来越广泛。 2.PN结 PN结(PN junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。 P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。 3.PN结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN 结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 (2)PN结加反向电压时的导电情况 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 分清楚P型半导体和N型半导体

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

半导体器件参数(精)

《党政领导干部选拔任用工作条例》知识测试题(二) 姓名:单位: 职务:得分: 一、填空题(每题1分,共20分): 1、《党政领导干部选拔任用工作条例》于年月发布。 2、《党政领导干部选拔任用工作条例》是我们党规范选拔任用干部工作的一个重要法规,内容极为丰富,共有章条。 3、干部的四化是指革命化、知识化、年轻化、专业化。 4、,按照干部管理权限履行选拔任用党政领导干部的职责,负责《条例》的组织实施。 5、党政领导班子成员一般应当从后备干部中选拔。 6、民主推荐部门领导,本部门人数较少的,可以由全体人员参加。 7、党政机关部分专业性较强的领导职务实行聘任制△I称微分电阻 RBB---8、政协领导成员候选人的推荐和协商提名,按照RE---政协章程和有关规定办理。 Rs(rs----串联电阻 Rth----热阻 结到环境的热阻

动态电阻 本机关单位或本系统 r δ---衰减电阻 r(th--- Ta---环境温度 Tc---壳温 td---延迟时间 、对决定任用的干部,由党委(党组)指定专人同本人 tg---电路换向关断时间 12 Tj---和不同领导职务的职责要求,全面考察其德能勤绩廉toff---。 tr---上升时间13、民主推荐包括反向恢复时间 ts---存储时间和温度补偿二极管的贮成温度 p---发光峰值波长 △λ η---

15、考察中了解到的考察对象的表现情况,一般由考察组向VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) 、正向压降(正向直流电压) △政府、断态重复峰值电压 VGT---门极触发电压 VGD---17、人民代表大会的临时党组织、人大常委会党组和人大常委会组成人员及人大代表中的党员,应当认真贯彻党委推荐意见 VGRM---门极反向峰值电压,带头(AV 履行职责交流输入电压 最大输出平均电压

《半导体器件》习题及参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + =

I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区内存贮的少数载流子总量。设n 型中性区的长度为1μm,空穴扩散长度为5μm。 解:P + >>n ,正向注入:0)(2 202=---p n n n n L p p dx p p d ,得: ) sinh() sinh() 1(/00p n n p n kT qV n n n L x W L x W e p p p ---=- ??=-=n n W x n n A dx p p qA Q 20010289.5)( 4一个硅p +-n 单边突变结,N D =1015cm -3,求击穿时的耗尽层宽度,若n 区减小到5μm,计算此时击穿电压。 解:m V N E B g c /1025.3)1 .1E )q ( 101.148 14 32 1S 7 ?=?=( ε V qN E V B C S B 35022 == ε m qN V x B B S mB με5.212== n 区减少到5μm 时,V V x W x V B mB mB B 9.143])(1[2 2 /=--= 第三章 1 一个p +-n-p 晶体管,其发射区、基区、集电区的杂质浓度分别是5×1018,1016,1015cm -3,基区宽度W B 为1.0μm,器件截面积为3mm 2。当发射区-基区结上的正向偏压为0.5V ,集电区-基区结上反向偏压为5V 时,计算

半导体器件的贮存寿命

半导体器件的贮存寿命 时间:2008-09-03 08:34来源:可靠性论坛作者:张瑞霞,徐立生,高兆丰点击:1291次1引言高可靠半导体器件在降额条件(Tj=100℃)下的现场使用失效率可以小于10-8/h,即小于10FIT,按照偶然失效期的指数分布推算,其平均寿命MTTF大于108h,即大于10000年。据文献报导,电子元器件的贮存失效率比工作失效率还要小一个数量级 1引言 高可靠半导体器件在降额条件(Tj=100℃)下的现场使用失效率可以小于10-8/h,即小于10FIT,按照偶然失效期的指数分布推算,其平均寿命MTTF大于108h,即大于10000年。据文献报导,电子元器件的贮存失效率比工作失效率还要小 一个数量级,即小于1Fit。 国内航天用电子元器件有严格的超期复验规定,航天各院都有自己的相应标准,其内容大同小异[1]。半导体器件在Ι类贮存条件下的有效贮存期最早规定为3年,后放宽到4年,最近某重点工程对进口器件又放宽到5年,比较随意。同时规定,每批元器件的超期复验不得超过2次。 美军标规定对贮存超过36个月的器件在发货前进行A1分组、A2分组以及可焊性检验[2],并没有有效贮存期的规定。 在俄罗斯军用标准中,半导体器件的最短贮存期一般为25年,器件的服务期长达35年,和俄罗斯战略核武器的设计寿命30年相适应。 然而,国内对于半导体器件的贮存寿命尤其是有效贮存期有着不同的解释,在认识上存在着误区。国内的超期复验的规定过严,有必要参考美、俄的做法加以修订,以免大量可用的器件被判死刑,影响工程进度,尤其是进口器件,订货周期长,有的到货不久就要复验,在经济上损失极大。 2芯片和管芯的寿命预计 高可靠半导体器件通常采用成熟的工艺、保守的设计(余量大)、严格的质量控制、封帽前的镜检和封帽后的多项筛选,有效剔除了早期失效器件。用常规的寿命试验方法无法评估其可靠性水平,一般采用加速寿命试验方法通过阿列尼斯方程外推其MTTF,其芯片和管芯的寿命极长,通常大于108h,取决于失效机构激活能和器件的使用结温。 随着工艺技术的进展,半导体器件的激活能每年大约增长3%。据报道1975年的激活能为0 6eV,1995年增长到1 0eV,其MTTF每隔15年增长一倍,加速系数每隔5年增长一倍。 化合物半导体器件微波性能优越,可靠性高,自80年代以来,在军事领域得到了广泛的

半导体器件作业有答案

1.半导体硅材料的晶格结构是(A) A 金刚石 B 闪锌矿 C 纤锌矿 2.下列固体中,禁带宽度 Eg 最大的是( C ) A金属B半导体C绝缘体 3.硅单晶中的层错属于( C ) A点缺陷B线缺陷C面缺陷 4.施主杂质电离后向半导体提供( B ),受主杂质电离后向半导体提供( A ),本征激发后向半导体提供( A B )。 A 空穴 B 电子 5.砷化镓中的非平衡载流子复合主要依靠( A ) A 直接复合 B 间接复合 C 俄歇复合 6.衡量电子填充能级水平的是( B ) A施主能级B费米能级C受主能级 D 缺陷能级 7.载流子的迁移率是描述载流子( A )的一个物理量;载流子的扩散系数是描述载流子( B ) 的一个物理量。 A 在电场作用下的运动快慢 B 在浓度梯度作用下的运动快慢 8.室温下,半导体 Si中掺硼的浓度为 1014cm-3,同时掺有浓度为 1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级( G );将该半导体升温至 570K,则多子浓度约为( F ),少子浓度为( F ),费米能级( I )。(已知:室温下,ni≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A 1014cm-3 B 1015cm-3 C 1.1×1015cm-3 D 2.25×105cm-3

E 1.2×1015cm-3 F 2×1017cm-3 G 高于 Ei H 低于 Ei I 等于 Ei 9.载流子的扩散运动产生( C )电流,漂移运动产生( A )电流。 A 漂移 B 隧道 C 扩散 10. 下列器件属于多子器件的是( B D ) A稳压二极管B肖特基二极管C发光二极管 D 隧道二极管 11. 平衡状态下半导体中载流子浓度n0p0=ni2,载流子的产生率等于复合率,而当np

半导体器件作业-有答案

1.半导体硅材料的晶格结构是( A ) A 金刚石 B 闪锌矿 C 纤锌矿 2.下列固体中,禁带宽度Eg最大的是( C ) A金属B半导体C绝缘体 3.硅单晶中的层错属于( C ) A点缺陷B线缺陷C面缺陷 4.施主杂质电离后向半导体提供( B ),受主杂质电离后向半导体提供( A ),本征激发后向半导体提供(A B )。 A 空穴 B 电子 5.砷化镓中的非平衡载流子复合主要依靠( A ) A 直接复合 B 间接复合 C 俄歇复合 6.衡量电子填充能级水平的是( B ) A施主能级B费米能级C受主能级 D 缺陷能级 7.载流子的迁移率是描述载流子( A )的一个物理量;载流子的扩散系数是描述载流子( B ) 的一个物理量。 A 在电场作用下的运动快慢 B 在浓度梯度作用下的运动快慢 8.室温下,半导体Si中掺硼的浓度为1014cm-3,同时掺有浓度为1.1×1015cm-3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级(G );将该半导体升温至570K,则多子浓度约为( F ),少子浓度为( F ),费米能级(I )。(已知:室温下,ni≈1.5×1010cm-3,570K 时,ni≈2×1017cm-3) A 1014cm-3 B 1015cm-3 C 1.1×1015cm-3 D 2.25×105cm-3 E 1.2×1015cm- 3 F 2×1017cm-3G 高于Ei H 低于Ei I等于Ei 9.载流子的扩散运动产生( C )电流,漂移运动产生( A )电流。 A 漂移 B 隧道 C 扩散 10. 下列器件属于多子器件的是( B D ) A稳压二极管B肖特基二极管C发光二极管 D 隧道二极管 11. 平衡状态下半导体中载流子浓度n0p0=ni2,载流子的产生率等于复合率,而当np

半导体器件知识点归纳一

一、半导体器件基本方程 1、半导体器件基本方程 泊松方程、电流密度方程、电子和空穴连续性方程的一维微分形式及其物理意义 2、基本方程的主要简化形式 泊松方程分别在N耗尽区和P耗尽区的简化形式 电流密度方程分别在忽略扩散电流和漂移电流时的简化形式 P型中性区电子净复合率、N型中性区空穴净复合率 P区电子和N区空穴的扩散方程及其定态形式 电子电流和空穴电流的电荷控制方程及其定态形式 注:第一章是整个课程的基础,直接考察的概率很小,一般都结合后面章节进行填空或者计算的考察,理解的基础上牢记各公式形式及其物理意义。 二、PN结 1、突变结与缓变结 理想突变结、理想线性缓变结、单边突变结的定义 2、PN结空间电荷区 理解空间电荷区的形成过程 注:自己用概括性的语句总结出来,可能考简述题。 3、耗尽近似与中性近似 耗尽近似、耗尽区、中性近似、中性区的概念 4、内建电场、耗尽区宽度、内建电势 内建电场、内建电势、约化浓度的概念 内建电场、耗尽区宽度、内建电势的推导 电场分布图的画法 内建电势的影响因素 Si和Ge内建电势的典型值 注:填空题可能考察一些物理概念的典型值,这部分内容主要掌握突变结的,可能考计算题,不会完全跟书上一样,会有变形,比如考察PIN结的相关计算;对于线性缓变结,只需记住结论公式即可。 5、外加电压下PN结中的载流子运动 正向电压下空穴扩散电流、电子扩散电流、势垒区复合电流的形成过程 反向电压下空穴扩散电流、电子扩散电流、势垒区产生电流的形成过程 正向电流很大反向电流很小的原因 6、PN结能带图 PN结分别在正向电压和反向电压下的能带图 注:所有作图题应力求完整,注意细节,标出所有图示需要的标识 7、PN结的少子分布 结定律:小注入下势垒区边界上的少子浓度表达式 少子浓度的边界条件 中性区内非平衡少子浓度分布公式 外加正反向电压时中性区中少子浓度分布图 注:书上给出了N区的推导,尽量自己推导一下P区的情况,加深理解 8、PN结的直流伏安特性

电子元器件 半导体器件长期贮存 第1部分:总则-编制说明

国家标准《电子元器件半导体器件长期贮存第1部分:总 则》(征求意见稿)编制说明 一、工作简况 1、任务来源 《电子元器件半导体器件长期贮存第1部分:总则》标准制定是2018年国家标准委下达的国家标准计划项目,计划号:20182268-T-339。由中华人民共和国工业和信息化部提出,全国半导体器件标准化技术委员会集成电路分技术委员会(SAC/TC 78/SC2)归口,中国电子科技集团公司第十三研究所负责标准的制定,项目周期为2年。 2、主要工作过程 2.1 2018.12 成立了编制组,编制组成员包括检验试验管理人员、从事半导体器件长期贮存的技术研究人员,以及具有多年标准编制经验的标准化专家。 2.2 2019.01~2019.04 编制组成员广泛收集资料,对等同采用的IEC标准进行翻译、研究、分析和比较,对国内相关单位展开深入调研和部分试验验证。 2.3 2019.05~2019.06编制工作组讨论稿,编制组内部讨论,对工作组讨论稿进行修改、完善,形成征求意见稿,并完成编制说明。 3 标准编制的主要成员单位及其所做的工作 本标准承办单位为中国电子科技集团公司第十三研究所。在标准编制过程中,主要负责标准的翻译、制定、试验及验证工作。 二、标准编制原则和确定主要内容的论据及解决的主要问题 1、编制原则 本标准为电子元器件半导体器件长期贮存系列标准的第1部分,属于基础标准。为保证半导体器件试验方法与国际标准一致,实现半导体器件检验方法、可靠性评价、质量水平与国际接轨,本标准等同采用IEC 62435-1:2016《电子元器件半导体器件长期贮存第1部分:总则》。 2、确定主要内容的依据 除编辑性修改外,本标准的结构和内容与IEC 62435-1:2016保持一致,标准编写符合GB/T 1.1—2009《标准化工作导则第1部分:标准结构和编写》、GB/T 20000.2-2001 《标准化工作指南第2部分:采用国际标准》的规定。

半导体器件寿命影响因素分析及处理方法

半导体器件寿命影响因素分析及处理方法 摘要:随着半导体器件的广泛使用,其寿命指标受到业界普遍关注。半导体器 件寿命的延续是一种性能退化过程,最终导致失效。造成这种退化的原因很多, 如人为使用不当、浪涌和静电击穿等,但通过一定的预防措施和增加必要的附加 电路可以有效延长半导体器件的寿命。 关键词:半导体器件;寿命;处理办法 作为现代信息社会基础的半导体材料和器件有着相当重要的地位,半导体电 子器件本身就具有很多不错的优点,不管是在工业上,还是在电力设备当中,半 导体电子器件的应用越来越多。可是,半导体电子器件也是存在着或多或少的不 足之处,再加上自身的特点,所以在设计使用的时候要注意。电子元器件是产品 的最小组成部分, 其可靠性高低直接影响着在此基础上设计的产品可靠性。尤其 是微电子技术的发展使得集成电路的可靠性愈来愈重要, 若其可靠性得不到保证, 不仅影响最终产品的可靠性, 还会影响研制进度、信誉及经济效益。 1 半导体电子器件的发展 随着科学技术的快速发展,电子器件的功能也就越来越强大了。人类的发展 对器件的需求也推动了半导体器件的发展,而半导体的发展又带动了器件的发展。 1)真空电子管。关于真空电子管的意思是指把电子引导进入真空的环境之中,用加在栅极上的电压去改变发射电子阴极表面附近的电场从而控制阳极电流大小,由此来把信号放大。真空电子管的材料有钨、钼、镍、钡锶钙氧化物等等,再以 真空电子学为理论依据,利用电子管制造工艺来完成工作。 2)固体晶体管。固体晶体管具有检波、整流、放大、开关、稳压、信号调制 等多种功能。固体晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关不同,固体晶体管利用电讯号来控制自身的开合,而且开关 速度可以非常快,实验室中的切换速度可达100GHz以上。 2 半导体器件的退化和失效 大量试验表明,半导体器件的失效随时间的统计分布规律呈浴盆状,失效期 包括早期的快速退化失效、中期的偶然失效与后期的快速损耗失效。早期快速失 效一般是由半导体材料本身原因造成;中期偶然失效期的时域较宽,在此期间导 致半导体器件失效的原因具有一定的偶然性;后期失效概率较高,主要由各种损 耗积累与综合爆发引起。由此可知,只要通过初期的严格筛选,同时加强质量管 理和改进生产工艺,防止偶然失效,半导体器件就能获得较长的寿命。如图所示。 3 半导体器件寿命影响因素及预防措施 PN 结是半导体器件的核心,对电压冲击的承受能力很差,一旦被击穿,便无法产生非平 衡载流子。在使用过程中,半导体器件的损坏多半是由浪涌或静电击穿造成的。浪涌是一种 突发性的瞬间电信号脉冲,具有很强的随机性,一般表现为尖脉冲,脉宽很窄,但峰值较高,容易使半导体器件瞬时过压造成PN 结击穿,即使不致于一次性使半导体器件产生完全失效,但在多次浪涌的冲击下也会加速它的性能退化和最终失效。在电路的使用过程中,出现比较 多的浪涌是开启或关断电源时抑或器件接触不良时产生的电压/ 电流冲击,以及由于电网波 动或其它大功率电器启动而产生的电压/ 电流冲击。另外,静电也是造成PN 结损坏或击穿的 重要原因。 1)短路保护开关。为半导体器件并联一个电阻较小的短路保护开关是一种简单的消浪涌 方法。当需要启动半导体器件电源时,先闭合短路保护开关,让启动电源瞬间产生的浪涌经 短路保护开关放电,待电源工作稳定后,断开短路开关,稳定的电源便可正常工作于半导体

半导体器件物理与工艺复习题(2012)

半导体器件物理复习题 第二章: 1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。 物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 2)什么是半导体的直接带隙和间接带隙? 其价带顶部与导带最低处发生在相同动量处(p =0)。因此,当电子从价带转换到导带时,不需要动量转换。这类半导体称为直接带隙半导体。 3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比 4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。即热平衡状态下的载流子浓度不变。 5)费米分布函数表达式? 物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。 6 本征半导体价带中的空穴浓度: 7)本征费米能级Ei :本征半导体的费米能级。在什么条件下,本征Fermi 能级靠近禁带的中央:在室温下可以近似认为费米能级处于带隙中央 8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同, 即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 2 9) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。 10) 非简并半导体载流子浓度: 且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为: p 型半导体多子和少子的浓度分别为:

整机产品加速贮存寿命试验研究思路探讨

加速贮存试验工作已开展了几十年。迄今为止,国内外对元器件、原材料的加速贮存寿命试验已经有了一些研究成果及应用信息,对电容器、二极管、微电路、运算放大器、印制电路板、半导体器件、晶体管等元器件的加速试验给出了激活能,但对于整机的加速贮存寿命试验情况却很少报道。许多人认为整机包含着多种元器件和材料,导致组件贮存失效的因素或机理比较复杂,无法满足加速寿命试验的单失效机理要求,如果任选一种加速应力去做试验,其结果难以反映实际情况。因此,影响了加速试验在整机的研究与应用。 俄罗斯(前苏联)在“加速贮存试验”和“加速运输试验”等技术的应用方面取得了卓著成效,是目前整机产品加速贮存寿命试验技术最成熟的国家。他们可以对设备、分系统和系统进行加速贮存寿命试验,保证导弹在10年的贮存期内,无需维修而能满足规定的开箱合格率和发射成功率要求,使导弹这样的复杂系统实现了“单元弹药”或一般机电产品所具有的非常高的贮存可靠性指标。 本文结合国内外的一些文献,探讨开展整机产品加速贮存寿命试验的3种思路。 1 转化法 对于整机产品,要建立起产品在高应力下与正常使用条件下的失效率之间的关系模型很困难,也很难[收稿日期] 2006-04-09确定不改变设备的失效机理的应力条件。而元器件和零部件级的失效模式比整机少,特别是元器件,因其失效模式和机理一般是单一的,所以要确定能有效地加速失效而又不大改变失效机理的应力就容易得多。目前国内外成功的例子主要集中在元器件方面,有许多可借鉴的资源。 根据木桶原理,任何一种产品的寿命都取决于该产品中易失效件的寿命,无论产品的其他关键件、重要件或性能设计怎样优越,一旦影响产品性能的任何一个零部件或元器件发生失效,该产品的寿命即告终结,因此产品贮存寿命取决于它的薄弱环节中易失效件的可靠贮存寿命。那么,找出薄弱环节后,整机产品的加速贮存寿命试验就转化为零部件或元器件的加速贮存寿命试验。 转化法最关键的是对产品薄弱环节的分析。有关资料表明,目前确定产品长期贮存可靠性薄弱环节的方法通常有以下5种:相似产品法、使用信息中统计分析法、排列图法、故障树分析法和故障模式影响及其危害性分析(FMECA)法。 1.1 相似产品法 对新研制的电容器件,若有贮存历史的相似产品时,可用分析对比的方法确定易失效件,寻找薄弱环节,分析失效原因。 1.2 使用信息中统计分析法 产品薄弱环节的确定可以从使用信息中统计分析 整机产品加速贮存寿命试验 研究思路探讨 林震1 李宪姗2 姜同敏3 程永生1 胡斌1 (1.中国工程物理研究院电子工程研究所,四川 绵阳 621900;2.北京强度与环境研究所,北京 100076;3. 北京航空航天大学,北京 100083) [摘要] 介绍了整机产品加速贮存寿命试验技术的三种方法:转化法、性能参数退化法、利用可靠性增长理论并逐一分析研究。 [关键词] 加速;薄弱环节;性能退化;可靠性增长 [中图分类号] TB114.3;N945.17 [文献标识码] C [文章编号] 1003-6660(2006)04-0038-04

少子寿命是半导体材料和器件的重要参数(精)

少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子,即少数载流子,是半导体物理的概念。它相对于多子而言。半导体材料中有电子和空穴两种载流子。如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。如,在N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。多子和少子的形成:五价元素的原子有五个价电子,当它顶替晶格中的四价硅原子时,每个五价元素原子中的四个价电子与周围四个硅原子以共价键形式相结合,而余下的一个就不受共价键束缚,它在室温时所获得的热能足以便它挣脱原子核的吸引而变成自由电子。出于该电子不是共价键中的价电子,因而不会同时产生空穴。而对于每个五价元素原子,尽管它释放出一个自由电子后变成带一个电子电荷量的正离子,但它束缚在晶格中,不能象载流子那样起导电作用。这样,与本征激发浓度相比,N型半导体中自由电子浓度大大增加了,而空穴因与自由电子相遇而复合的机会增大,其浓度反而更小了。少子浓度主要由本征激发决定,所以受温度影响较大。香港永先单晶少子寿命测试仪>> 单晶少子寿命测试仪 编辑本段产品名称 LT-2单晶少子寿命测试仪 编辑本段产品简介 少数载流子寿命(简称少子寿命)是半导体材料的一项重要参数,它对半导体器件的性能、太阳能电池的效率都有重要的影响.我们采用微波反射光电导衰减法研制了一台半导体材料少子寿命测试仪,本文将对测试仪的实验装置、测试原理及程序计算进行了较详细的介绍,并与国外同类产品的测试进行比较,结果表明本测试仪测试结果准确、重复性高,适合少子寿命的实验室研究和工业在线测试. 技术参数:测试单晶电阻率范围>2Ω.cm 少子寿命测试范围10μS~5000μS 配备光源类型波长:1.09μm;余辉<1 μS;闪光频率为:20~30次/秒;闪光频率为:20~30次/秒;高频振荡源用石英谐振器,振荡频率:30MHz 前置放大器放大倍数约25,频宽2 Hz-1 MHz 仪器测量重复误差<±20%测量方式采用对标准曲线读数方式仪器消耗功率<25W 仪器工作条件温度:10-35℃、湿度< 80%、使用电源:AC 220V,50Hz 可测单晶尺寸断面竖测:φ25mm—150mm;L 2mm—500mm;纵向卧测:φ25mm—150mm;L 50mm—800mm;配用示波器频宽0—20MHz;电压灵敏:10mV/cm;LT-2型单晶少子寿命测试仪是参考美国A.S.T.M 标准而设计的,用于测量硅单晶的非平衡少数载流子寿命。半导体材料的少数载流子寿命测量,是半导体的常规测试项目之一。本仪器灵敏度较高,配备有红外光源,可测量包括集成电路级硅单晶在内的各种类型硅单晶,以及经热处理后寿命骤降的硅单晶、多晶磷检棒的寿命测量等。本仪器根据国际通用方法高频光电导衰退法的原理设计,由稳压电源、高频源、检波放大器,特制的InGaAsp/InP红外光源及样品台共五部份组成。采用印刷电路和高频接插连接。整机结构紧凑、测量数据可靠。 um(微米)是长度单位,是指少子的扩散长度;少子寿命的单位是us(微秒) 少子扩散长度和少子寿命基本上是等同的,一个是指能“跑多远”,一个是指能“活多久”,表述不同而已 少子寿命是越大越好,就目前的太阳能级硅来说能有5us已经不错了,如果太低(如小于1us)

半导体基础知识和半导体器件工艺

半导体基础知识和半导 体器件工艺 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类爲导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其他一些物体。第二类爲绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类爲半导体,其导电能力介於导体和绝缘体之间,如四族元素Ge锗、Si矽等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义爲长1厘米、截面积爲1平方厘米的物质的电阻值,单位爲欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由於它的导电能力介於导体和绝缘体之间,而是由於半导体具有以下的特殊性质: (1) 温度的变化能显着的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏元件(如热敏电阻等),但是由於半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身産生的

热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照後导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其他元素(这个过程我们称爲掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特徵。例如在原子密度爲5*1022/cm3的矽中掺进大约5X1015/cm3磷原子,比例爲10-7(即千万分之一),矽的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少後,整个原子呈现正电,缺少电子的地方産生一个空位,带正电,成爲电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其他元素能改变半导体的导电能力,而参与导电的又分爲电子和电洞,这样掺杂的元素(即杂质)可分爲两种:施主杂质与受主杂质。 将施主杂质加到矽半导体中後,他与邻近的4个矽原子作用,産生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要爲五族元素:锑、磷、砷等。 将施主杂质加到半导体中後,他与邻近的4个矽原子作用,産生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要爲三族元素:铝、镓、铟、硼等。

相关文档
最新文档