液流储能电池技术研究进展

液流储能电池技术研究进展
液流储能电池技术研究进展

液流储能方法与技术

徐景妍

(中南大学化学化工学院湖南长沙410083)

摘要:介绍了液流储能电化学体系的原理、动力学、特点及发展方向。重点对全钒、多硫化钠-溴和锌-溴液流储能电池的工作原理、特点、国内外研究现状及发展趋势进行了介绍,并对其他探索性液流储能电池体系进行了介绍。最后,提出了制约液流储能电池技术发展的问题,展望了液流储能电池未来发展趋势。

关键词:液流储能电池 钒 硫化钠-溴 -溴

Liquid flow energy storage method and technology

Xu,Jingyan

(College of Chemistry and Chemical Engineering, Central South University, Changsha

410083, China)

Abstract:The flow energy storage battery system,characteristics and the developing direction were introduced.In this paper,we focus on the introduction to the working principles,characteristics,R&D progress and development trend oft he all-vanadium,sodium polysulfide/bromine and zinc/bromine redox flow batteries.Also we discuss other types of flow batteries.Finally,the keyproblems limiting the technology development are pointed out and the suggestions for futurere search are given.

Keywords:flow energy storage battery; kinetic; all-vanadium; sodium polysulfide/bromine; zinc/bromine

1.前言

化学储能,主要包括各种蓄电池和电解水制氢储氢燃料电池发电。由于大规模储氢目前尚难以实现,且燃料电池价格高,能量循环转换净效率低,故这种燃料电池用于规模储能也不现实。蓄电池中的锂离子电池、钠硫熔融电池、铬镍电池及超级电容器等也不适于用作大规模的蓄电技术。纵观不同类型的化学蓄电池,液流电池将会以其自身的显著特点而成为规模蓄电的最佳选择。液流电池从提出到现在已有30余年的历史,其发展过程不像某些化学电源(如锂离子电池)那样,在一个时期内集中了大批的研究者而迅速地成长起来,这与整个社会的需求和人们的认识息息相关。如今,随着可再生能源的不断应用,大规模高效蓄能技术的研究开发会成为国际上能源领域的热点。液流电池储能技术是一种大规模高效电化学储能(电)新技术。通过反应活性物质的价态变化实现“电能-化学能-电能”的电能存储功效。相比于其他储能技术,液流储能电池具有如下优势:输出功率和容量相互独立,系统设计非常灵活;能量效率高(>75%);电池使用寿命长,运行稳定性和可靠性高;可深度放电而不损坏电池,自放电低,在系统处于关闭模式时无自放电;选址自由度大,无污染、维护简单,运营成本低;无爆炸或着火危险,安全性高等。液流储能电池系统作为高效的储能装置在民用和军用方面有着广阔的应用领域和市场前景。在强大的社会发展需求和巨大的潜在市场的推动下,大规模、高效率、长寿命、低成本、无污染的液流蓄电池将迎来一个蓬勃发展的新时期。本文简要介绍了液流电池的研究概况,提出了目前还需深入研究的一些问题,并展望其今后可能的发展前景。

2 液流电池电池及其特点

2.1 液流电池及其基本结构

液流电池(Flow Redox Cell)或称氧化还原液流蓄电系统,最早由美国航空航天局(NASA)资助设计,1974年由Thaller L.H.[1]公开发表并申请了专利。与通常蓄电池的活性物质被包容在固态阳极或阴极之内不同,液流电池的活性物质以液态形式存在,既是电极活性材料又是电解质溶液。图1是液流电池的原理图,正极和负极电解液分别装在两个储罐中,利用送液泵使电解液通过电池循环。在电堆内部,正、负极电解液用离子交换膜(或离子隔膜)分隔开,在离子交换膜两侧的电极上分别发生还原和氧化反应。电池外接负载和电源。电堆和电解液储罐可以分别放置,因此可因地制宜放置。

图1 液流电池的原理图

2.2 液流电池中的电对

液流电池较早提出的有Ti/Fe、Cr/Fe及Zn/Fe等体系,比较成熟的是多硫化钠/溴(PSB)和全钒(VRB)体系,近年又有V/Ce、钒氯化物/多卤化物、全铬和Mn3+/Mn2+半电池以及其它新体系的研究。其中Cr/Fe和Ti/Fe体系的应用主要受制于负极Cr3+/Cr2+的动力学特征和Ti(III)的氧化沉淀.而由铬与EDTA络合组成的全铬体系,其正极电对的反应速率慢且受到副反应的干扰;又如高电位电对的

Ce(III)/Ce(IV)体系,因在H

2SO

4

支持电解液中易形成复合离子,导致离子扩散阻

力增大和电对可逆性下降;钒氯化物/多卤化物体系的活性离子也是复合离子,同样存在与Ce电对类似的问题;Mn3+/Mn2+电对的电位比Ce3+/Ce4+更高,易受析氧副反应影响,当其H2SO4溶液浓度略高时即产生沉淀,且反应动力学迟缓。为解决上述问题,需深入研究配位化学和支持电解质在液流蓄电系统中相关电对的动力学特征,抑制电解质溶液沉淀和析氧/析氢副反应,提高溶液浓度和离子扩散系数,进而从根本上提高液流电池的性能。

液流电池的两个电极由不同电位的两个液流电对组成,充电时,在离子交换膜的一侧,其高电位电对的活性物质于电池的正极从低价态氧化成高价态。另一侧,低电位电对的活性物质在电池的负极由高价态还原成低价态.放电时,以上两过程反向进行。

2.3电解质溶液及体系反应动力学

2.3.1高浓度、高稳定性电解质溶液

电解质溶液是液流电池的核心,它是一个多价态体系,实现着能量的储存和释放。既需要高浓度的电解质溶液以实现电池的高比能量,又要求它有高稳定性。然而,至今有关多价态、高浓度电解质溶液体系的研究却很有限.物理化学中现有的电解质溶液基本规律都是建立在无限稀薄溶液基础上的.电解质溶液的浓度不同,其离子存在形式可能有很大不同,当电解质溶液的浓度高至一定程度后即会引起电解质溶液的水解、缔合或沉淀析出等问题。因此,对于液流电池要求的高浓度、多价态的电解质溶液及其稳定化机制亟需进行深入的研究、探索如何提高其溶液浓度的途径、了解长期充放电循环运行过程中高浓电解质溶液的变化规律,由此等等仍是一项艰巨的任务。

2.3.2液流电池的反应动力学

液流蓄电系统中的电极过程动力学研究是提高电池系统比功率和能量转换效率的重要基础.至今,即使是比较成熟的全钒液流电池,其倍率放电性能仍然较差,由于液流电池是一个比较复杂的体系,活性物质存在多种价态,虽然一些研究已从不同侧面考察了电对的电化学过程,但仍缺乏系统性的工作。

液流电池电堆一般由多节单电池串联或并联组合而成,其性能衰减与系统运行时构成单电池的正、负电极,离子交换膜,双极板以及整个电堆构件的衰减直接相关。况且,其在长期运行过程中,系统的腐蚀、副反应乃至离子在膜中的渗透等都会引起电池运行效率的衰退。比如,Na+或H+离子在膜中通常是以水合离子的形式传导,渗透压差势将导致离子交换膜两侧离子的反向渗透,随着充、放电循环次数的增加,其正、负区极溶液的浓度乃至体积均会发生变化,加之活性物质的浓度逐渐降低,最终必然影响液流蓄电系统的能量效率和使用寿命。所以,有关电池运行过程的系统研究包括电极、双极板的化学和电化学腐蚀,膜的降解、结构变化,膜性能的衰减,催化剂的失效机制,及其活性再生,不同价态及不同形态离子间的化学平衡以及离子反向渗透对电解质溶液稳定性的影响规律的探索等。此外,电堆关键部件的材料改性及化学稳定性以及体系的综合动力学稳定条件的建立也

是液流电池中的基础问题。

2.4离子交换膜

隔膜起着隔离正负极电解质溶液、阻止不同价态钒离子相互渗透的作用,通过氢离子在膜中自由迁移传递电荷。电池要求选用钒离子透过率低、交叉污染小、H+离子透过率高、膜电阻小的离子交换膜。

离子交换膜是液流电池的重要组成部分,要求具备高离子选择性、高离子传导率及良好的化学稳定性。常见的离子交换膜主要有两类,即Nafion膜和聚烯烃类膜.。Nafion膜价格昂贵,而且大多数离子在膜内渗透严重,易造成膜的堵塞.聚烯烃类离子膜化学稳定性欠佳,影响系统使用寿命。对此,制备性能优良的新型离子交换膜是目前研究中的一个热点问题。

针对不同的液流电池体系,一些研究者分别合成了含磺酸基、羧基、季铵基等杂环联苯聚芳醚等一系列膜材料。为了提高膜的亲水性,通常采用共聚方法,即在聚合物主链中同时引入磺酸基或羧基,或采用含季铵基的离子膜和含磺酸基或羧基的离子膜复合等方法,以期在提高离子选择性的同时提高离子传导率。研究中还同时应用现代分析技术对合成的离子交换膜进行表征,包括膜的离子传导率、离子在膜内的扩散系数和膜的离子迁移数等的测定研究离子交换膜材料的主链结构和离子基团种类(磺酸基、羧基、季铵基等)、数量、分布以及离子交换膜的微观结构等对膜的选择性、离子传导性的影响。表面处理和修饰可以改变膜的性能,例如,可利用辐射接枝等方法作膜的表面改性,或以多元胺等作交联剂使膜内聚合物适当交联,目的是提高膜的强度及其抗腐蚀性能,从而提高膜的使用寿命;又如,应用接枝技术在现有膜材料上引入不同的功能基团,以提高膜的亲水性、获得大小适中的膜孔、降低水及相关离子的透过率,从而提高膜的离子传导率。

2.5液流电池的特点

液流蓄电系统的功率取决于电池的面积和堆的节数,储能容量则取决于储液罐的容积,两者可单独设计.因而,设计的灵活性大,易于模块组合,受设置场地限制小,蓄电规模易于调节。各单池的反应物流体相同,容易保证电堆的一致性和均匀性,并可通过某几个单池来监测整个系统的充放电状态。也可以利用连接含有不同单电池数的电池组段构成分立的负载,以提供不同的输出电压.当负载变化或放电深度增加时,可用附加电池维持恒定的输出电压,并利用“再平衡电池”连续校正阳极区和阴极区因物流不平衡引起的轻微副反应。理论上讲,液流化学蓄电系统的寿命长,可靠性高,无污染排放和噪音,建设周期短,运行和维持费较低,是一种高效的大规模储存电能装置。

3 液流电池体系主要应用

3.1全钒液流储能电池

3.1.1全钒液流储能电池原理

全钒液流储能电池(all-vanadium redox flow battery,VRB)以溶解于一定浓度硫酸溶液中的不同价态的钒离子为电池充放电时正负极电极反应的活性物

+,负极电对为V2+/V3+。电池充放电时,电极上质,其正极电对通常情况下为VO2+/VO

2

所发生的反应如下:

此电池正极反应的标准电位为+1.004V,负极为-0.255V,故VRB电池的标准电动势约1.259V。根据电解液的浓度及电池的充放电状态,电解液中的V(v)离子的存在形式会产生一些变化,从而对电池正极电对的标准电极电位产生一些影响,故实际使用时此电池的开路电压一般在1.5-1.6V之间。

与其它储能电池相比,全钒液流电池有以下特点:①电池的输出功率取决于电堆的大小和数量,储能容量取决于电解液容量和浓度,因此它的设计非常灵活,要增加输出功率,只要增加电堆的面积和电堆的数量,要增加储能容量,只要增加电解液的体积;②全钒液流电池的活性物质为溶解于水溶液的不同价态的钒离子,在全钒液流电池充、放电过程中,仅离子价态发生变化,不发生相变化反应,充放电应答速度快;③电解质金属离子只有钒离子一种,不会发生正、负电解液活性物质相互交叉污染的问题,电池使用寿命长,电解质溶液容易再生循环使用;

④充、放电性能好,可深度放电而不损坏电池,自放电低。在系统处于关闭模式时,储罐中的电解液无自放电现象;⑤液流电池选址自由度大,系统可全自动封闭运行,无污染,维护简单,操作成本低。⑥电解质溶液为水溶液,电池系统无潜在的爆炸或着火危险,安全性高;⑦电池部件多为廉价的炭材料、工程塑料,材料来源丰富,且在回收过程中不会产生污染,环境友好;⑧能量效率高,可达70%,性价比好;⑨启动速度快,如果电堆里充满电解液可在2 min内启动,在运行过程中充放电状态切换只需要0.02 s;⑩可实时、准确监控电池系统荷电状态,有利于电网进行管理、调度。

3.1.2全钒液流储能电池研究现状

全钒液流电池适用于调峰电源系统、大规模光伏电源系统、风能发电系统的储能以及不间断电源或应急电源系统。目前国内外全钒液流电池的主要生产企业有大连融科储能公司(Rongke Power)、日本住友电气工业公司(Sumitomo Ele ctric Industries)和北京普能公司。由于全钒液流电池的开发时间比较短,技术上还没有完全成熟,如使用的离子交换膜是质子交换膜燃料电池的全氟磺酸膜,膜的选择性比较差,正、负极电解质之间的离子相互渗透降低了液流电池的能量效率并缩短了电池的寿命,需要研究开发高选择性、高导电性的液流电池用离子交换膜[14];另一方面, 高浓度和高稳定性的电解液制备技术也是全钒液流电池产业化急需解决的瓶颈技术。多年来大连融科储能公司与中国科学院大连化学物理研究所坚持产学研密切合作,在液流电池关键材料、核心部件、电堆及电池系统设计集成等方面都取得了重大突破,掌握了高性能电解质溶液、高性能双极板的制造技术并形成了批量化生产能力,同时成功地开发出液流电池用高选择性、低成本的非氟离子交换膜(隔膜)合成及制造技术,得到了国内外同行的高度认可。

3.2多硫化钠-溴液流储能电池

3.2.1多硫化钠-溴液流储能电池原理与特点

多硫化钠-溴液流电池(sodium polysulfide/bromine battery,PSB)体系是由美国人Remick在1984年提出的。分别以多硫化钠(Na2Sx)和溴化钠(NaBr)的水溶液为电池负、正极电解液及电池电化学反应活性物质的液流电池体系。PSB电池充、放电时电极上发生如下反应:

其中,x=2~4,PSB电池的标准电动势为1.515V。由于电解液浓度及充放电状态的不同,PSB单电池的开路电压一般在1.54-1.60V。提高电池温度,有利于电池性能提高。负极电化学反应是一个复杂的过程,提高反应温度可以提高电极反应产物硫的溶解速率,也可使充电时硫化物或多硫化物的还原变得容易进行[3]。

3.2.2多硫化钠-溴液流储能电池研究现状

文献报道的Regenesys系统,即多硫化钠/溴(PSB)液流储能电池,已成功开发出5 kw、20 kw和100 kw等3个系列的电堆,英国建成了15 Mw、120 Mwh的PSB 储能系统,完成了试运行[2]。中国科学院大连化物所燃料电池中心自2002年起也着手进行PSB电池的技术攻关工作,并于2003年及2004年成功研制出百瓦级及5kW 级PSB储能电池模块。

3.3锌-溴液流储能电池

3.3.1锌-溴液流储能电池原理与特点

锌-溴液流电池的电解液为溴化锌水溶液,充电过程中,负极锌以金属形态沉积在电极表面,正极生成溴单质,放电时在正负极上分别生成锌离子和溴离子。锌溴液流电池理论开路电压为1.85V,电化学反应可以简单地表示如下:

锌-溴液流电池具有较高的能量密度,其能量密度可以达到70Wh/kg,为铅酸电池能量密度的3倍以上。同时,锌-溴液流电池具有良好的循环充放电性能,放电深度可达到100%而不会损害电池,反而会改善电池的性能。锌-溴液流电池在常温下工作,不需要复杂的热控制系统,其大部分组件由聚烯烃塑料制成,便宜的原材料和较低的制造费用使它在成本上具有竞争力。锌-溴液流电池的这些特点,使它有望成为规模储能和电动车应用的技术选择之一。

3.3.2锌-溴液流储能电池(半沉积型)研究现状与发展趋势[4]

锌-溴液流电池是建立在锌-溴氧化还原电对基础上的一种电池,早在100多年前就已经申请了专利。但是要发展成为一种商品化的电池还存在两个主要技术问题需要解决:(1)锌形成沉积物时具有生成枝晶的趋势;(2)在溴化锌水溶液中溴具有高的溶解度。枝晶状锌沉积物很容易造成电池短路,而溴的高溶解度使得溴扩散问题严重,从而直接与负极锌发生反应,导致电池的自放电程度加大。纵观

锌-溴液流电池技术在国外的发展,早期有部分专利申请和文献发表,近期的相关文献报道非常少。所披露的内容都是原理性验证或基于小面积单电池试验研究结果。研发水平最为先进的ZBB Energy公司在某些关键技术方面则采取既不公开发表文章,也不申请专利的策略,而将锌-溴液流电池关键核心技术作为技术秘密予以保护。国内对锌-溴液流储能电池技术的研究几近空白,只是在原理性探索的基础研究中做了一些工作,未见有电池组性能的报道。

4其他体系液流储能电池应用

4.1铁-铬液流电池

铁-铬液流电池是以酸性氯化物为电解质溶液,Fe2+/Fe3+和Cr2+/Cr3+为正负极氧化还原电对的Fe/Cr液流储能电池体系。美国航空航天局(NASA)及日本SEI公司先后研制了1kW和10kW级Fe/Cr液流储能电池系统。但是Fe/Cr液流电池体系中Cr 半电池的电极反应可逆性较差及Fe和Cr离子透过离子交换膜而导致的交叉渗透污染等问题难以解决。其后包括日本、美国等国家纷纷放弃了Fe/Cr液流储能电池的进一步放大研究工作,逐渐开展其他液流电池体系的开发。

4.2单液流铅酸与锌-镍液流电池

目前液流储能电池使用的离子交换膜价格昂贵,如果能不使用离子交换膜,

/Pb2+电对,负极为Pb2+/Pb电对,将大大降低成本。英国Pletcher等提出正极为PbO

2

甲基磺酸铅与甲基磺酸的混合溶液作为电解质的液流储能电池。该电池开路电压理论上可达到1.73V。因采用中间价态Pb2+,电池中可以不使用离子交换膜,简化了电池结构,降低了电池成本,并且在该体系中,正负极反应的活性高,可逆性好。但是由于二氧化铅成核的过电位较大,电池运行中易产生氧气,造成能量损失(能量效率为65%左右),且电池放电后负极有铅剩余,多次循环后造成铅积累,严重影响电池的正常运行。氧化锌在碱液中具有较大溶解度,Cheng等根据此特性提出了锌-镍单液流电池,电解液是流动的锌酸盐碱性溶液。充电时,Ni(OH)

氧化成NiOOH,

2

锌酸根离子在负极上沉积成金属锌。放电时,发生相反的过程。电池中不使用离子交换膜,解决了液流储能体系中使用昂贵离子交换膜的难点问题。该电池在80%放电深度条件下可以循环1000次以上,性能没有明显的衰减,电池的平均库仑效率和能量效率分别达到了96%和86%。但是该体系的比容量受氧化镍正极比容量的限制,且价格较高。

4.3铈-钒液流电池

元素Ce是来源较为丰富的稀土金属之一,Ce4+/Ce3+具有高的氧化还原电位(-1.74VvsNHE),有望作为液流储能电池的正极电对。日本的Fang等在负极采用V3+/V2+电对,H2SO4水溶液作为支持电解质,初步研究了Ce/V液流储能电池的

性能。电池电压理论上可达到1.69V,100%充电状态时,电池开路电压为1.87V,在22mA/cm2充放电时,电池的库仑效率为87.1%。电压效率为82.3%。

但是,由于正负极电解液互窜,影响了电池的库仑效率,导致电池的能量效率

2-形成配合物,有助于提高其溶解度,较低,只有67.8%。虽然在硫酸中,Ce可与SO

4

但其溶解度仍较低。

5结语

液流电池显然不同于通常使用的固体材料电极或气体电极,其活性物质是流动的电解质溶液,它的一个最显著特点是规模化蓄电[5],在广泛利用可再生能源的呼声高涨形势下,可以预见,液流电池将迎来一个快速发展的时期.但目前,液流电池普遍应用的条件尚不具备,对许多问题尚需进行深入的研究,诸如高浓度、

多价态电解质的溶液化学及其稳定化机制问题,电对在溶液中氧化还原机理问题,集催化、集流、导电等于一体的“一体化”电极问题,系统的稳定性问题等。离子交换膜仍是液相储能电池规模化、商品化的瓶颈。电解液是液相储能系统的关键材料,活性物质的浓度和其电化学窗口决定了电池的能量密度[6],因此寻找一种具有大的溶解度和宽的电位窗口的氧化还原电对是必要的。

参考文献

[1]Thaller L H.Electrically rechargesble redox folw cell[P].US:3996064,1974-09-24.

[2]周汉涛. 多硫化钠/溴液流储能电池的研究[D]. 中国科学院大连化学物理研究所,2006.

[3]GE Shan-hai(葛善海),YI Bao-lian(衣宝廉),Gu Hong-xing(顾红星),et al.高效率多硫化钠/溴储能电池的研究[J].Battery Bimonthly(电池),2003,33(1):12一14.

[4]Wen Yue-hua(文越华), Cheng Jie(程杰),Zhang Hua-min(张华民),Yang Yu-sheng(杨裕声). 液流储能电池电化学体系的进展[J]. Battery Bimonthly(电池), 2008,38(4).

[5]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008, 32(7): 1-14

[6]张焕.基于液相氧化还原反应的电化学储能体系[D].厦门大学.2012

全钒液流电池的储能征程

全钒液流电池的储能征程 全球能源转型背景下,可再生能源发电规模一直在增大,与此同时,加剧了电力系统输送消纳可再生能源的压力。储能作为一种工具,具有能量时空转移的功能,可以有效调节电力系统的供需平衡,电池储能技术配置灵活,可在电力系统的不同应用场景发挥不同作用。其中全钒液流电池在特定场景下具备竞争力。 数据来源:中投产业研究院 我国全钒液流电池领域技术和应用一直在积极研究和探索中,已运行项目成效显著。截至2019年6月底,中国电池储能装机1160.8MW,其中,液流电池19.5 MW。全钒液流电池在整个电化学储能技术中的占比还是比较小。整个产业还没有规模化,尚处于市场化发展前期,目前基本技术趋于成熟,但由于行业内企业及企业体量均有限,项目开发能力较弱,行业发展主要靠政府项目推动,以少数项目推进为主,以销定产的特征明显,所以当下行业核心任务是通过供应链优化和项目规模升级降成本。 竞争力 与传统的铅蓄电池、锂离子电池相比,全钒液流电池在安全性、循环寿命和系统残值(资源循环利用)等方面具有突出优势,尤其适合应用在固定式大容量储能领域。

除上表所述外,全钒液流电池储能技术,还具有规模大、效率高、选址自由等特点,可以实现从千瓦级到兆瓦级灵活地配置,快速地扩建。而关于钒资源的储量上,我国是钒的储量大国和最大生产国,钒资源也不是稀有的,也没有地理上的限制,资源供应充足。 基于以上等特点决定了全钒液流技术在对电池安全性要求高的场景更有竞争力,成为大容量高效储能技术的首选技术之一,例如大型储能电站。 全钒液流电池最大的劣势是能量密度低于锂电池;且初次投资比锂电池高。储能系统成本的核心参数是:一次性投资成本和全寿命周期度电成本,在具有特定收益模式的应用场景下,一次性投资成本越低,投资回报期越短,全寿命周期度电成本越低,利润空间越大。业内相关专家表示,“全钒液流电池虽然初次投资较锂电池高,但寿命周期内的循环度电成本具备竞争性。另外,其电解液性能衰减较慢,通过在线或离线再生后可循环使用,且电解液中钒的价值永远存在,其寿命原理上讲是半永久性的,因此从电池制造、使用到报废后电池系统的无害化处理,从在整个生命周期来看,它的成本其实并不高。且可以衍生出灵活的金融租赁模式,来降低客户的初次投资,目前业内已经开始进行尝试”。 商业化挑战 我国全钒液流电池发展较快,技术较为成熟,但产业链还没有成熟,成本下降空间巨大。目前其面临的商业化挑战是:1、成本需要进一步的突破;2、商业模式亟待创新;3、相关标准体系研究滞后。尤其近几年钒价上涨太快,导致全钒液流电池竞争力下降,全钒液流电池储能示范工程规划也断断续续,大型全钒

锂电储能基本知识与常见应用场景

目录01丨基础篇02丨市场篇03丨产品篇04丨商务篇05丨销售篇

基础篇 01 储能基本概念 储能应用场景 储能应用行业

基础篇——储能类别 综合能源 综合供能 综合储能 综合能源服务 机械类储能 电化学储能 电气类储能 相变储能 抽水蓄能 高温钠系电池 超级电容 显热储热技术 压缩空气储能 液流电池 超导储能 潜热储能技术 飞轮储能 铅碳电池 储冷技术 锂离子电池 全球储能累计装机容量的技术类型比例 38% 12% 36% 5% 5% 1% 3% 锂离子电池 铅蓄电池 钠硫电池 液流电池 飞轮储能 超级电容 其他

储能基本概念——常用锂电池类型 常用锂电池 正极材料 负极材料 优点缺点 磷酸铁锂磷酸铁锂石墨热稳定好,安全性高, 价格低,循环寿命长 能量密度较低 低温性能差 三元锂除了锂外,还有镍钴锰, 或者镍钴铝三种金属石墨能量密度高热稳定性稍差 钛酸锂磷酸铁锂和三元锂钛酸锂20000次循环寿命 快速充电(4C-6C) 能量密度很低 价格很高 常见形状规格特性 圆柱电芯18650 26650 串并灵活 方壳电芯多种规格铝合金或者不锈钢等材料,结 构强度高 软包电芯多种规格能量密度高,延展性好

储能基本概念——BMS BMS 五大功能: 1、测量与估算:电压、电流、温度检测;SOC 计算等; 2、逻辑保护功能:电压、电流、温度保护 3 、控制功能:预充、充放电控制、均衡、热管理 4、故障诊断:外部短路、绝缘耐压检测、NTC 故障等; 5、通信功能:遥控、遥信、遥测 BMS 硬件基础: 1、电压采样精度 2、电流采样精度 3、长期连续稳定运行 多并串锂电池一致性问题: 1、电压一致性; 2、内阻一致性; 3、容量一致性

全钒液流电池国内外发展状况及展望

全钒液流电池国外发展状况及展望 1、国外研发和应用现状 有关钒电池的应用研究主要集中在储能领域。国外研发机构投入大量的资金,进行长达数十年的深入研究,并相继在泰国、日本、美国、南非等地建成了KW-MW级的钒电池储能系统,用于电站调峰,并给边远地区供电。目前,国外多家卓有成效的研发和应用机构进行着钒电池研发,并已步入商业化阶段。 1.1澳大利亚 钒液流电池的研发工作最早始于1984年,由澳大利亚新南威尔士大学M Sya llas-K azacos提出。1986年,钒液流电池体系获得专利。之后,对钒液流电池的相关材料,如隔膜、导电聚合物电极、石墨毡等进行了研究,并取得了多项专利。 1994年,钒液流电池用在高尔夫车上,4kWh钒液流电池在潜艇上作为备用电源。1997年UNSW 将专利权转售给澳大利亚Pinnacle矿业公司,新南威尔士大学停止了V2+/V3+电对和V4+/V5+电对在硫酸体系类型的钒电池研究。Pinnacle 公司又于1999年将在日本和非洲大陆的专利许可分别授予了日本住友公司和加拿大Vanteck公司。 1.2普能国际—加拿大VRB能源系统公司 其前身为加拿大Vanteck技术公司,2001年10月通过

控股Pinnacle公司,从而拥有钒电池核心技术,2002年改名为VRB能源系统公司(VRB Power Systerms),从事钒电池技术的开发和转让。2008年11月,VRB能源公司因为财务问题和经济危机,停止了其所有业务。2009年普能公司收购了VRB能源公司,成立普能国际。 1.3泰国 Cellennium(泰国)是一家致力于钒电池开发的公司,其钒电池单电池开路电压从1.1V—1.6V,电池堆垂直放置并采用独有的溶液串联结构设计,优点表现在:基本消除旁路电流;由于易于检测堵塞和电解水可迅速被阻止因而非常安全;电解液流速和泵功率比溶液并联结构小因而系统效率高。另外,该公司电解液制备也很有特点:可持续生产,成本低。 1.4日本 目前,日本已建立了15座液流储能电池电站,并向意大利和南非出口了两座全钒液流储能电池系统。 1.4.1住友电工 住友电工与K ansa i E lectr ic Power公司自1985年开始合作开发钒液流电池。1989年,住友电工的电站调峰用60kW 级钒液流电池建成,运行5年,循环1819次。1991~ 1994年研制成功60kW电堆,电堆运行5年,循环周期达1819次。目前,住友电工的20kW实验室钒液流电池电堆已循环16000次,除了电池隔膜的寿命有限,其他组件包括电解液,

9_已阅_全钒液流电池储能进展与应用

中国储能网讯:作为解决可再生能源大规模接入、传统电力系统削峰填谷、分布式区域能源系统负荷平衡的关键支撑技术,大容量储能技术已成为世界未来能源技术创新的制高点。由于产业链长、产业规模大,储能产业已成为战略性新兴产业,得到了工业发达国家产业界的重点关注。 h! 卧牛石风电场液激电利储能顶目现场 2016年4月1日国家能源局颁布的《2016年能源工作指导意见》中明确提出“加快全钒液流电池”等领域技术定型。这些无疑为全钒液流电池储能技术的研究 对于大规模储能技术而言,由于系统功率和容量大,有其自身的技术要求,主 要包括以下三个方面:安全性好;生命周期的性价比高(生命周期的经济性好);生命周期的环境负荷小(生命周期的环境友好)。全钒液流电池储能技术能很好地满足上述要求。

由于受钒离子溶解度的限制,和其他电池相比,全钒液流电池储能密度偏低、体积较大,不适合于动力电池,适合用于大型固定储能电站。另外,电池系统增加的管道、泵、阀、换热器等辅助部件,使得全钒液流电池储能系统较为复杂。 总体看,在输出功率为数百千瓦至数百兆瓦,储能容量在3小时以上级的大规模化固定储能场合,全液流电池储能技术具有明显的优势,是大规模高效储能技术

的首选技术之一。 从2000年开始,中科院大连化学物理研究所(下称:大连化物所)和大连融科储能技术发展有限公司(下称:融科储能)通过产学研合作,在电池材料、部件、系统集成及工程应用方面关键技术方面取得重大突破,引领中国全钒液流电池储能技术走在世界前列。 1.掌握了电池关键材料核心技术与产业化生产能力,产品性价比优势明显 在钒电解液开发方面,研发团队以自主生产的高纯钒氧化物为原料, 运用专利技术工艺,实现了硫酸体系钒电解液产品、混合酸体系钒电解液产品的规模化生产。目前产能达5万立方米/年,能够满足本项目及国内外市场需求,已经出口欧、美、日等发达国家,占据同类产品80% 的市场份额。 在双极板开发方面,研发团队突破了液流电池用高性能、低成本碳塑复合双极板批量化制备技术,并研制出连续成型生产设备,已经实现批量化生产广泛应用于工程项目中。 在离子传导膜开发方面,突破传统的“离子交换传递”机理的束缚,原创性提出了不含离子交换基团的“离子筛分传导”概念,发明了高选择性、高导电性、低成本的非氟多孔离子传导膜,从分子尺度上实现了对钒离子和氢离子的筛分,摆脱了对离子交换基团的依赖,提高了非氟膜的稳定性和耐久性。经10,000多次充放电循环考核,电池性能无明显衰减,电池性能优于全氟磺酸离子交换膜,价格不到全氟磺酸离子交换膜的20%,并实现中试生产和示范应用。

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

储能技术的应用心得

储能技术应用的发展前景阅读报告 摘要:针对电的储能技术主要分为三种:物理储能(抽水蓄能、压缩空气储能和飞轮储能)、电化学储能(液流电池、铅酸电池、锂离子电池、钠硫电池、镍镉电池、镍氢电池和超级电容器等)和电磁储能(如超导电磁储能等)。 一、概述 目前我国储能行业刚刚起步,比较成熟的储能技术是抽水蓄能和铅酸电池,技术进步最快的是电化学储能,其中以液流电池、锂离子电池和钠硫电池最为显著。在实际生产和应用方面,我国已经在实验以及试用不少电化学储能技术,但从整体来看,在实际生产中主要以中低端的镍氢动力电池和铅酸电池为主,更大容量的液流电池、锂离子电池、超级电容器等领域的关键技术虽有突破,但由于缺乏政策支持,未发展到商业化运作和大规模运用的阶段,部分储能技术如磷酸铁力、液流电池等真正的大规模工业化适用刚刚开始,产业化水平很低。 二、能量型和功率型电池分析 能量型储能以高比能量为特点,主要用于高能量输入、输出场合;功率型储能以高比功率为特点主要用于瞬间高功率输入、输出场合。 据了解,功率型储能电池主要用于调频,其特点是能够在短时间内,满足大功率充放电要求。各种电池技术中,以飞轮储能和超级电容的效果最好,前者理论上没有寿命限制,后者单体循环寿命为100万次。 风电一般每年运行2000-3000小时,要保证功率平滑输出,大概每10秒就要充、放电一次,那么储能电池1年的充放电次数就是100万次。高度频繁的充放电情况目前只有飞轮能够承受。但飞轮电池在高温下寿命缩短,具有较低的比能量和比功率,且存在一定的环境污染,镍镉电池与铅酸电池相似存在重金属污染。新兴化学储能如液流电池与钠硫电池是目前适合大规模发展的电力化学储能技术。全钒液流电池循环寿命长、能量转换效率较高,选址和设计灵活,安全环保但比能量和比功率较低适用于可再生能源储能和调峰电源以及应急电源。 近年来,风力发电在中国发展得十分迅猛。截至2012年底,风电累计装机容量达到7532.4万千瓦;但是,由于风能等可再生能源具有不连续、不稳定的非稳态特性,大规模并网后对电网调峰、调频及电能质量均会带来不利影响。因此,随着风电装机容量占电网电力比例的提高,弃风限电现象也频频出现。

全钒液流电池离子交换膜的研究进展_陈栋阳

第25卷第4期高分子材料科学与工程 Vol .25,No .4 2009年4月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Apr .2009 全钒液流电池离子交换膜的研究进展 陈栋阳,王拴紧,肖 敏,孟跃中 (光电材料与技术国家重点实验室,中山大学光电及功能复合材料研究院,中山大学物理科学 与工程技术学院,广东广州510275) 摘要:液流电池离子交换膜的主要作用是物理分隔正负极电解液同时又允许载电荷的离子的通过以实现完整的电流回路。全钒液流电池的电解液具有强的氧化性,且易于渗透而引起电池容量的降低,决定了其离子交换膜应具有独特的结构与性能。文中对近年来用于全钒液流电池的离子交换膜做了比较全面的归纳与分析,并对质子传导机理与膜的基本性能指标进行了阐述。 关键词:离子交换膜;全钒液流电池;质子传导机理;膜结构 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2009)04-0167-03 收稿日期:2008-02-23 基金项目:广东省科技计划项目(20062060303)和广州市科技攻关项目(034j2001)通讯联系人:王拴紧,主要从事功能高分子材料的研究, E -mail :w angshj @mail .sysu .edu .cn 全钒液流电池是一种新型的液流电池体系,它是 由钒元素的四个不同价态组成的电解液构成氧化还原电对,储存于两旁的储液罐中,再通过两个泵的推力,在离子交换膜的两边分别循环流动,由离子导电来完成电流回路的特殊的电池储能系统。其结构如Fig .1所示 。 Fig .1 Constructional illustration of all -vanadium flow battery 它除了具备一般液流电池的典型优点,如不存在浓差极化、可深度放电和瞬时充电、额定功率和额定能量相互独立以及充放电电压可随意调节等外,还具备如下优点:(1)因为正负极电解液都是钒离子的电解液,无交叉污染问题;(2)电池维护简单,只需定期将两边的电解液相互混合,平衡里面的离子浓度,再进 行充电,即可使容量完全恢复;(3)把我国的钒矿资源 变成能源材料,对经济的发展具有重要的战略意义。 最早发现钒可作为氧化还原液流电池的电解质的是美国航空航天局(NASA )(1974年),之后澳大利亚New South Wales 大学的Sum E 等人于1985年研究了各价态钒在石墨电极上的电化学行为,次年,该大学的Skyllas -Kazacos M [1]由V 5+/V 4+和V 2+/V 3+组成一个性能良好的静止型钒氧化还原单电池,从此,全钒液流电池得到了很大的发展[2~5]。 作为一种新型的储能装置,全钒液流电池可用于电网的昼夜调峰和太阳能与风能发电站的蓄电,且在军事上也有重要的地位。多个单电池可以串联成电压可调的电堆,多个电堆又可并联成电流可调的配电系统。可见,通过简单的设计就可以满足不同的用电需求。而系统对于充电电流的大小并无要求,使得该氧化还原液流电池蓄电的应用领域更为广阔。该电池所 发生的电化学反应如下 : 1 膜的性能指标

大规模高效液流电池储能技术的基础研究

项目名称:大规模高效液流电池储能技术的基础研究

一、研究内容 2.1拟解决的关键科学问题 根据国外液流储能电池工程化开发经验以及国内的研究结果,目前液流储能电池技术主要存在如下四方面问题: (1)电解质溶液稳定性有待进一步提高。液流储能电池用电解质溶液是包含有不同价态的活性离子、含氧酸根离子、不同形态的水合离子的复杂体系。组份浓度、杂质元素、温度、电场等因素都可能会造成电解质溶液析晶沉淀。 (2)储能活性物质迁移与水扩散造成物流失衡。例如目前的全钒液流储能电池系统运行一段时间后就会出现正极钒离子浓度升高和电解液体积增大,负极相应减少的现象。究其主要原因是现在所用的离子交换膜的选择性差所致。即钒离子在浓度场和电场等作用下能够渗透通过离子交换膜到达电极另一侧,如此将导致电池自放电、降低库仑效率。同时水分子在渗透压作用下或以水合离子形式随钒离子透过膜进行迁移,造成正负极电解液体积失衡,影响电池的稳定性和使用寿命。 (3)电池运行的电流密度低。目前,液流储能电池运行的工作电流密度较低(< 100 mA/cm2),仅为质子交换膜燃料电池工作电流密度的十分之一,造成电池模块体积大,材料需求量大,成本攀高。这主要与电对反应活性、电极极板材料的活性与导电性、离子交换膜的离子传导性和电解液传质能力有关。另外,在电池的规模放大过程中电解液分配的不均匀性越加严重,公用管道中内漏电电流损失增大

等。这都会造成电池性能的降低,因而工作电流密度偏低。 (4)电池系统成本较高。液流储能电池关键材料和部件还未实现批量化制备,因此目前生产成本较高。尤其是国内离子交换膜技术还未突破,通常使用的杜邦公司商业化的Nafion膜价格昂贵,成为制约液流储能电池实用化的瓶颈。 综上所述,解决液流储能电池稳定性、耐久性和实用性问题的关键在于关键材料(如电解液、离子交换膜、电极极板等)性能的提升和核心技术(材料批量化制备工艺、系统规模放大方法与系统耦合与能量管理控制技术)的突破。 本项目针对太阳能、风能等可再生能源发电对大规模储能技术的重大需求,以突破制约液流储能电池普及应用的关键科学问题和工程技术基础问题为目的,归纳并拟解决如下4方面的关键科学问题:科学问题一:液流储能电池关键材料的组成、结构与材料物性的构效关系,电池相关反应机理及对电池性能的影响规律; 科学问题二:液流储能电池关键材料的设计理论、合成方法及规模化制备的工程科学原理; 科学问题三:电池模块和系统结构设计、规模放大的模拟仿真理论及系统集成方法; 科学问题四:基于液流电池储能系统应用的发电、储能、电能转换及用电多体系的系统耦合及综合能量管理控制理论。 2.1.1液流储能电池关键材料的组成、结构与材料物性的构效关系,电池相关反应机理及对电池性能的影响规律

蓄电池的基本知识大全

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

全钒液流电池储能系统的优化设计

全钒液流电池储能系统的优化设计 张学庆 (上海电力设计院有限公司,上海 200025) 摘要:全钒液流电池全称为全钒离子氧化还原液流电池,较之其他二次电池,具有自己的一些特点,如组装设计灵活,便于利用模块的组合调整其储能容量;可快速响应,大功率输出;电池系统易于维护,安全稳定;无有害物质产生,环境友好;自放电小;可进行深度充放电以及循环次数多、寿命长等。全钒液流电池储能系统布置灵活,但需考虑设备房间应具有防酸和废液汇集的功能。变流器需着重考虑设备房间的通风、散热性能;根据其具体功率和结构,有时还需考虑设备房间的电磁屏蔽措施。监控系统则需根据全钒液流电池自身的特点对电池管理系统(BMS)等子系统进行优化设计,并与整个储能装置的监控系统进行优化整合。 关键词:储能;变流器;钒液流电池 Optimizition Design of All-Vanadium Redox Flow Battery Energy Storage System ZHANG Xueqing (Shanghai Electric Power Design Institute Co Ltd, Shanghai 200025, China) Abstract: Compared with other kinds of secondary batteries, all-vanadium redox flow battery (VRB) has its own characteristics. The arrangement and design of VRB are very flexible, which largely benefit the association of different modules, and make the capacity of the battery may be large or small as the customer’s wish. The battery system can respond at a high speed and output great power. The battery system is safe, stable and easy to maintain. Self-discharging is slight. Has a long life-cycle, high efficiency and cheap price, etc.. The arrangement of VRB is flexible, but the room should have anti-acid and waste collection function. As a high-power power electronic equipment, the arrangement of PCS should pay special attention on the heat dissipation system. According to the actual power and structure of PCS, maybe take some electromagnetic shielding measure in the equipment room. Control and supervision system should be optimal designed, including BMS and other subsystems. Keywords: battery energy storage system, BESS, PCS, vanadium redox flow battery, VRB 1 全钒液流电池储能技术简介 全钒液流电池全称为全钒离子氧化还原液流电池,全钒液流电池中的两个氧化-还原电对的活性物质,分别装在两个储液罐中的溶液中,各用一个泵,使溶液流经电池,并在离子交换膜两侧的电极上分别发生还原和氧化反应,单电池通过双极板串联成堆,如图1所示。作为储能电源,全钒液流电池主要可应用于 作者简介:张学庆(1982—),男,大学本科,工程师,从事电力工程设计, E-mail:zhangxq@https://www.360docs.net/doc/b614591642.html,

全钒液流电池国内外发展状况及展望

全钒液流电池国内外发展状况及展望 1、国内外研发和应用现状 有关钒电池的应用研究主要集中在储能领域。国外研发机构投入大量的资金,进行长达数十年的深入研究,并相继在泰国、日本、美国、南非等地建成了KW-MW级的钒电池储能系统,用于电站调峰,并给边远地区供电。目前,国内外多家卓有成效的研发和应用机构进行着钒电池研发,并已步入商业化阶段。 1.1澳大利亚 钒液流电池的研发工作最早始于1984年,由澳大利亚新南威尔士大学M Sya llas-K azacos提出。1986年,钒液流电池体系获得专利。之后,对钒液流电池的相关材料,如隔膜、导电聚合物电极、石墨毡等进行了研究,并取得了多项专利。 1994年,钒液流电池用在高尔夫车上,4kWh钒液流电池在潜艇上作为备用电源。1997年UNSW 将专利权转售给澳大利亚Pinnacle矿业公司,新南威尔士大学停止了V2+/V3+电对和V4+/V5+电对在硫酸体系类型的钒电池研究。Pinnacle 公司又于1999年将在日本和非洲大陆的专利许可分别授予了日本住友公司和加拿大Vanteck公司。 1.2普能国际—加拿大VRB能源系统公司 其前身为加拿大Vanteck技术公司,2001年10月通过

控股Pinnacle公司,从而拥有钒电池核心技术,2002年改名为VRB能源系统公司(VRB Power Systerms),从事钒电池技术的开发和转让。2008年11月,VRB能源公司因为财务问题和经济危机,停止了其所有业务。2009年北京普能公司收购了VRB能源公司,成立普能国际。 1.3泰国 Cellennium(泰国)有限公司是一家致力于钒电池开发的 公司,其钒电池单电池开路电压从1.1V—1.6V,电池堆垂直放臵并采用独有的溶液串联结构设计,优点表现在:基本消除旁路电流;由于易于检测堵塞和电解水可迅速被阻止因而非常安全;电解液流速和泵功率比溶液并联结构小因而系统效率高。另外,该公司电解液制备也很有特点:可持续生产,成本低。 1.4日本 目前,日本已建立了15座液流储能电池电站,并向意大利和南非出口了两座全钒液流储能电池系统。 1.4.1住友电工 住友电工与K ansa i E lectr ic Power公司自1985年开始合作开发钒液流电池。1989年,住友电工的电站调峰用60kW 级钒液流电池建成,运行5年,循环1819次。1991~ 1994年研制成功60kW电堆,电堆运行5年,循环周期达1819次。目前,住友电工的20kW实验室钒液流电池电堆已循环

蓄电池基本常识100问之三

蓄电池基本常识100问之三 41、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 42、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 44、何为电池的能量密度? 指电池的单位体积所含的电能。 45、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T102622001的行业标准。 46、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 47、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一

块12V、12Ah的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 48、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 49、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 50、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 51、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 52、铅酸电池有那些优缺点? 1.优点价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 2.缺点重量大、体积大、能量质量比低,娇气,对充放电要求严格。 53、为什么电池要储存一段时间后才能包装出货?

液流储能电池技术研究进展

液流储能方法与技术 徐景妍 (中南大学化学化工学院湖南长沙410083) 摘要:介绍了液流储能电化学体系的原理、动力学、特点及发展方向。重点对全钒、多硫化钠-溴和锌-溴液流储能电池的工作原理、特点、国内外研究现状及发展趋势进行了介绍,并对其他探索性液流储能电池体系进行了介绍。最后,提出了制约液流储能电池技术发展的问题,展望了液流储能电池未来发展趋势。 关键词:液流储能电池 钒 硫化钠-溴 -溴 Liquid flow energy storage method and technology Xu,Jingyan (College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China) Abstract:The flow energy storage battery system,characteristics and the developing direction were introduced.In this paper,we focus on the introduction to the working principles,characteristics,R&D progress and development trend oft he all-vanadium,sodium polysulfide/bromine and zinc/bromine redox flow batteries.Also we discuss other types of flow batteries.Finally,the keyproblems limiting the technology development are pointed out and the suggestions for futurere search are given. Keywords:flow energy storage battery; kinetic; all-vanadium; sodium polysulfide/bromine; zinc/bromine

主要储能系统技术经济性分析报告

主要储能系统技术经济性分析 时间:2012-11-12 10:26来源:未知作者:abel 一、成熟度 图1所示为电力储能系统的技术成熟度的总结与比较。根据成熟度不同可分为三个层次: 图1 储能技术成熟度 PHS- 抽水蓄能;CAES- 压缩空气;Lead-Acid: 铅酸电池;NiCd: 镍镉电池;NaS: 钠硫电池;ZEBRA: 镍氯电池;Li-ion: 锂电池;Fuel cell: 燃料电池;Metal-air: 金属空气电池;VRB: 液流电池;ZnbBr: 液流电池;PSB: 液流电池;Solar Fuel: 太阳能燃料电池;SMES: 超导储能;Flywheel: 飞轮;Capacitor/Supercapcitor: 电容/超级电容;AL-TES: 水/冰储热/冷系统;CES:低温储能系统;HT-TES:储热系统 (1) 成熟技术:抽水蓄能电站和铅酸电池技术已经成熟,其使用已超过120多年。 (2) 基本成熟的技术:压缩空气储能、镍镉电池、钠硫电池、锂离子电池、液流电池、超导磁能、飞轮、电容、储热/冷等技术已经完成研发并开始商业化,但是还没有大规模普遍应

用,它们的竞争力和可靠性仍然需要电力企业和市场来进一步检验。 (3) 正在研发的技术:燃料电池、金属-空气电池和太阳能燃料正在研发中,虽然它们在技术上并没有达到商业成熟的程度,但已经通过了多个科研机构的研究论证。另一方面,由于能源成本和环境问题的驱动,这几种技术在不久的将来将具有巨大的商业潜力。 二、功率和放电时间 表1对各种类型电力储能系统的功率和放电时间进行了比较,根据它们的应用情况,大体上分为三种类型: (1) 能源管理:抽水储能、压缩空气储能适合于规模超过100MW和能够实现每天持续输出的应用,可用于大规模的能源管理,如负载均衡、输出功率斜坡/负载跟踪。大型电池、液流电池、燃料电池、太阳能电池和储热/冷适合于10~100MW的中等规模能源管理。 (2) 电力质量:飞轮、电池、超导磁能、电容反应速度快(约毫秒),因此可用于电能质量管理包括瞬时电压降、降低波动和不间断电源等,通常这类储能设备的功率级别小于1MW。 (3) 电能桥接:电池、液流电池和金属-空气电池不仅要有较快的响应(约小于1秒),还要有较长的放电时间(1小时),因此比较适合桥接电能。通常此类型应用程序的额定功率为100kW~10MW。 表1 各种储能技术性能比较

电池储能系统能量管理技术浅析(经典)

电池储能系统BMS发展概况 由于BMS在电池储能系统中发挥的巨大作用,吸引了国内外一大批优秀的电池企业或保护板企业,甚至新兴高科技企业,如A123、ATL、比亚迪、惠州亿能、东莞钜威等对电池储能系统BMS的研发投入。早期的电池管理系统一般只有电池过充电/过放电控制、电压/电流/温度监测及简单的通讯等功能,初步满足了电池储能系统的需求。 但是由于电池制造工艺的限制,特别是国内大多数生产电池的厂商,仍旧在采用半自动化甚至手工方式生产电池,导致电 池内阻、电压、容量的一致性问题,在大型储能系统中遇到了严峻的考验,严重影响着储能系统容量及性能的发挥,电池组使 用寿命可能缩短数倍甚至十几倍。 为了解决电池的一致性问题,电池均衡技术应运而生。新的带无源均衡(Passive Balancing)功能的电池管理技术,增强了电池的采集监测功能,采用一定的均衡控制策略,并且加入了高速的通信功能,可以在一定程度上减轻电池一致性带来的容量 下降及寿命缩短问题。目前许多企业都是采用这种方式进行电池管理系统的设计。然而这一传统的均衡技术却带来了新的问题,无源均衡方案,采用功率型电阻作为均衡器件,例如美国的专利《Systemand Method for Balancing Cells in a Battery Packwith Selective Bypass Paths》(US7,466,104 B2),《Method for Balancing Lithium Secondary Cells andModules》(US7,609,031 B2)中都有说明,这一均衡方式在大型电池系统中带来了均衡电流做不大、热耗散困难、均衡电路散热设计成本高昂等问题,并且均衡效率较低、可靠性差。在这种形势下,新一代更优功能均衡技术的研发迫在眉睫。 近几年来随着大型电池组的出现,电池管理系统中的有源均衡(Active Balancing)技术迅速进入人们的视野。该技术拥有 均衡电流大,均衡时间长,热耗散低,充电效率高等优点。有源均衡已经被业界认可成为最有希望能够实现的大电流均衡方式。最新的带有源均衡技术的电池管理系统,拥有更高级别的数据采集速率与精度,高精度SOC估算,高速稳定的通讯架构,增强了电池组的监控与安全保护功能,全面满足当前储能系统的性能需求。 电池储能系统BMS的技术要点 电池均衡技术 由于电池在生产过程中,设备控制精度会使原材料的配比、正负极上原材料的分布密度产生差异,操作过程会对电池的半 成品产生不同的细微损伤,电池属于化学品,这些变化都会使电池的性能产生变化,直接反应在电池的容量、内阻、电压上。 在成组过程中,电池的搬运、轻微碰撞、焊接、固定等,也会使电池的性能发生变化。在长期的使用过程中,自放电率、环境 温度、湿度、充放电深度等的不同,会使电池的衰减速度不一致,导致电池间更大的一致性差异。 电池的一致性差异会在电池储能系统中造成能量的水桶效应,导致充电时,容量最小的电池容易过充,放电时,容量最小 的电池又容易过放,由于容量最小的电池受损,容量变得更小,进入恶性循环,影响电池循环寿命。 另外,单体电池性能的优劣也直接影响到整组电池的充放电特性,电池组容量降低。 BMS厂家为了解决电池的一致性问题,通过各种各样的均衡技术改善电池的一致性。一般为分损耗型电阻分流法、非损耗型开关电容法和DC-DC变换器法。 (1)电阻分流法电阻分流法是目前应用最多均衡技术,其原理简单,易于实现,成本低廉,基本的原理图如图1所示:

全钒液流储能电池VRB

全钒液流储能电池VRB 全钒液流电池(vanadium redox batty,简称VRB)是一种新型清洁能源存储装置,其研究始于20世纪80年代的澳大利亚新南威尔士大学。在美国、日本、澳大利亚等国家有应用验证,鉴于钒电池具有功率大、寿命长、可靠性高、操作和维修费用少、支持频繁大电流充放电等明显技术优势。被认为是太阳能、风能发电装置配套储能设备、电动汽车供电、应急电源系统、电站储能调峰、再生能源并网发电、城市电网储能、远程供电、UPS系统等领域的优先选择。 一、工作原理 全钒液流电池是一种新型储能和高效转化装置,将不同价态的钒离子溶液分别作为正极和负极的活性物质,分别储存在各自的电解液储罐中,通过外接泵把电解液泵入电池堆体内,使其在不同的储液罐和半电池的闭合回路中循环流动,采用离子交换膜作为电池组的隔膜,电解质溶液平行流过电极表面并发生电化学反应,通过双电极板收集和传导电流,使储存在溶液中的化学能转换成电能。这个可逆的反应过程使钒电池可顺利完成充电、放电和再充电。钒电池的工作原理请见下图。 二、钒电池技术 钒电池技术中主要包括:电堆技术、电解液技术、系统集成技术 1).电堆技术 (1).膜 膜可以说是钒电池核心中的核心,它基本决定了钒电池的寿命、效率。 钒电池使用的膜,并不限制一定使用某种膜,关键是使用的膜一是耐腐蚀,

就是寿命;二是离子交换能力要足够好,就是电池效率;三是一致性要好。 (2).电极材料 目前钒电池的电极材料主要有石墨毡和碳毡两类。 石墨毡烧制温度高、石墨化程度高;碳毡烧制温度低一些、石墨化程度相对低。两者导电性能不同,价格不同。具体使用何种电极材料取决于钒电池电堆的设计。好的电极材料可提高钒电池的电流密度,而且对双极板的抗腐蚀有一定的保护作用。 这里的技术含量不算高,但各家需根据自己的钒电池堆的设计寻找和测试不同厂家的产品,需要一定的时间。 (3).双极板 双极板材料的要求很综合:耐腐蚀、面积、韧性、强度、导电性、价格。 钒电池常用的双极板是石墨板(包括硬石墨和软石墨两类)和导电塑料。虽然有很多人研究过金属复合双极板,但目前能用的还只有石墨板和导电塑料。 和电极材料一样,各家需根据自己的钒电池堆的设计寻找和测试不同厂家的产品,在对双极板的各种要求中取得一种平衡,需要一定的时间。特别是成本,双极板在目前的钒电池电堆的成本中占较大比重,是钒电池产业化必须重点解决的问题。 (4).电堆的流场设计 流场设计的好坏,对钒电池的性能有挺大影响,还可能对电堆寿命带来影响。 (5).密封技术 钒电池电堆密封技术比较重要的在于,要把几十片面积上千平方厘米甚至几千平方厘米的单片电池集成到一起,不发生任何泄漏。并且要保证在10年之内任何时间、任何场景下都不能漏。 2).电解液技术 在氧化还原流体电池里,能量是通过称为电解液的工作流体化学变化进行储存的,流体内所包含的可溶性物质可以通过电化学氧化或还原来储存能量。 电解液决定了钒电池的储电量,也是钒电池成本的重要组成部分。 电解液技术主要是配方,目标是提高功率密度、提高温度适应性等;二是如何用比较低的成本生产出合格的电解液来。 电解液配方的好坏会影响膜的寿命、电极的寿命、电池效率等。 电解液生产相关的技术关键在于原材料的来源,决定了电解液的生产成本;提纯目标和提纯工艺路线;环保问题等。 电解液的成本将会对钒电池的市场竞争力起到重要的影响作用。 3).控制技术 钒电池的控制系统对于钒电池长期稳定运行相当关键。包括:电解液的温度、流量,流量分配,充放电电压、电流等。相对于燃料电池的控制系统,钒电

相关文档
最新文档