太阳能电池板等离子刻蚀

太阳能电池板等离子刻蚀

太阳能电池板等离子刻蚀

资料来自于https://www.360docs.net/doc/b61570515.html,

由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。

PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。

因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。

等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。

活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。

太阳能刻蚀篇精选文档

太阳能刻蚀篇精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

太阳能电池片科普系列——刻蚀篇 来源:北极星太阳能光伏网(独家)作者:陈雪松2017/11/22 11:31:21 关键词: :扩散过后的下一个工序是刻蚀,由于扩散采用背靠背扩散,硅片的边缘没有遮挡也被扩散上磷(边缘导通状态),PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路,太阳能电池片会因此失效。同时此短路通道等效于降低并联电阻。另外由于在扩散过程中氧的通入,硅片表面会形成一层二氧化硅,在扩散炉高温的作用下POCl3与O2形成的 P2O5,部分P原子进入Si取代部分晶格上的Si原子形成n型半导体,部分则留在了SiO2中形成PSG(磷硅玻璃)。 1、磷硅玻璃会使得电池片在空气中表面容易受潮,导致电流和功率的衰减; 2、死层增加了发射区电子的复合,以致少子寿命的降低,进而降低了Voc 和Isc; 3、磷硅玻璃会使得PECVD后产生色差。 ? 一、刻蚀的原理 工艺流程:上片→蚀刻槽(H2SO4 HNO3 HF)→水洗→碱槽(KOH)→水洗→HF槽→水洗→下片

刻蚀槽HNO3和HF的混合液体会对扩散后硅片的下表面及边缘进行腐蚀,以去除边缘的N型硅,打破硅片表面短路通路。因此刻蚀对于液位高度的控制需要特别精确。反应方程式: 3Si + 4HNO3+18HF =3H2 [SiF6] + 4NO2 + 8H2O 去PSG磷硅玻璃的原理方程式: SiO2+4HF=SiF4+2H2O SiF4+2HF=H2[SiF6] SiO2+ 6HF=H2[SiF6]+2H2O 当电池片从HF槽出来后,可观察其表面脱水情况,如果脱水效果良好,则代表磷硅玻璃已去除较干净;如果表面水珠较多,则代表磷硅玻璃未被去除干净,可添加适量HF到HF槽中。 二、刻蚀工序工艺指标管控 当电池片经过刻蚀机台出来时,首先检查硅片表面,绒面是否明显斑迹,是否有药液残留。该工序一般要求面腐蚀深度控制在~μm范围内,同时硅片表面刻蚀宽度不超过2mm, 刻蚀边缘绝缘电阻大于1K欧姆。 对于刻蚀程度可以通过刻重来衡量——刻蚀前重量减去刻蚀后重量。对于刻重的要求,不同公司有不同的要求,一般远小于制绒减薄量。 疏水性测试,刻蚀后电池片需要=定时抽检电池片疏水性,疏水性可反映扩散的好坏。 反射率,主要与刻重、电池片和药液有关 三、刻蚀车间常见事项 异常处理,刻蚀车间和制绒车间极其类似,机台叠片、碎片、吹不干、残留和色斑等常见问题等都极为相似,机台的维护、抽风、流量等引起的工艺问题类型也多相似。 1、纯水电导率检测、生产所用均为纯水,纯度不高将直接导致电池片严重的质量问题; 2、空气温度和洁净度,电池片是就像襁褓中的婴儿,任何风吹草动都会引起相当大的后果; 3、化学浓度分析,对制绒槽药液进行定期分析,以便调整。

你不知道的钝化接触太阳能电池

你不知道的钝化接触太阳能电池 晶硅太阳能电池的表面钝化一直是设计和优化的重中之重。从早期的仅有背电场钝化,到正面氮化硅钝化,再到背面引入诸如氧化硅、氧化铝、氮化硅等介质层的钝化局部开孔接触的PERC/PERL设计。虽然这一结构暂时缓解了背面钝化的问题,但并未根除,开孔处的高复合速率依然存在,而且使工艺进一步复杂。近几年来,一种既能实现背面整面钝化,且无需开孔接触的技术成为机构研究的热点,这就是钝化接触(Passivated Contact)技术。当电池两面均采用钝化接触时,还可能实现无需扩散PN结的选择性接触(SelecTIve Contact)电池结构。本文将详细介绍钝化接触技术的背景,特点及研究现状,并讨论如何使用这一技术实现选择性接触电池。 表面钝化的演进 图1,太阳能电池表面钝化结构的演进 钝化的史前时代 在90年代之前晶硅电池商业化生产的早期,太阳能电池制造商已经开始采用丝网印刷技术,但与我们如今使用的又有所不同。主要的区别在于两点:首先当时的正面网印银浆没有烧穿(Fire-through)这一功能,因此在当时的生产线上,需要先进行网印,而后沉积当时的TIO2减反射层。另一个区别在于当时的银浆与硅形成有效欧姆接触的能力较差,只有与高掺杂的硅才可以接触良好。由于TIO2没有很好的钝化功能,人们在当时并没有过多的考虑钝化。而且由于减反射层在金属电极之上,因此沉积的时候需要用模版遮挡主栅,以便后续的串焊。 虽然这一时期,在实验室中,科研人员已经采用SiO2钝化电池表面,并取得不俗的开路电压和效率。 SiNx:H第一次进化 90年代,科研机构和制造商开始探索使用等离子体增强化学气相沉积(PECVD)技术制备含氢的氮化硅(SiNx:H)薄膜用作电池正面的减反射膜。其中原因之一在于相对合适

太阳能电池板选择

太阳能电池板选择
太阳能电池的最大功率 Pmax=开路电压×短路电流, 这是它们的理想功率, 而平时大家衡量太阳能电池的是额定功率 Pm。实际中额定功率是小于最大功率 的,主要是由于太阳能电池的输出效率 u 只有 70%左右。在使用中由于受光强 度的不同,所以不同时刻的功率也是不同的,根据实验数据它的实际平均功率 P=0.7Pm。如果太阳能电池要直接带动负载,并且要使负载长期稳定的工作, 则负载的额定功率为 Pr=0.7Pm。 如果按照负载的功率选择太阳能电池的功率则 电池的功率为: Pm=1.43Pr。 就是说太阳能电池的功率要是负载功率的 1.43 倍。 在选择太阳能电池的功率时,应合理选择负载的耗电功率,这样才能使发电功 率与耗电功率处于一种平衡状态。当然太阳能电池的发电功率也会受到季节、气 候、地理环境和光照时间等多方面因素的制约。
蓄电池的使用(这里仅以夏季为例,介绍太阳能电池与蓄电池在一般情况下的使用)
蓄电池是一种储存电能的容器,常被作为其它电路的“能源基地”。由于太 阳能电池所产生的电力有限,因此要尽可能的扩大“基地”的储电容量,但也不 能无限扩大,因为太阳能电池只能在白天发电,其日发电量 M=发电功率(最 大输出功率)×有效光照时间×发电时间,由此它的日电量等于输出电流与有效 光照时间的乘积,即:C=IH(Ah)。而蓄电池的容量则使放电时间和放电电流的乘 积,因此计算公式为:C=IH(单位 Ah,就是额定 1A 的电流放电一小时)。那么 太阳能电池和蓄电池在容量和电量上使如何计算的呢?我们可以通过电功率公 式:P=IU 演化为:P=Iuh/h=CU/h。

太阳能电池湿法刻蚀工艺指导书

设计文件名称Edge Isolation & PSG Selective Emitter工 艺操作规程 T-IS-026 产品型号名称156×156多晶绒面电池共6页第1页1、工艺目的: 通过化学反应,将硅片上下表面的PN结刻断,以达到正面与背面绝缘的目的;另外经过化学反应,刻蚀掉未被蜡覆盖的硅片表面的一定深度,做选择性发射极;最后用BDG去除inkjet 工序中的喷涂的层蜡,用KOH药液去除硅片表面的多孔硅;同时用HF去除表面的磷硅玻璃层。 2、设备及工具: Edge Isolation & PSG Selective Emitter 、电子天平、PVC手套、口罩、防护服、防护眼罩、防护套袖、橡胶手套、防酸碱胶鞋、GP Solar电阻测试仪(边缘电阻)、浓度分析仪等。 3、适用范围 本工艺适用于Edge Isolation & PSG Selective Emitter。 4、职责 本工艺操作规程由工艺工程师负责调试、修改、解释。 5、材料: 合格的多晶硅片(INKJET后)、HF(49%,电子级,工作压力3-5bar, KOH(49%,电子级,工作压力3-5bar)、HNO 3 (65%,电子级,工作压力3-5bar),DI水(工作压力3-5bar)、压缩空气(工作压力6-7bar,除油,除水,除粉尘), Butyldiglycol(2一(2一丁氧乙氧基)乙醇)(BDG)(100%,电子级,工作压力3-5bar), 冷却水(入水:工作压力3-4bar,最大入水温度25°C,出水工作压力:最大2bar),新鲜空气(Fresh air用于旋转器腔室)(工作压力100Pa), 乙二醇(制冷机)。 6、工艺描述: 6.1、工艺条件:环境温度:+ 22°C to + 24°C;环境湿度: 45 to 65 % RH at 24°C;

晶体硅太阳电池的氮化硅表面钝化研究

第36卷 第6期2002年6月 西 安 交 通 大 学 学 报 JOURNAL OF XI′AN J IAO TON G UN IV ERSITY Vol.36 №6 J un.2002 文章编号:0253-987X(2002)0620651204 晶体硅太阳电池的氮化硅表面钝化研究 杨 宏1,王 鹤1,于化丛2,奚建平2,胡宏勋2,陈光德1 (1.西安交通大学理学院,710049,西安; 2.上海交通大学太阳能研究所) 摘要:为了提高晶体硅太阳电池的光电转换效率,研究了用等离子增强化学气相沉积(PECVD)的SiN x:H作为晶体硅太阳电池的表面钝化及减反射膜对电池性能的影响,并采用不同的工艺路线制备了不同类型的电池.实验发现:同SiN x:H比较,SiN x:H/SiO2双层光学减反射结构对晶体硅太阳电池能起到更加有效的表面钝化作用,提高了太阳电池的光电转换效率.基于界面物理,提出了一种新的能带模型,解释了用不同实验方法制作的晶体硅太阳电池性能的差异. 关键词:太阳电池;表面钝化;SiN x:H;等离子增强化学气相沉积 中图分类号:TM91414 文献标识码:A Investigation on Passivating Silicon Nitride Surface of Crystalline Silicon Solar Cells Y ang Hong1,W ang He1,Y u Huacong2,Xi Jianpi ng2,Hu Hongx un2,Chen Guangde1 (1.School of Sciences,Xi′an Jiaotong University,Xi′an710049,China; 2.Institute of Solar Energy,Shanghai Jiaotong University) Abstract:In order to improve photoelectric conversion efficiency of crystalline silicon solar cells,some effects of surface passivation quality and antireflection properties of silicon nitride prepared by plasma enhanced chemical vapour deposition on crystalline silicon solar cells are investigated.All kinds of crys2 talline silicon solar cells were prepared by different process methods.It was found that the silicon ni2 tride/silicon oxide double layer optical antireflection coatings structure shows excellent passivation properties for crystalline solar cells compared to silicon nitride,so photoelectric conversion efficiency of crystalline silicon solar cells is enhanced.Based on interface physics,a new energy band model of sili2 con nitride/silicon oxide/silicon is presented,differences of efficiency of crystalline silicon solar cells prepared by different methodes are explained by this model. K eyw ords:solar cells;surf ace passivation;silicon nit ri de;plasm a enhanced chem ical vapour deposi2 tion 目前,适于作晶体硅太阳电池光学减反射膜的材料有SiO2、TiO x、SiN x:H等薄膜材料.SiO2的折射率(114)太低,光学减反射效果不好;TiO x的折射率虽然接近晶体硅太阳电池最佳光学减反射膜的 收稿日期:2001210211. 作者简介:杨 宏(1968~),男,讲师. 基金项目:西安交通大学博士学位论文基金资助项目.

研究表面纳米级钝化的太阳能电池

研究表面纳米级钝化的太阳能电池 摘要: 纳米级太阳能电池有着其独特的属性,但也有一些缺点,尤其是在制造工艺上有着一定难度。纳米结构的晶体硅太阳能电池基于银催化的化学腐蚀法已经被可控制合成。这样,只有电池的前表面是刻蚀的后表面保护,这是发现通过新方法比通过传统的HF/AgNO3腐蚀能得到更好的光学性能。电池的开路电压和短路电流分别增加了百分之六和百分之十一。然后通过双层的(SiO 2 & SiN x )钝化和传统的氮化硅的钝化对比。它也被发现新的工艺钝化的太阳能电池的开路电压和短路电流提高了百分之四和百分之二十五。这样的结果会使得人们对纳米级晶体硅太阳能电池更加感兴趣。 介绍: 近年来,研究光伏吸引了关注。基于晶体太阳能电池硅(Si)的纳米结构(N阵列已经充当为下一代光伏候选人,由于其超低的反射率和优良的增强在捕获。相比于金字塔纹理太阳能电池,采用NS阵列的平面细胞组织—NG的报道有更好的光捕获能力,这表明更好的入射光吸收特性当入射光的反射和传输的结构 太阳能电池的能量转换效率,最终造成相当大的损失,NS阵列表现出一种很有前途的 在提高晶体硅太阳能电池性能的前景。NS阵列已通过实证的方法,包括气-液-固(VLS)的各种技术论证生长的方法,面罩辅助深反应离子蚀刻(RIE)的干蚀刻[ 10,11 ],和化学蚀刻使用银(Ag)作为催化剂[ 12,13 ]。在这些,银催化化学刻蚀技术已报道到目前为止产生具有超低垂直对齐NS阵列反射率小于3% [ 14 ]。这种技术可以制造大型NS阵列迅速在室温和大气。因此,它是非常简单的和较低的成本比其他技术,标签本身作为最幸运的工业化的适用技术。然而,直到现在,最终的能量转换NS阵列纹理单晶硅太阳能电池的效率没有相当满意。这个结果是由各种问题包括以下两个方面造成的。首先,银催化化学蚀刻是非选择性的和它所产生的NS阵列在Si晶片的两侧。作为一个结果,所制造的太阳能电池的背表面粗糙的铝(Al)的背表面场(BSF)剥离。这增加背表面的复合。其次,NS 阵列结构扩大太阳能电池的前表面面积,导致前表面复合的增加。 2. 实验内容 . P型硅片以及20 mm×20毫米细胞面积将会用到。所有的硅片三种类型(NS,NS - B,C 和NS)将清洗干净以及硫酸和氢过氧化物。原生氧化层表面会被刻蚀掉,沉积的Ag薄膜是我们在硅片正表面NS B和C电子NS电子束蒸发。然后另外两种硅片 通过快速热处理是热的。高温处理后,银纳米颗粒的分布是前线如果硅片表面。 反之,硅片在NS -是镀上 HF/AgNO3存银颗粒的混合物。 然后三种硅片都在纯水缓冲HF和H 2 O 2蚀刻溶液在25摄氏刻蚀成金字塔形的 NS变形表面。硅片表面的颜色在浓硝酸中除去银残留物但放置两小时后会变成黑色, 在传统的扩散过程对于所有的硅片是一样的,不同的钝化方法将会得到 不同种类的硅片。 (一)NS:后表面被蚀刻。表面是前线沉积的氮化硅(80 nm PECVD SiN x)中。 (二)NS(后表面是光滑的。表面是前线沉积的沉积PECVD氮化硅由80 nm。 (三)NS C:后表面是光滑的。表面是前线首先Grown of二氧化硅(SiO 2)的热氧化在750℃20分钟,然后镀上的80纳米硅用PECVD氮化。 边缘隔离后,前后两侧丝网印刷与Al和Ag浆料形成铝背场和前电极,然后烘烤的不同的贴印片。最后,干片共带了炉两端实现欧姆接触。的叙述了这三组细胞示意图,图1(a),(b)和(c)。图1(d),前回观NS纹理的太阳能电池具有不同的蚀刻方法。

几种新型太阳能电池性能比较

以化合物半导体为基体制成的太阳能电池。在种类繁多的化合物半导体材料中,不乏兼备优良光电特性、高稳定性、宜于加工制造的太阳能电池材料。化合物可构成同质结太阳能电池、异质结太阳能电池和肖特基结太阳能电池。它既可制成高效或超高效太阳能电池,又可制成低成本大面积薄膜太阳能电池,从而拓宽了光电材料的研究范围,也极大地丰富了太阳能电池家族。目前,世界上光电转换效率最高的是化合物半导体太阳能电池(如砷化镓太阳能电池效率η=24%~28%),或者是以化合物作为重要组分的太阳能电池(如砷化镓和硅叠合聚光太阳能电池效率η=32%~37%,薄膜硒铟铜/非晶硅太阳能电池效率η=14%~17%)。 在元素周期表中的Ⅲ-Ⅴ族化合物半导体,如砷化镓(GaAs)、磷化铟(InP);Ⅱ-Ⅵ族化合物半导体,如硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硫化锌(ZnS)、硒化锌(ZnSe)、碲化锌(ZnTe)等,都具有直接禁带跃迁的能带结构,吸收系数大,结构比较稳定。若用Ⅰ-Ⅲ族元素取代Ⅱ-Ⅵ族化合物中的Ⅱ族元素,则得到Ⅰ-Ⅲ-Ⅵ族三元化合物,如硒铟铜(CuInSe)、硫铟铜(CuInS)等。对应地,用Ⅱ-Ⅳ族元素代替Ⅲ-Ⅴ族化合物中的Ⅲ族元素,则构成Ⅱ-Ⅳ-Ⅴ族三元化合物,如锌硅砷(ZnSiAs2)等。从中可以挑选禁带宽度适合于吸收不同波长的太阳光、且可制成低电阻p型或n型基体的化合物半导体来制造太阳能电池。 具有代表性的化合物半导体太阳能电池有砷化镓太阳能电池、硫化镉太阳能电池和硒铟铜太阳能电池。 砷化镓太阳能电池Ⅲ-Ⅴ族化合物太阳能电池,其主要特点是: (1) GaAs的禁带宽度达1.43 eV,能有效地吸收太阳光,其理论效率达28%。 (2) GaAs是直接禁带跃迁材料,吸收系数大。吸收90%的太阳能只需5μm厚的GaAs,而硅则需厚为100μm以上才能吸收同样多的太阳能。 (3)耐高温,耐辐射,适宜于做聚光太阳能电池(聚光比可以高达1000~1735倍),也适宜于做太空飞行器上用的太阳能电池。 砷化镓太阳能电池的主要缺点是:价格昂贵,功率/重量比小,表面复合速度大等。 自1956年砷化镓太阳能电池问世以来,已制成pn结GaAs同质结太阳能电池和GaAlAs/GaAs 异质面太阳能电池等。砷化镓还可以分别与元素半导体、其他化合物构成许多异质结构的多晶薄膜GaAs太阳能电池。砷化镓太阳能电池的结构类同于硅太阳能电池,开路电压为0.88~1.0 V,短路电流密度稍低,一般为20~30 mA/cm2。 硫化镉太阳能电池是最先问世的Ⅱ-Ⅵ族化合物太阳能电池。硫化镉的禁带宽度为2.42 eV,吸收系数大,是比较理想的异质结窗口材料,CdS-Cu2S太阳能电池的效率极限为17.8%。但在研究中发现,CdS-Cu2S电池在自然光照条件下,铜离子会在pn结中宏观迁移,因而造成输出功率下降。现在正在用CdTe和其他合适的材料来制造低成本薄膜太阳能电池。 碲化镉太阳能电池碲化镉具有稳定性好、薄膜沉积速度快、价格便宜等优点,因而碲化镉与硒铟铜同样被选为当前最有希望的两种薄膜化合物太阳能电池之一。其光电转换效率,1991年为12.5%,1995年为15.8%,2000年有可能达到18%而进入产业化生产。 硒铟铜太阳能电池性能最好的Ⅰ-Ⅲ-Ⅵ族化合物太阳能电池。硒铟铜是目前已知的Ⅰ-Ⅲ-Ⅵ族三元化合物半导体中性能最好的光电材料,禁带宽度为1.01~1.04 eV,有直接能带结构,在异质结电池中可作为理想的基体材料。硒铟铜与硫化镉、碲化镉材料一样,可以用真空沉积法、喷涂法、丝网印刷法和悬浮电镀法制造薄膜电池。电池结构与硅薄膜电池类同。也可制成前壁型和后壁型两种。CuInSe电池的开路电压比硅的低,约为0.4~0.5 V,而短路电流密度可高达40 mA/cm2左右,是一种稳定性比较好的薄膜太阳能电池。其光电转换效率,1991年为13%,1995年为17%,2000年可达20%。

单晶硅太阳能电池制作工艺

单晶硅太阳能电池/DSSC/PERC技术 2015-10-20 单晶硅太阳能电池 2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH 的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。本文介绍的是晶硅太阳能电池片生产的一般工艺与设备。 一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术

高效晶体硅太阳能电池背场钝化技术

高效晶体硅太阳能电池 作者:S.W. Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。 表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

高效晶体硅太阳能电池钝化技术 《光伏制造杂志》

您的位置:首页专业媒体 光伏制造 高效晶体硅太阳能电池 作者:S.W.Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的

好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

等离子体刻蚀机原理

等离子体刻蚀机原理 什么是等离子体? ?随着温度的升高,一般物质依次表现为固体、液体和气体。它们统称为物质的 三态。 ?当气体的温度进一步升高时,其中许多,甚至全部分子或原子将由于激烈的相 互碰撞而离解为电子和正离子。这时物质将进入一种新的状态,即主要由电子和 正离子(或是带正电的核)组成的状态。这种状态的物质叫等离子体。它可以称 为物质的第四态。 等离子体的应用 等离子体的产生

等离子体刻蚀原理 ?等离子体刻蚀是采用高频辉光放电反应,使反应气体激活成活性粒子,如原子或游离基,这些活性粒子扩散到需刻蚀的部位,在那里与被刻蚀材料进行反应,形成挥发性反应物而被去除。 ?这种腐蚀方法也叫做干法腐蚀。 等离子体刻蚀反应

?首先,母体分子CF4在高能量的电子的碰撞作用下分解成多种中性基团或离子。 CF4→CF3,CF2,CF,C,F ?其次,这些活性粒子由于扩散或者在电场作用下到达SiO2表面,并在表面上发生化学反应。 ?生产过程中,在CF4中掺入O2,这样有利于提高Si和SiO2的刻蚀速率。 等离子体刻蚀工艺 ?装片 在待刻蚀硅片的两边,分别放置一片与硅片同样大小的玻璃夹板,叠放整齐,用夹具夹紧,确保待刻蚀的硅片中间没有大的缝隙。将夹具平稳放入反应室的支架上,关好反应室的盖子。 检验方法 ?冷热探针法 检验原理 ?热探针和N型半导体接触时,传导电子将流向温度较低的区域,使得热探针处

电子缺少,因而其电势相对于同一材料上的室温触点而言将是正的。 ?同样道理,P型半导体热探针触点相对于室温触点而言将是负的。 ?此电势差可以用简单的微伏表测量。 ?热探针的结构可以是将小的热线圈绕在一个探针的周围,也可以用小型的电烙 铁。 检验操作及判断 ?确认万用表工作正常,量程置于200mV。 ?冷探针连接电压表的正电极,热探针与电压表的负极相连。 ?用冷、热探针接触硅片一个边沿不相连的两个点,电压表显示这两点间的电压为负值,说明导电类型为p,刻蚀合格。相同的方法检测另外三个边沿的导电类型是否为p型。 ?如果经过检验,任何一个边沿没有刻蚀合格,则这一批硅片需要重新装片,进行刻蚀。 一.等离子体刻蚀工艺原理: 等离子体刻蚀机是基于真空中的高频激励而产生的辉光放电将四氟化碳中的氟离子电离出来从而获得化学活性微粒与被刻蚀材料起化学反应产生辉发性物质进行刻蚀的。同时为了保证氟离子的浓度和刻蚀速度必须加入一定比例的氧气生成二氧化碳。 二.主要用途及适用范围: 该设备主要对太阳能电池片周边的P—N结进行刻蚀,使太阳能电池片周边呈开路状态。也可用于半导体工艺中多晶硅,氮化硅的刻蚀和去胶。 三.使用环境及工作条件: 1)环境温度:5℃—40℃; 2)相对湿度:<70%; 3)环境净化等级:>10000级; 4)大气压强:一个标准大气压; 5)电源:三相交流380(1±10%)V,频率50 (1±10%)Hz; 6)所用气体压力:0.1Mpa—0.2 Mpa;所用气体为四氟化碳、氧气和氮气。 7)每台设备要有良好的,独立的接地且接地电阻最好小于0.1Ω;四.总体结构: 本设备由真空管路系统、气路系统、反应室、压力控制系统、SY型射频功率源、电源供电及控制部分组成。 1)真空管路系统主要由2X—15型旋片式真空泵、电磁隔断放气阀、波纹管、碟阀、预抽阀、电磁隔断阀组成。 2)气路系统主要由控制四氟化碳、氧气、尾气、稀释、氮气的电磁阀及不锈钢管和软管组成。其中为了精确控制四氟化碳和氧气10:1的混合比例,在控制四氟化碳和氧气电磁阀的后级加了质量流量计。(这里要附带讲一下关于工作压差的问题,我们所用的质量流量计的工作压差为0.1Mpa—0.5Mpa。而反应室的辉光工作压力为80Pa或更低,尤其是在充气瞬间。因此这就是为什么要求供气压力设定为0.1Mpa—0.2 Mpa的原因。以前出现过由于硅片刻不通,操作

太阳能电池-湿法刻蚀工艺指导书

蒈 Edge Isolation & PSG Selective Emitter 工艺操作规程 莁产品型号名称 賺156X 156多晶绒面电池 薆共6页 蒄第 腿设计文件名称 羅 T-IS-026

肂1、工艺目的: 节通过化学反应,将硅片上下表面的PN结刻断,以达到正面与背面绝缘的目的;另外经过 化学反应,刻蚀掉未被蜡覆盖的硅片表面的一定深度,做选择性发射极;最后用BDG去除inkjet工序中的喷涂的层蜡,用KOH药液去除硅片表面的多孔硅;同时用HF去除表面的磷硅玻璃层。 罿2、设备及工具: 肇Edge Isolation & PSG Selective Emitter 、电子天平、PVC手套、口罩、防护服、防护眼罩、防护套袖、橡胶手套、防酸碱胶鞋、GPSolar电阻测试仪(边缘电阻)、浓度分析仪等。 袂3、适用范围 聿本工艺适用于Edge Isolation & PSG Selective Emitter 。 肇4、职责 薇本工艺操作规程由工艺工程师负责调试、修改、解释。 薃5、材料: 肁合格的多晶硅片(INKJET后)、HF(49%电子级,工作压力3-5bar,

葿KOH(49%,电子级,工作压力3-5bar )、HNO(65% 电子级,工作压力3-5bar),羆DI水(工作压力3-5bar )、压缩空气(工作压力6-7bar,除油,除水,除粉尘) 莃Butyldiglycol (2 一(2 一丁氧乙氧基)乙醇)(BDG (100%,电子级,工作压力 3-5bar), ),膂冷却水(入水:工作压力3-4bar,最大入水温度25°C,出水工作压力:最大2bar 薈新鲜空气(Fresh air用于旋转器腔室)(工作压力100Pa), 莅乙二醇(制冷机)。 肃6、工艺描述: 羀6.1、工艺条件:环境温度:+ 22° C to + 24° C;环境湿度:45 to 65 %RHat 24° C;

太阳能电池特性测量

太阳能电池特性实验仪 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO 2、SO 2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO 2已经超过500亿吨。我国能源消费以煤为主,CO 2的排放量占世界的15%,仅次于美国,所以减少排放CO 2、SO 2广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。 在地球大气圈外,太阳辐射的功率密度为1.353kW /m 等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 2 ,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射 的功率密度约为1kW /m 2 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 ,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验内容 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量

几种太阳能电池的工作原理及区别

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P 区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料

晶体硅太阳电池生产PECVD技术进展

晶体硅太阳电池生产PECVD技术进展 硅的折射率为3.8,如果直接将光滑的硅表面放置在折射率为1.0的空 气中,其对光的反射率可达到30%左右。人们使用表面的织构化降低了 一部分反射,但是还是很难将反射率降得很低,尤其是对多晶硅,使用 各向同性的酸腐蚀液,如果腐蚀过深,会影响到PN结的漏电流,因此 其对表面反射降低的效果不明显。 一引言 为了降低晶体硅太阳电池的效率,通常需要减少太阳电池正表面的反射,还需要对晶体硅表面进行钝化处理,以降低表面缺陷对于少数载流子的复合作用。 硅的折射率为3.8,如果直接将光滑的硅表面放置在折射率为1.0的空气中,其对光的反射率可达到30%左右。人们使用表面的织构化降低了一部分反射,但是还是很难将反射率降得很低,尤其是对多晶硅,使用各向同性的酸腐蚀液,如果腐蚀过深,会影响到PN结的漏电流,因此其对表面反射降低的效果不明显。因此,考虑在硅表面与空气之间插一层折射率适中的透光介质膜,以降低表面的反射,在工业化应用中,SiNx膜被选择作为硅表面的减反射膜,SiNx膜的折射率随着x值的不同,可以从1.9变到2.3左右,这样比较适合于在3.8的硅和1.0的空气中进行可见光的减反射设计,是一种较为优良的减反射膜。 另一方面,硅表面有很多悬挂键,对于N型发射区的非平衡载流子具有很强的吸引力,使得少数载流子发生复合作用,从而减少电流。因此需要使用一些原子或分子将这些表面的悬挂键饱和。实验发现,含氢的SiNx膜对于硅表面具有很强的钝化作用,减少了表面不饱和的悬挂键,减少了表面能级。 综合来看,SiNx膜被制备在硅的表面起到两个最用,其一是减少表面对可见光的反射;其二,表面钝化作用。 二PECVD技术的分类 用来制备SiNx膜的方法有很多种,包括:化学气相沉积法(CVD法)、等离子增强化学气相沉积(PECVD法)、低压化学气相沉积法(LPCVD法)。在目前产业上常用的是PECVD法。 PECVD法按沉积腔室等离子源与样品的关系上可以分成两种类型:

等离子体刻蚀..

等离子体刻蚀 ●集成电路的发展 1958年:第一个锗集成电路 1961年:集成8个元件 目前:集成20亿个元件 对比: 第一台计算机(EN IAC,1946),18000 只电子管, 重达30 吨, 占 地180 平方米, 耗电150 千瓦。奔II芯片:7.5百万个晶体管 ●集成电路发展的基本规律 穆尔法则:硅集成电路单位面积上的晶体管数,每18个月翻一番,特征尺寸下降一半。 集成度随时间的增长: 特征长度随时间的下降:

集成电路制造与等离子体刻蚀 集成电路本质:微小晶体管,MOS场效应管的集成 微小晶体管,MOS场的制作:硅片上微结构制作----槽、孔早期工艺:化学液体腐蚀----湿法工艺 5微米以上 缺点: (a)腐蚀性残液----->降低器件稳定性、寿命 (b)各向同性 (c)耗水量大(why) (d)环境污染

随着特征尺寸的下降,湿法工艺不能满足要求,寻求新的工艺----> 等离子体干法刻蚀,在1969引入半导体加工,在70年代开始广泛应用。

等离子体刻蚀过程、原理: 4

刻蚀三个阶段 (1) 刻蚀物质的吸附、反应 (2) 挥发性产物的形成; (3) 产物的脱附, 氯等离子体刻蚀硅反应过程 Cl2→Cl+Cl Si(表面)+2Cl→SiCl2 SiCl2+ 2Cl→SiC l4(why) CF4等离子体刻蚀SiO2反应过程 离子轰击作用 三种主要作用 (1)化学增强物理溅射(Chemical en2hanced physical sputtering) 例如,含氟的等离子体在硅表面形成的SiF x 基与元素 Si 相比,其键合能比较低,因而在离子轰击时具有较高 的溅射几率, (2)晶格损伤诱导化学反应(damage - induced chemical reaction) 离子轰击产生的晶格损伤使基片表面与气体物质的反 应速率增大 (3)化学溅射(chemical sputtering) 活性离子轰击引起一种化学反应,使其先形成弱束缚的 分子,然后从表面脱附。 其他作用 ?加速反应物的脱附 ---> 提高刻蚀反应速度 ?控制附加沉积物---> 提高刻蚀的各向异性

相关文档
最新文档