催化作用原理(第一、二章)讲解

催化作用原理(第一、二章)讲解
催化作用原理(第一、二章)讲解

催化作用原理

《催化作用基础》

课程名称:《催化作用基础》或《催化作用原理》或《催化剂与催化作用》绪论

第一章催化剂与催化作用的基本知识

第二章催化剂的吸附、表面积和孔结构

第三章金属催化剂及其催化作用

第四章半导体催化剂及其催化作用

第五章酸碱催化剂及其催化作用

第六章配位络合物催化剂及其催化作用

第七章催化剂的评价及失活与再生

第八章催化剂的设计和制备

专题讲座: 1. 择形催化与高选择性催化分子筛材料

2. 芳胺N-烷基化反应及其催化剂研究

3. 钛硅(TS-1)分子筛的合成及催化应用

4. 催化新材料:MCM-41等

#现代物理测试手段与催化剂的表征:

XRD,SEM,IR,NMR,UV-Vis,UV-Raman,NH3-TPD等

——催化剂及其催化作用的基础研究

参考书目

1.王桂茹主编,王祥生审,

《催化剂与催化作用》,2000年8月第1版大连理工大学出版社出版[王桂茹,李书纹编(大连工学院石油化工教研室)(讲义) 1986年] 2.吉林大学化学系《催化作用基础》编写组编,

《催化作用基础》 1980年科学出版社出版

3.黄开辉,万惠霖编(厦门大学化学系),

《催化原理》 1983年科学出版社出版

4.顾伯锷,吴震霄编,

《工业催化过程导论》 1990年高等教育出版社出版

5.王文兴编,

《工业催化》 1982年化学工业出版社出版

6.闵恩泽著,《工业催化剂的研制与开发——我的实践与探索》,

1997年中国石化出版社出版

7.陈连璋编著,

《沸石分子筛催化》 1990年大连理工大学出版社出版

8.徐如人,庞文琴,屠昆岗等著,

《沸石分子筛的结构与合成》1987年吉林大学出版社出版

9.天津大学编,〈〈多相催化作用原理〉〉

10.高滋主编,何鸣元,戴逸云副主编,《沸石催化与分离技术》,中国石化出版

社,1999年11月第1版;

* 讲述内容;学习方法:学什么?怎么学?

绪论

一.催化剂与催化作用的重要性

1.使用催化剂的工业部门

现代化学工业、石油炼制、石油化学工业、食品工业、环境保护等

2.没有现代催化科学的发展和催化剂的广泛使用就没有现代化的化学工业。

催化过程构成了现代的化学工业,催化过程在化工生产约占90%。

催化过程与人们吃、穿、住、用的物资生产过程密切相关。

例如:合成氨—— Fe催化剂

聚乙烯、聚丙烯——齐格-勒塔催化剂

3.环境和能源问题是全球性的问题

环境问题:

NOx的脱除——SCR催化剂

SO2的脱除:SO2—SO3,V2O5催化剂

在美国,设“绿色化学”的总统奖。

能源问题:燃料电池——需要用催化剂(大化所在研究)

CH3OH——汽油;

费托合成

2(CO + H2)——二甲醚

甲醇——二甲醚

4.新催化剂技术和新催化过程是我国优先发展的科学技术之一。

在美国一直列为关键技术。

新催化过程和催化技术将为化学工业带来新前景。

5.资源的利用:甲烷芳构化制芳烃;

渣油的炼制:

二.催化科学发展的回顾

1.古代的生物催化过程:a)烤面包时发面的调配;

b)葡萄汁发酵制酒;

c)酒酸化制醋;

2.十七世纪初,Daxy 用铂黑使乙醇氧化;

用硫酸催化乙醇脱水可得乙醚。

3.十八世纪,M.克列曼和X.吉若尔母首先研究铅式法合成硫酸机理。

4.十九世纪末,Sabatier用Ni作加氢催化剂:乙烯加氢可得乙烷

苯加氢得到环己烷。

Fe、Co、Ni之类的过渡金属开始被用作有机合成催化剂,并且使用范围日益扩大。

为了有效地扩大催化剂的使用,科学家们除着手研究催化剂的组成、制备、反应活性与反应条件之间的关系外,还进一步探讨了反应机理。

1794年M.Fullrame提出了“中间化合物理论”,后来经过很多人的工作(例如克列曼、门捷列夫、安培尔等)于二十世纪初获得广泛承认。

随着催化科学的发展,二十世纪初,著名的催化过程合成

氨被Nernst和Haber实现,这不仅完成了一项人工氮循环过程,而且给理论工作提供了一个典型的反应过程。

接着Bodenstein对SO2氧化成SO3做了一系列理论工作,在此遇到了许多多相催化问题,推动了物理理论中研究较多的吸附理论的研究。1916年Langmuir提出了单分子层的多相吸附平衡理论。这一理论至今仍被应用。

Langmuir和锐基尔认为在多相催化中,由于反应物与催化剂产生化学吸附,使反应物分子活化容易进行反应。即明确提出了化学吸附的概念。

Taylor对表面的不均匀性提出了活性中心学说,他和焦母金认为并不是催化剂的全部表面都有活性,而只有被称为活性中心的某些部位才有活性,这些活性中心可能是结晶的顶点、棱边或晶面,或者催化剂中的某些破损和缺陷。

活性中心理论较好地说明了催化剂制备及中毒对催化作用的影响。

活性中心理论在巴兰金的多位理论和柯巴捷夫的活性集团理论中得到进一步发展。

1929年巴兰金认为催化活性中心可视为催化剂的结晶格子,它的几何尺寸与反应物分子的结构和几何尺寸相对应,此外还要考虑能

量的对应,只有交好的对应才能使反应得以进行,这一理论解释了催化剂结构对催化作用的影响,还预言了某些新催化剂。

1939年柯巴捷夫把未形成结晶的非晶相中几个催化剂原子看作是催化活性中心,同样认为是价不饱和的原子集团,从而解释了选择性。

物理理论论述了化学理论所不能解释的问题,但在催化过程中发现一些催化现象与催化剂的电性、磁性有关,于是出现了电子理论。Nyvop和POTUHCKUU从电子因素来说明催化活性,Schwood做了磁性对活性的关联工作,Pouling从核间距、原子结构解释了过渡金属dsp 杂化轨道d-特性%与催化活性的关系。催化作用原理更加发展。

此外谢苗洛夫对自由基反应提出了链锁理论,他认为不仅在催化表面生成自由基,而且自由基可能到空间,按链锁机理继续进行反应。

由此可见:催化科学伴随着科学技术的发展在发展。

尽管已提出的催化理论都有合理的内涵,但又都有其不足之处,其中两条是公认的。

1.催化作用发生必须有催化剂与反应物之间的化学作用;

2.催化剂表面活性中心的存在,及其结构、性质将决定催化作用的进行。

**合成氨催化剂和合成氨技术:

1909年 Haber用鋨(Os)

1912年Carl Bosch的助手Alwin Mittasch

6500次评选试验,考察了2500种催化剂。

1919年评选试验超过一万次。

1905年Haber曾用Fe,Mittasch试验纯铁合成氨产率为0.4%;

1909年11月6日Mittasch的助手Wolf博士,用一瓶放置多年的瑞典Gallivaro铁矿石,氨产率达3%;

后来发现在纯铁中加入Al2O3,KOH,CaO等,可以得到良好的催化剂

1913年9月9日,日产NH3量为5吨。

*著名的催化过程合成氨被Nernst和Haber实现,这不仅完成了一项人工氮循环过程,而且给理论工作提供了一个典型的反应过程。Nernst和Haber因合成氨催化剂和技术获得了诺贝尔奖

人们从合成氨技术的研究开发成功的过程中认识到许多新东西:

1.催化剂是由多组分组成的;过渡金属可作为活性组分;

2.建立许多理论方法:吸附概念,BET方程,吸附等温线方程等

3.多相催化反应动力学的研究:多相催化反应机理等。

三.催化科学的特点

现代催化科学具有以下特点:

1.发展性

催化科学在现阶段无论在广度和深度上都在发展中。从不断开发的新催化过程中积累材料,归纳提出新的概念和理论,反过来又在新的概念和理论指导下进一步探索,开发新型催化剂,在此过程中还发展了许多新的研究技术。

a)提出新的概念和理论;开发新型催化剂;

b)合成新催化材料;

c)开发新催化工艺;

此外催化科学随着相关学科的发展或突破而发展、突破,物理学的发展大大促进了催化学科的发展(TEM、AFM、UV-Vis光谱等手段),化学工业的发展给催化科学的发展带来了机遇。例如炼油工业就给催化科学提供了舞台,带动了催化科学的发展。

2.综合性

a)催化科学与多种学科相互渗透。

B)催化科学本身是在许多基础学科的基础上发展起来的

C)催化是一种十分复杂的现象,涉及化学、材料、工程和表面科学等学科。

3.实践性

催化科学是一门实用性较强的科学,它与工业生产密切相关,它来自生产,又服务于生产,并在生产实践中不断发展完善。问题:

Catalysis: Science or Art?

随着催化科学在下述几个方面的发展,工业催化剂的研制和开发将向催化科学化不断迈进。

1.不断引入和发展表征催化剂和催化过程的新实验技术。

表征方法有:a)测定表面结构的X射线吸收近边结构;

b)研究单晶催化剂表面和吸收质结构的扫描隧

道显微镜(STM)和扫描原子力显微镜(SAFM) c)用来跟踪原位动态学的红外可见全频在线技

术(Infrared Visible Sam Frequency

Generation)

原位光谱、波谱、X射线衍射谱和吸收谱已在不同程度上应用

于催化研究。时间分辨(可达10ns)的傅立叶变换红外光谱(FT-IR)技术也在应用。UV-Raman

2.应用理论方法来描述和预测催化剂的性能。

a)量子化学从头计算:小分子基元步骤势能曲线;

b)蒙特卡洛(Monte Carlo)计算方法:可以研究催化剂表面及催化反应动力学;

c)分子动态学和过渡态理论:研究势能面等。

3.应用计算机进行催化剂的设计。

a)专家系统

b)方案选择与优化

c)模拟实验:Monte Carlo模拟可以代替NH3-TPD研究分子筛酸性;Monte Carlo模拟可以研究催化反应动力学;分形概念可用于研究催化反应。

对催化学科来说,重要的国际会议有:

1、国际催化会议(International Catalysis Conference)

2、国际分子筛会议(International Zeolite Conference)

3.催化剂制备科学基础专题研讨会(Symposium on Scientific Basis for Catalyst Preparation)

4.美国化学会年会(石油化学组)(American Chemical Society Meeting (Petroleum Chemistry Division )

5.北美催化会议(North American Catalysis Conference)

6.欧洲催化会议(European Catalysis Conference)

国内重要催化会议有:全国催化会议,

石油化工催化会议,

分子筛会议,

全国青年催化会议,

环境催化会议,

络合催化会议,等等

全国光催化会议也已经召开

与催化学科直接有关的期刊有:

1.Journal of Catalysis (《催化杂志》)

2.Applied Catalysis (《应用催化作用》)

3.Catalysis Today (《今日催化》)

4.Journal of Molecular Catalysis (《分子催化》)

5.Catalysis Letter (《催化快报》)

6.Catalysts in Chemistry (《化学催化剂》)

7.Catalysis Reviews –Science and Engineering (《催化评论》) 8.Chemical & Engineering News (《化学与工程新闻》)

9.Advances in Catalysis

10. Chemical Reviews

11. Journal of the American Chemical Society

12. Chemical Communications

中文期刊有:

《催化学报》《化学反应工程与工艺》

《分子催化》《高等学校化学学报》

《工业催化》《化学学报》

《石油化工》《高校化学工程学报》

《石油学报》(石油加工)《物理化学》

《石油炼制与化工》《中国化学》(英)

第一章催化剂与催化作用的基本知识

#1催化作用的特征

一、催化作用通过改变反应过程改变反应速度

催化剂使反应沿着一条新的途径进行,这条途径是由几个基元反应组成,每个基元反应的活化能都很小。通常加入催化剂至少可使反应活化能较未加入时降低10Kcal/mol,它可使催化反应速度增加万倍之多。

e -△E催/ RT

e △E/RT = ———————

e -△E非/ RT

即△E = E非 - E催

例如:合成氨反应在铁催化剂作用下通过下述几步进行。

N2 + 3 H2

3

基元反应:x Fe + 1/2 N2 Fex N (1) Fex N + 1/2 H2 Fex NH (2) Fex NH + H2 Fex NH3 (3)

Fex NH3 x Fe + NH3 (4)

从合成氨反应活化能示意图可以看出,在没有催化剂参加反应时活化能很高E非为230—930KJ/mol,当有铁催化剂参加时改变了反应历程,反应分两步完成,第一步生成铁的氮化物(方程1),其活化能E1为126——167KJ/mol。第二步Fex N 加H生成NH3(方程2、3、4),其活化能E2为12.6 KJ/mol,总计179.2 KJ/mol。根据上述公司可计算出速度之比为:

当 E非为230 KJ/mol,速度可增加4000多倍;

如果E非为930 KJ/mol ,速度可增加到1.87*1054倍;

可见活化能的降低可以大大增加反应活化分子数从而加快了反应速度。在反应温度为400℃时没有铁催化剂存在,其反应速度竟不能觉察出来,而有铁催化剂存在时实现了目前工业生产合成氨。

当然也有不是通过改变反应活化能而是通过改变指前因子而使反应加快的。例如甲酸的分解,以玻璃为催化剂分解时活化能为

24.5Cal/mol,以铑为催化剂的分解活化能为25 Cal/mol,两者活化能相近,然而以铑为催化剂时的分解速度是以玻璃为催化剂时的分解速度的一万倍。

二、催化作用不能改变化学平衡

一个化学反应进行到什么程度,即它的化学平衡是由热力学所决定的。

ΔZ0 = - RT Ln K P(1-2)

其中ΔZ0是产物与反应物之标准自由焓之差,Kp是反应的平衡常数。ΔZ0是状态函数,只决定于过程的始态和终态,而与过程无关。反应物、产物的种类,状态和温度一定时反应的平衡即是确定的。催化

剂的存在与否不影响ΔZ0的数值,即ΔZ0催=ΔZ0非,所以不改变化学平衡。催化剂只能加速一个热力学上容许的化学反应,提高达到平衡状态的速度率。表1-1 是一个催化剂不改变化学平衡的例子。

表1-1 在三聚乙醛-乙醛反应中应用不同催化剂所达到的平衡

催化剂既然不能改变化学平衡,必然对正反应和逆反应都有加速作用。因为K平 = K正 / K逆,否则K平就不会保持不变。例如金属催化剂Pd、Pt、Ni等既可用于加氢反应,也可用于脱氢反应。

三、催化剂对加速化学反应具有选择性

所谓催化剂的选择性是指特定催化剂只能以催化加速特定反应为主。以合成气为原料,在热力学上可以沿着几个途径进行反应,但由

于使用不同的催化剂时反应得到不同产物。

表1-2 催化剂对可能进行的特定反应的选择催化作用

又如乙醇的催化转化。根据统计用各种适当的催化剂,在不同条件下

可制得25种产物,其中重要的如下:

#2.催化作用的分类

一、按催化反应系统物相的均一性进行分类,可以分为均相和非均相催化反应。

1.均相催化反应:

2.非均相催化反应:又称多相催化反应。

3.酶催化反应:

二、按反应单元进行分类

这类分类方法是根据催化反应所进行的化学反应的类型分类的。表1-2列出了某些反应单元中所用催化剂的组分。这种分类方法不是着眼于催化剂,但由于同类型反应常常存在着某些共性,这就有可能用已知催化剂来催化同类型的另一反应。例如Ni是乙烯的加氢催化剂,可推测它适用于其它不饱和烃的催化加氢,实际上它是苯加氢良好催化剂。

表1-3 某些重要的反应单元及所用的催化剂

(1)Φ

2表示苯基

三、按反应机理进行分类。

目前普遍公认按反应机理分两类,即酸碱型催化反应和氧化还原型催化反应。

1.酸碱型催化反应的反应机理可以认为是催化剂与反应物分

子之间由电子对的受授而配位,或者发生强烈极化,形成活

性中间物种进行催化反应。

2.氧化还原型催化反应的反应机理可以认为是催化剂与反应

物分子之间发生单个电子转移,从而形成活性中间物种。

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

催化原理习题

《催化原理》习题(一) 第一章 一、填空题 a)本世纪初,合成NH3 ,HNO3 ,H2SO4催化剂的研制成功为近代无 机化学工业的发展奠定了基础。催化裂化,催化加氢裂化,催化 重整催化剂的研制成功促进了石油化工的发展。 b)随着科学的进步,所研制的催化剂活性的提高和寿命的延长,为化工 工艺上降低反应温度、压力,缩短流程,简化反应装置提供了有 力的条件。 四.回答题 1.简单叙述催化理论的发展过程。 答:从一开始,催化剂的应用就走在其理论的前面。 1925年,Taylor的活性中心学说为现代催化理论的奠定了基础。 在以后的20多年中,以均相反应为基础,形成了中间化合物理论。 50年代,以固体能带模型为弎,又形成了催化电子理论。 60年以后,以均相配位催化为研究对象,又形成表面分子模型理论。 由此,催化理论逐渐发展起来。 2.哪几种反应可以在没有催化剂的情况下进行,在此基础上分析催化作 用的本质是什么。 答:(1)下列反应可在没有催化剂时迅速进行: a)纯粹离子间的反应 b)与自由基有关的反应 c)极性大或配们性强的物质间的反应 d)提供充分能量的高温反应 (2)在含有稳定化合物的体系中加入第三物质(催化剂),在它的作用下,反应物的某些原子会发生离子化,自由基化或配位化,从而导致 反应历程的变化,使反应较容易进行。这就是催化剂催化作用的本质。第二章 一.概念题(催化剂的) 选择性,催化剂失活,可逆中毒,催化剂机械强度 答:催化剂的选择性:是衡量催化剂加速某一反应的能力。 催化剂失活:催化剂在使用过程中,其结构和组成等逐渐遭到破坏,导致催化剂活性和选择性下降的现象,称为催化剂失活。 可逆中毒:指毒物在活性中心上的吸附或化合较弱,可用简单方法使催化剂的活性恢复。 催化剂机械强度:指固体催化剂颗粒抵抗摩擦、冲击、重力的作用,以及温度、相变作用的能力。 二.填空题: a) 按照反应机理中反应物被活化的方式催化反应可分为: 氧化还原催化反 应,酸碱催化反应,配位催化反应。 b)结构性助剂可改变活性组分的物理性质,而调变形助剂可改变活性组 分的化学性质。

催化作用原理(名词解释+填空)

【名词解释】 1、可持续发展:既满足当代人的需求,又不对后代人满足其需求的能力构成危害的发展称为可 持续发展。 2、催化裂化:是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等 过程。 3、加氢裂化:在较高的压力和温度下,氢气经催化剂作用使重质油发生加氢、裂化和异构化 反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。 4、催化重整:是在催化剂作用下从石油轻馏分生产高辛烷值汽油组分或芳香烃的工艺过程。 5、加氢精制:是指在催化剂和氢气存在下,石油馏分中含硫、氮、氧的非烃组分发生脱除硫、 氮、氧的反应,含金属有机化合物发生氢解反应,同时,烯烃发生加氢饱和反应。 6、温室效应:由于大气层中的某些气体对太阳辐射的红外线吸收而导致大气层温度升高,地球 变暖的现象。 7、催化剂:是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在 化学反应中不被明显消耗的化学物质。 催化作用:指催化剂对化学反应所产生的效应。 8、活化:通过还原或硫化使催化剂活性组份由金属氧化物变为金属态或硫化态的过程。 9、化学吸附是反应物分子活化的关键一步,反应物分子与催化活性表面相互作用产生新的化学 物种——反应活性物种。 10、吸附现象:当气体与清洁的固体表面接触时,在固体表面上气体的浓度高于气相的现象。 吸附质:被吸附的气体。 吸附剂:吸附气体的固体。 吸附态:吸附质在固体表面上吸附后存在的状态。 吸附中心或吸附位:通常吸附是发生在固体表面的局部位置,这样的位置。 吸附中心与吸附态共同构成表面吸附络合物。 吸附平衡:当吸附过程进行的速率与脱附过程进行的速率相等时,表面上气体的浓度维持不变的状态。 11、积分吸附热 在一定温度下,当吸附达到平衡时,平均吸附1mol气体所放出的热量称为积分吸附热q积。 微分吸附热 催化剂表面吸附的气体从n mol 增加到 (n+d n) mol时,平均吸附每摩尔气体所放出的热量。 12、化学吸附态一般是指吸附物种在固体表面进行化学吸附时的化学状态、电子结构和几何构 型。 13、凡是能给出质子的物质称为酸(B酸) 所谓酸(L酸),乃是电子对的受体,如BF3 固体酸:能给出质子或者接受电子对的固体称为固体酸。 14、相容性: 发生催化反应时,催化剂与反应物要相互作用。除表面外,不深入到体内,此即相容性。 15、d带空穴: 金属镍原子的d带中某些能级未被充满,称为“d带空穴”。 16、溢流现象是指固体催化剂表面的活性中心(原有的活性中心)经吸附产生出一种离子或者自 由基的活性物种,它们迁移到别的活性中心处(次级活性中心)的现象。 17、结构敏感反应:反应速率对金属表面的微细结构变化敏感的反应。 结构不敏感反应:反应速率不受表面微细结构变化的影响。 18、沸石:自然界存在的结晶型硅铝酸盐(由于晶体中含有大量结晶水,加热汽化,产生类似

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

催化原理

一、催化剂的定义与催化作用的特征 1.定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。2.特征:①加快反应速率;②反应前后催化剂不发生化学变化(催化剂的化学组成--不变化物理状态---变化(晶体、颗粒、孔道、分散))③不改变化学平衡④同时催化正、逆反应。⑤对化学反应有定向选择性。 二、催化剂的评价指标 工业催化剂的四个基本指标:选择性、稳定性、活性、成本。 对工业催化剂的性能要求:活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、再生性。 1.活性催化剂使原料转化的速率:a=-(1/w)d(nA)/dt 2.生产能力--时空收率:单位体积(或单位质量)催化剂在单位时间内所生产的目的产物量Y v,t=n p/v.t or Y W,t=n p/w.t 3.选择性:目的产物在总产物中的比例S=Δn A→P/Δn A=(p/a).(n P/Δn A) =r P/Σr i 4.稳定性:指催化剂的活性随时间变化 5.寿命:是指催化剂从运行至不适合继续使用所经历的时间 三、固体催化剂催化剂的组成部分 主催化剂---活性组份:起催化作用的根本性物质,即催化剂的活性组分,如合成氨催化剂中的Fe。其作用是:化学活性,参与中间反应。 共催化剂:和主催化剂同时起作用的组分,如脱氢催化剂Cr2O3-Al2O3中的Al2O3。甲醇氧化的Mo-Fe催化剂。 助催化剂:它本身对某一反应无活性,但加入催化剂后(一般小于催化剂总量10%)能使催化剂的活性或选择性或稳定性增加。加助催化剂的目的:助活性组份或助载体。 载体:提高活性组份分散度,对活性分支多作用,满足工业反应器操作要求,满足传热传质要求。 四、固体催化剂的层次结构 初级粒子:内部具有紧密结构的原始粒子; 次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔; 催化剂颗粒:次级粒子聚集而成-----造成固体催化剂的粗孔; 多孔催化剂的效率因子:η=K多孔/K消除内扩散=内表面利用率<1 五、催化剂的孔内扩散模型 物理吸附:分子靠范德华力吸附,类似于凝聚,分子结构变化不大,不发生电子转移与化学键破坏。 努森扩散(微孔扩散):当气体浓度很低或催化剂孔径很小时,分子与孔壁的碰撞远比分子间的碰撞频繁,扩散阻力主要来自分子与孔壁的碰撞。散系数D K=9700R(T/M)0.5 式中:R是孔半径,cm; T是温度,K;M是吸附质相对分子量。 体相扩散(容积扩散):固体孔径足够大,扩散阻力与孔道无关,扩散阻力是由于分子间的碰撞,又称分子扩散。体相扩散系数D K=νγθ/(3τ)式中ν、γ 分别是气体分子的平均速率和平均自由程;θ 固体孔隙率;τ 孔道弯曲因子,一般在2~7。 过渡区扩散:介于Knudsen扩散与体相扩散间的过渡区。分子间的碰撞及分之与孔道的碰撞都不可忽略 构型扩散:催化剂孔径尺寸与反应物分子大小接近,处于同一数量级时,分子大小发生微小变化就会引起扩散系数发生很大变化。例如:分子筛择形催化 六、催化过程的分类 均相催化:反应物和催化剂处于同一相

催化原理总结

催化原理总结 《催化作用基础》总结,2010级,第一章绪论,催化剂的重要性质:活性:转化率选择性:分数选择性,相对选择性,工业选择性,产率寿命:寿命曲线(成熟,稳定,衰老)价格:选择催化剂应考虑的因素:选择性,寿命,活性,价格固体催化剂的一般组成:载体,主催化剂(活性组份),助催化剂(载体的:提高稳定性,抑制副反应,提供双功能;活性组份的:促进活性结构的形成,调变活性组份的电子云密度)载体的作用:1)分散活性组分;2)稳定化作用(抑制活性组份的烧结);3)助催化作用(如,提供酸性,对金属组分的调节作用);4)支撑作用;5)传热与稀释作用负载型催化剂的组成:载体、活性组分、助剂,催化剂的分类1.按催化反应体系物相的均一性分类:均相,非均相(多相),酶催化2.按催化剂的作用机理分类:1)氧化还原:加氢、脱氢、氧化、脱硫等2)酸碱催化:水合、脱水、裂化、烷基化、异构化、歧化、聚合等3)配位催化:烯烃氧化、烯烃氢甲酰化、烯烃聚合、烯烃加氢、烯烃加成、甲醇羰基化、烷烃氧化、酯交换等3.按催化反应类型分类1)加氢2)脱氢3)部分氧化4)完全氧化5)水煤气变换6)合成气7)酸催化的裂化、歧化、异构化、烷基化、聚合、水合、脱水等反应8)氧氯化反应9)羰基化10)聚合,第一章绪论,4.按催化剂分类1)酸、碱催化剂均相酸、碱催化剂多相酸、碱催化剂(固体酸、碱催化剂)2)金属催化剂3)半

第一,络合催化剂)4导体催化剂过渡金属氧化物过渡金属硫化物.章绪论,第二章吸附作用与多相催化,多相催化的反应步骤与扩散 固体表面分子在固体表面的吸附金属表面上的化学吸附氧化物 表面上的化学吸附吸附等温线,1.多相催化反应步骤1)反应物分子从气流中向催化剂表面和孔内扩散2)反应物分子在催化剂内表面上吸附3)吸附的反应物分子在催化剂表面上相互作用进行化学反应4)反应产物自催化剂内表面脱附5)反应产物在孔内 扩散并扩散到反应气流中去,第二章吸附作用与多相催化,扩散扩 散方式:常规:孔径≥100nm努森:孔径≤100nm构型:孔径<1.5nm 扩散系数:,第二章吸附作用与多相催化,2.吸附物理吸附:分子 间力,吸附力弱,吸附热小(8~20kJ/mol),可逆吸附,无选择性,可发生多层吸附化学吸附:化学键力,吸附力强,吸附热大(40~800kJ/mol),般不可逆,有选择性,单分子层吸附类似化 学反应,遵循化学热力学和动力学规律,第二章吸附作用与多相 催化,3.固体表面结晶、无定形物质、配位多面体1)晶体表面的晶面暴露晶面的影响因素:影响不同晶面暴露比例的因素:热力学动力学稳定的晶面特点:(1)单位面积上未满足的键的数目小;(2)电中性。 ,第二章吸附作用与多相催化,晶体的缺陷分类:点,线,面,立体晶体表面的缺陷与催化作用原子水平的固体表面是不均匀 的表面具有高浓度的位错和缺陷:,第二章吸附作用与多相催化, 分子在固体表面的吸附吸附过程的推动力:固体表面自由能的降

催化原理

Fsw 第一章 1催化剂和催化作用 催化剂:是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质 催化作用:是指催化剂对化学反应所施加的作用。具体地说,催化作用是催化剂活性中心对反应物分子的激发与活化,使后者以很高的反应性能进行反应。 2催化剂性能指标:催化活性、选择性、产物收率、稳定性或寿命 第二章 1.吸附现象:当气体与清洁的固体表面接触时,在固体表面上气体的浓度高于气相.这种现象称为吸附现象。被吸附的气体称为吸附质。吸附气体的固体称为吸附剂。 吸附平衡:当吸附过程进行的速率与脱附过程进行的速率相等时,表面上气体的浓度维持不变,这样的状态。 2. . 3.化学吸附态:是指分子或原子在固体催化剂表面进行化学吸附时的化学状态、电子结构及几何构型。 4.画出Langmuir等温线, Langmuir的假设:1、吸附的表面是均匀的,各吸附中心的能量同构;2、吸附粒子间的相互作用可以忽略;3、吸附粒子与空的吸附中心碰撞才有可能被吸附,一个吸附粒子只占据一个吸附中心,吸附是单分子层的;4、在一定条件下,吸附速率与脱附速率相等,从而达到吸附平衡。 Langmuir吸附等温式:

第三章 1.比表面积:每克催化剂上具有的表面积称为比表面积 2.BET理论的假设:1、吸附的表面是均匀的;2、吸附粒子间的相互作用可以忽略;3、多层吸附,各层间吸附与脱附建立动态平衡。 3.比孔容:每克催化剂颗粒内所有的体积总和称为比孔体积,或比孔容,以Vg表示。 4.孔隙率:催化剂的孔体积与整个颗粒体积的比,以θ表示。 5.中孔:中孔,指半径在(2—50)nm。 6.接触角:在液体和固体接触处,分别作液体表面和固体表面的切线,这两条切线在液体内的夹角称为接触角。(会画) 第四章 1.多相催化反应过程分析:(1)反应物分子从气流中向催化剂表面和孔内扩散; (2)反应物分子在催化剂表面上吸附; (3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应; (4)反应产物自催化剂表面脱附; (5)反应产物离开催化剂表面向催化剂周围的介质扩散。 2.表面质量作用定律:表面基元反应速率与反应物在表面上的浓度成正比。 第五章 1.Lewis酸碱定义:凡能接受电子对的物质是酸(L酸);凡是能给出电子对的物质是碱(L碱); 2.固体酸碱定义:能给出质子或者接受电子对的固体称之为固体酸。能接受质子或者给出电子对的固体称之为固体碱。举例:沸石,硫酸铜,硫酸镁 3.沸石分子式表达式:M 2/n O·Al2O3·xSiO2·yH2O 沸石分子筛催化特点:择形作用,离子可交换特性,表面酸碱性质,静电场效应

催化作用原理总复习答案

催化作用原理总复习答案 催化作用原理基础一、单项选择题在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。 1. 沉淀法制备催化剂过程中,晶粒的生长速度正比于( c ) A. 饱和度C* B. 沉淀物浓度C C. (C-C) 值 D. 溶剂量 2. 浸渍法制备催化剂时,等量浸渍是指( d ) A. 溶液的量与活性组分的量相等 B. 载体的量与活性组分的量相等 C. 溶液的量与载体的重量相等 D. 溶液的体积等于载体的空体积 3. 分子筛催化剂的基础结构是指( b ) A. 硅原子 B. 硅氧四面体或铝氧四面体 C. 铝原子 D. 笼状结构 4. 汽车尾气转化器中催化剂的载体是( d ) A. 贵金属Pt B. 贵金属Rh C. 金属Pd D. 多孔

陶瓷或合金 5. 内扩散是指( c ) A. 反应物在反应器内的流动 B. 反应物在反应器外管道内的流动 C. 反应物分子在催化剂孔道内的传质 D. 反应物分子在催化剂孔道外的传质 6. 硅铝分子筛中硅是以什么形式存在的( b ) A. 零价硅原子的形式B. 硅氧四面体形式 C. 六配位的硅离子的形式 D. 硅-铝化学键的形式 7. 负载型催化剂制备过程中采用的分离出过多的浸渍液,并快速干燥,是为了( c ) A. 活性组分在孔道内均匀B. 活性组分在孔道外均匀 C. 活性组分分布在孔口和外表面 D. 活性组分在外表面均匀 8. 催化剂的载体决定催化剂的( c ) A. 支撑物B. 活性组分 C. 孔结构 D. 包装水平 9. 产品收率不但取决于反应物的转化率,还取决于产物的( b ) A. 催化剂制备程度中载体用的量 B. 选择性 C. 已转化的反应物质的多少 D. 反应物进料的量的多少

催化剂与催化作用复习资料(很有用的)

第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用? ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。 (1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)或者压力较高的条件下发生的扩散多为分子扩散。 2)微孔扩散(努森扩散Kundsen):微孔扩散的阻力重要来自分子与孔壁的碰撞 3)过渡区扩散:指介于分子扩散与微孔扩散之间的过渡区。 4)构型扩散:在同一孔隙中扩散,由于分子构型不同,而扩散系数相差很大的扩散,称为构型扩散。 5)表面扩散:由于表面上分子的运动而产生的传质过程

催化作用原理课程教学大纲

催化作用原理课程教学大纲 英文名称:Catalysis Principles 课程编码: 学时:32 学分:2 课程性质:专业限选课课程类别:理论课 先修课程:无机化学、分析化学、有机化学、物理化学 开课学期:第五学期 适用专业:化学工程与工艺 一、课程的性质与任务 本课程是化学工程与工艺专业的专业限选课。 本课程的教学任务是:使学生理解催化剂与催化作用的基础知识,掌握酸碱催化剂、金属及过渡金属氧化物催化剂、络合催化剂等几种典型催化剂的催化作用原理,了解环境催化的特点及研究内容,使学生具备有关催化剂合成、表征与测试的基础知识及基本技能,使学生了解本学科的最新发展动态。 二、教学目标与要求 使学生了解有关催化剂与催化作用的基础知识,掌握酸碱催化剂、金属及过渡金属氧化物催化剂、络合催化剂等重要工业催化剂的催化反应原理,了解环境催化等本学科及交叉学科的发展动态。使学生具备有关催化剂的合成、表征与测试等基本理论知识,了解相关的研究方法,培养学生分析和解决催化剂制备技术中各种实际问题的能力,以适应社会对于化工专业人才的需求。 三、课程的基本内容与教学要求 第一章催化剂与催化作用的基础知识 [教学目的与要求]: 了解催化剂与催化作用的基本特征、催化反应的分类等基础知识,明确固体催化剂的组成与结构,催化剂的反应性能及对工业催化剂的要求等。 [本章主要内容]: 1.1 催化剂与催化作用的特征 1.2 催化反应和催化剂的分类 1.3 固体催化剂的组成与结构 1.4 催化剂的反应性能 1.5 多相催化反应体系分析 [本章重点]: 1.催化剂与催化作用的基本特征 2.多相催化反应体系中的物理过程与化学过程分析 [本章难点]:

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

催化作用原理第二章

1、多相催化反应是在物相不同的反应物和催化剂的两相界面上进行的。 2、多相催化的反应步骤:反应物A由气相主体扩散到颗粒外表面(反应物外扩散)、反应物A由外表面向孔内扩散,到达活性中心(反应物内扩散)、A的吸附、A在吸附活性中心反应生成B、B的脱附、产物B由内表面扩散到外表面(产物内扩散)、产物B由颗粒外表面扩散到气相主体(产物外扩散)。其中,3/4/5过程属于表面反应,反应物和产物的内外扩散属于物理过程,反应物分子在催化剂表面的化学吸附、表面化学反应以及产物的脱附属于化学过程。(七步) 3、多相催化的反应步骤:反应物分子从催化剂周围的介质向催化剂表面以及孔内扩散、反应物分子在催化剂表面和孔内活性中心上吸附、被吸附的反应物分子与催化剂表面以及孔内的活性中心相互作用进行化学反应、反应产物从催化剂表面和孔内活性中心上脱附、反应产物离开催化剂表面以及孔内向催化剂周围的介质扩散,1/5是反应物和产物的扩散过程,属于传质过程,2/3/4属于表面进行的化学过程,也叫化学动力学过程。(五步) 4、多相催化反应中的物理过程:内外扩散过程,为充分发挥催化作用,要尽量消除扩散过程的影响。 5、消除内外扩散阻力的方法:提高空速(外扩散);减小催化剂颗粒尺寸、增大催化剂孔隙直径(内扩散); 6、反应物分子在催化剂表面的吸附:分为物理吸附和化学吸附。物理吸附是由表面质点和吸附分子之间的分子力而引起的。具体是由永久偶极、诱导偶极、色散力等三种范德华引力引起的。化学吸附是由催化剂表面质点与吸附分子间的化学作用力而引起的,是由化学键力引起的。 7、物理吸附与化学吸附区别: 1)物理吸附:吸附力是范德华力、吸附层是单层或多层、选择性是无、热效应是较小、吸附速率是较快。 2)化学吸附:吸附力是化学键力、吸附层是单层、选择性是有、热效应是较大、吸附速率是较慢。 8、如何鉴别物理吸附和化学吸附? 答:物理吸附只能使原吸附分子的特征吸收带产生位移变化和强度变化,若出现了新的特征吸收带或光电子能谱发生明显变化,就表示发生了化学吸附。 9、多相催化反应的控制步骤: 1)扩散控制:当催化反应为扩散控制时,催化剂的活性无法充分显示出来,此时需要改善催化剂的颗粒大小和微孔构造,才能提高催化效率; 2)化学反应控制:催化反应若为动力学控制时,从改善催化剂组成和微观结构入手,可以有效地提高催化效率,特别是反应温度和压力对催化反应的影响比对扩散过程的影响要大。 10、化学吸附态:一般是指分子或原子在固体表面进行化学吸附时的化学状态、电子结构等。 11、化学吸附种类:吸附粒子状态是解离与非解离;吸附中心状态:单点与多点; 12、吸附作用基本概念: 1)当气体与固体接触时,固体表面上气体的浓度大于气相浓度,这种现象称之为吸附现象;2)被吸附的气体称之为吸附质; 3)吸附气体的固体称之为吸附剂; 4)吸附质在固体表面上吸附后存在的状态称之为吸附态; 5)通常吸附是发生在固体表面的局部位置,这类位置称之为吸附中心或吸附位; 6)吸附中心与吸附态共同构成表面吸附络合物; 7)吸附质浓度在吸附剂上增加的过程,称之为吸附过程; 8)吸附质浓度在吸附剂上减少的过程,称之为脱附过程;

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

催化原理习题 (2)

河南理工大学催化原理复习重点 第2章催化剂与催化作用 1.什么是催化剂? 催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。 什么是催化作用? 催化作用是指催化剂对化学反应所产生的效应。 催化作用的特征有哪些? 1、催化剂只能加速热力学上可以进行的反应 2、催化剂只能加速化学反应趋于平衡,而不能改变平衡的位置(平衡常数) 3、催化剂对反应具有选择性 4、催化剂的使用寿命是有限的 2.工业生产中可逆反应为什么往往选择不同的催化剂? 第一,对某一催化反应进行正反应和进行逆反应的操作条件(温度、压力、进料组成)往往会有很大差别,这对催化剂可能会产生一些影响。 二,对正反应或逆反应在进行中所引起的副反应也是值得注意的,因为这些副反应会引起催化剂性能变化。 3.催化剂是如何加快化学反应速度的? 催化剂通过改变化学反映历程,从而实现低活化能的化学反应途径进而加快了反应速度。 4.催化剂的活性、选择性的含义是什么? 活性是指催化剂对反应进程影响的程度,具体是指反应速率增加的程度,催化剂的活性是判断其性能好坏的重要标志。 当反应物在一定的反应条件下可以按照热力学上几个可能的方向进行反应时,使用特定的催化剂就可以对其中一个方向产生强烈的加速作用。这种专门对某一化学反应起加速作用的能力称为催化剂的选择性。 5.催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些? 催化剂在长期受热和化学作用下,会经受一些不可逆的物理的和化学的变化,如晶相变化,晶粒分散程度的变化,易挥发组分的流失,易熔物的熔融等导致活性下降至失活。 (1)催化剂热稳定性的影响(催化剂在一定温度下,特别是高温下发生熔融和烧结,固相间的化学反应、相变、相分离等导致催化剂活性下降甚至失活。)(2)催化剂化学稳定性的影响(在实际反应条件下,催化剂活性组分可能发生流失、或活性组分的结构发生变化从而导致活性下降和失活。) (3)催化剂中毒或被污染(催化剂发生结焦积炭污染或中毒。) (4)催化剂力学性能的影响(催化剂发生破碎、磨损,造成催化剂床层压力降增大、传质差等,影响了最终效果。) 4.催化反应的活化能是否与非催化反应的相同?为什么? 不相同,催化剂反应改变了化学反应需的活化能 6.均相催化有什么特点? (1)反应条件温和,有利于节能。 (2)反应性能单一,具有特定的选择性。 (3)作用机理研究清楚明晰,催化剂的活性和选择性易于精心调配和设计。(4)催化剂的稳定性差,且不易与产物分离。

催化剂与催化作用复习总结

催化剂的作用的特征有哪些?催化剂能否改变化学平衡? (1)催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应 (2)催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数) (3)催化剂对反应具有选择性 (4)催化剂的寿命。催化剂能改变化学反应的速率,其自身并不进入反应的产物,在理想的情况下不为反应所改变。但在实际过程中不能无限制的使用,催化剂经过多次使用后会失活。 催化剂如何加快化学反应速度? 催化剂加快反应速率的原因与温度对反应速率的影响是根本不同的。催化剂可以改变反应的路线,降低反应的活化能,使反应物分子中活化分子的百分数增大,反应速率加快。 催化作用可分为均相催化和非均相催化两种。如果催化剂和反应物同处于气态或液态,即为均相催化。若催化剂为固态物质,反应物是气态或液态时,即称为非均相催化。 在均相催化中,催化剂跟反应物分子或离子通常结合形成不稳定的中间物即活化络合物。这一过程的活化能通常比较低,因此反应速率快,然后中间物又跟另一反应物迅速作用(活化能也较低)生成最终产物,并再生出催化剂。该过程可表示为: A+B=AB(慢)A+C=AC(快)AC+B=AB+C(快) 式中A、B为反应物,AB为产物,C为催化剂。 由于反应的途径发生了改变,将一步进行的反应分为两步进行,两步反应的活化能之和也远比一步反应的低。该理论被称为“中间产物理论”。 在非均相催化过程中,催化剂是固体物质,固体催化剂的表面存在一些能吸附反应物分子的特别活跃中心,称为活化中心。反应物在催化剂表面的活性中心形成不稳定的中间化合物,从而降低了原反应的活化能,使反应能迅速进行。催化剂表面积越大,其催化活性越高。因此催化剂通常被做成细颗粒状或将其附载在多孔载体上。许多工业生产中都使用了这种非均相催化剂,如石油裂化,合成氨等,使用大量的金属氧化物固体催化剂。该理论称为“活化中心理论”。 催化剂可以同样程度地加快正、逆反应的速率,不能使化学平衡移动,不能改变反应物的转化率。请注意加快逆反应也就是减慢反应速率,这种催化剂也叫负催化剂! 催化剂的活性、选择性的含义? 催化剂的活性,又称催化活性,是指催化剂对反应加速的程度,可以作为衡量催化剂效能大小的标准。催化剂的选择性是使反应向生成某一特定产物的方向进行。转化为目的产物所消耗的某反应物量/某反应转化的总量。 催化反应的活化能是否与非催化反应的相同?为什么? (1)不改变反应热:因为催化剂只是通过改变化学反应历程来降低活化能,而化学反应前后的能量变化是由反应物和产物在反应体系中的相对能位来决定,反应物与产物的结构确定了它们的相对能位,即不改变反应物与生成物的摩尔焓,因此加入催化剂不改变反应热。 (2)降低活化能:因为催化剂通过改变反应历程,使反应沿着一条更容易进行的途径进行。 催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些? 指催化剂的有效使用期限,是催化剂的重要性质之一。催化剂在使用过程中,效率会逐渐下降,影响催化过程的进行。例如因催化活性或催化剂选择性下降,以及因催化剂粉碎而引起床层压力降增加等,均导致生产过程的经济效益降低,甚至无法正常运行。 ①化学稳定性:化学组成与化学状态稳定,活性组分与助剂不反应与流失; ②耐热稳定性:不烧结、微晶长大和晶相变化; ③抗毒稳定性:抗吸附活性毒物失活; ④机械稳定性:抗磨损率、压碎强度、抗热冲击。决定催化剂使用过程中的破碎和磨损 举例说明催化循环? 非缔合活化催化循环定义:在催化反应过程中催化剂以两种明显的价态存在,反应物的活化经由催化剂与

催化原理_基本概念和常用术语

基本概念和常用术语 1.活性:指物质的催化作用的能力,是催化剂的重要性质之一。 选择性:指所消耗的原料中转化成目的产物的分率。用来描述催化剂上两个以上相互竞争反应的相对速率(催化剂的重要性质之一,指在能发生多种反应的反应系统中,同一催化剂促进不同反应的程度的比较。) 比活性:比活性(单位表面反应速率),取决于催化剂的组成与结构 分散度:指催化剂表面上暴露出的活性组分的原子数占该组分在催化剂中原子总数的比例,即D=ns(A)/nt(A)。 TOF:单位时间内每摩尔催化剂(或者活性中心)上转化的反应底物的量。 2.空速:指单位时间内通过单位质量(或体积)催化剂的反应物的质量(或体积)WHSV:每小时进料的重量(液体或气体))/催化剂的装填重量 空时收率:以“空时”作为时间的基准来计量所获得产物的收率。对于大多数反应器,物料在反应器中的停留时间或反应时间是很难确定的。在工程上经常采用空间速率的倒数来表示反应时间,称为“空时”。空时收率大,表示过程和反应器有较高的效率。 3.化学吸附:过电子转移或电子对共用形成化学键或生成表面配位化合物等方式产生的吸附。 表面覆盖率:指单层吸附时,单位面积表面已吸附分子数与单位面积表面按二维密堆积所覆盖的最大吸附分子数之比。 朗格缪尔(Langmuir)吸附: 1916年,朗格缪尔从动力学的观点出发,提出了固体对气体的吸附理论,称为单分子层吸附理论,该理论的基本假设如下: (1)固体表面对气体的吸附是单分子层的; (2)固体表面是均匀的,表面上所有部位的吸附能力相同; (3)被吸附的气体分子间无相互作用力,吸附或脱附的难易与邻近有无吸附分子无关; (4)吸附平衡是动态平衡,达到吸附平衡时,吸附和脱附过程速率相同。 定位吸附:被吸附物从一个吸附中心向另一吸附中心转移需克服能垒。当吸附物不具有此能垒能量时不能向另一吸附中心转移,即为定位吸附。 非定位吸附:若固体表面上不同区域能量波动很小,没有吸附中心,被吸附物在表面上的转移不需克服能垒,即为非定位吸附。 积分吸附热:指达到吸附平衡时,被气体吸附质覆盖的那部分吸附剂表面所产生的平均吸附热。它表示在吸附过程中,较长期间内热量变化的平均值。积分吸附热随吸附质浓度的大小而变化,一般用于区分物理吸附和化学吸附的吸附热。 4.速率控制步骤:速率控制步骤,是一个化学词汇,用以表达在化学反应中,反

催化作用原理(第一、二章)讲解

催化作用原理 《催化作用基础》 课程名称:《催化作用基础》或《催化作用原理》或《催化剂与催化作用》绪论 第一章催化剂与催化作用的基本知识 第二章催化剂的吸附、表面积和孔结构 第三章金属催化剂及其催化作用 第四章半导体催化剂及其催化作用 第五章酸碱催化剂及其催化作用 第六章配位络合物催化剂及其催化作用 第七章催化剂的评价及失活与再生 第八章催化剂的设计和制备 专题讲座: 1. 择形催化与高选择性催化分子筛材料 2. 芳胺N-烷基化反应及其催化剂研究 3. 钛硅(TS-1)分子筛的合成及催化应用 4. 催化新材料:MCM-41等 #现代物理测试手段与催化剂的表征: XRD,SEM,IR,NMR,UV-Vis,UV-Raman,NH3-TPD等 ——催化剂及其催化作用的基础研究

参考书目 1.王桂茹主编,王祥生审, 《催化剂与催化作用》,2000年8月第1版大连理工大学出版社出版[王桂茹,李书纹编(大连工学院石油化工教研室)(讲义) 1986年] 2.吉林大学化学系《催化作用基础》编写组编, 《催化作用基础》 1980年科学出版社出版 3.黄开辉,万惠霖编(厦门大学化学系), 《催化原理》 1983年科学出版社出版 4.顾伯锷,吴震霄编, 《工业催化过程导论》 1990年高等教育出版社出版 5.王文兴编, 《工业催化》 1982年化学工业出版社出版 6.闵恩泽著,《工业催化剂的研制与开发——我的实践与探索》, 1997年中国石化出版社出版 7.陈连璋编著, 《沸石分子筛催化》 1990年大连理工大学出版社出版 8.徐如人,庞文琴,屠昆岗等著, 《沸石分子筛的结构与合成》1987年吉林大学出版社出版 9.天津大学编,〈〈多相催化作用原理〉〉 10.高滋主编,何鸣元,戴逸云副主编,《沸石催化与分离技术》,中国石化出版

相关文档
最新文档