(完整版)高一数学指数函数知识点及练习题(含答案)

(完整版)高一数学指数函数知识点及练习题(含答案)
(完整版)高一数学指数函数知识点及练习题(含答案)

指数函数

2.1.1指数与指数幂的运算

(1)根式的概念 ①如果,,,1n

x

a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次

当n 是偶数时,正数a 的正的n

表示,负的n

次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.

n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数

时,0a ≥.

n a =;当n

a =;当n

(0)|| (0)

a a a a a ≥?==?-

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:

0,,,m n

a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②

正数的负分数指数幂的意义是:

1()0,,,m

m n

n a

a m n N a -+==>∈且1)n >.0

的负分数指

数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质

(0,,)

r s r s a a a a r s R +?=>∈ ②

()(0,,)

r s rs a a a r s R =>∈ ③

()(0,0,)r r r ab a b a b r R =>>∈

2.1.2指数函数及其性质

2.1指数函数练习

1.下列各式中成立的一项

( )

A .71

7

7)(m n m

n =

B .31243)3(-=-

C .4

3433)(y x y x +=+

D .

33

39=

2.化简)3

1

()3)((65

61

3

12

12

13

2b a b a b a ÷-的结果

( )

A .a 6

B .a -

C .a 9-

D .2

9a

3.设指数函数)1,0()(≠>=a a a x f x

,则下列等式中不正确的是

( )

A .f (x +y )=f(x )·f (y )

B .)

()

(y f x f y x f =-)

( C .)()]

([)(Q n x f nx f n

∈=

D .)()]([·

)]([)(+∈=N n y f x f xy f n

n

n

4.函数2

10

)

2()5(--+-=x x y

( )

A .}2,5|{≠≠x x x

B .}2|{>x x

C .}5|{>x x

D .}552|{><

a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于

( )

A .

2

5

1+

B .

2

5

1+- C .

2

5

1± D .

2

1

5± 6.当a ≠0时,函数y ax b =+和y b ax

=的图象只可能是 ( )

7.函数|

|2)(x x f -=的值域是

( ) A .]1,0(

B .)1,0(

C .),0(+∞

D .R

8.函数???

??>≤-=-0

,0

,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围

( )

A .)1,1(-

B . ),1(+∞-

C .}20|{-<>x x x 或

D .}11|{-<>x x x 或 9.函数2

2)2

1(++-=x x y 得单调递增区间是

( ) A .]2

1,1[-

B .]1,(--∞

C .),2[+∞

D .]2,2

1[

10.已知2

)(x

x e e x f --=,则下列正确的是

( )

A .奇函数,在R 上为增函数

B .偶函数,在R 上为增函数

C .奇函数,在R 上为减函数

D .偶函数,在R 上为减函数

11.已知函数f (x )的定义域是(1,2),则函数)2(x

f 的定义域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 三、解答题: 13.求函数y x x =

--15

1

1

的定义域.

14.若a >0,b >0,且a +b =c ,

求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .

15.已知函数1

1

)(+-=x x a a x f (a >1).

(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.

16.函数f(x)=a x

(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值.

参考答案

一、DCDDD AAD D A

二、11.(0,1); 12.(2,-2); 三、13. 解:要使函数有意义必须:

x x x x x -≠-≠???

???≠≠??

?10

1

010

∴定义域为:{}

x x R x x ∈≠≠且01,

14. 解:r

r r

r

r c b c a c b a ??

? ??+??

? ??=+,其中10,10<<<<

c

b

c a . 当r >1时,1=+

?? ??+??? ??c b c a c b c a r

r

,所以a r +b r <c r

; 当r <1时,1=+>?

?

? ??+??? ??c b c a c b c a r

r

,所以a r +b r >c r .

15.解:(1)是奇函数.

(2)设x 1<x 2,则1111)()(221121+--

+-=-x x x x a a a a x f x f 。=)

1)(1()1)(1()1)(1(212

121++-+-+-x x x x x x a a a a a a ∵a >1,x 1<x 2,∴a 1x <a

2

x . 又∵a 1x +1>0,a

2

x +1>0,

∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).

函数f(x)在(-∞,+∞)上是增函数.

16、 (1)若a>1,则f(x)在[1,2]上递增,

∴a 2-a =a 2,即a =3

2或a =0(舍去).

(2)若0

2

或a =0(舍去),

综上所述,所求a 的值为12或3

2

.

高一数学知识点梳理最新五篇

高一数学知识点梳理最新五篇 高一数学知识点总结1 如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系? 平行或异面。 若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何? 无数条;平行。 如果直线a与平面α平行,经过直线a的平面β与平面α相 交于直线b,那么直线a、b的位置关系如何?为什么? 平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。 综上分析,在直线a与平面α平行的条件下我们可以得到什么 结论? 如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 高一数学知识点总结2 集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的 元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当 于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如: A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。 常用的有列举法和描述法。

1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法 叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的 元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 3.图示法(venn图)﹕为了形象表示集合,我们常常画一条封闭 的曲线(或者说圆圈),用它的内部表示一个集合。集合 自然语言常用数集的符号: (1)全体非负整数的集合通常简称非负整数集(或自然数集),记 作N;不包括0的自然数集合,记作N_ (2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数 集内也排除0的集,称负整数集,记作Z- (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-) (5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-) (6)复数集合计作C集合的运算:集合交换律 A∩B=B∩AA∪B=B∪A集合结合律 (A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律 A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根 律集合 Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研 究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A 的元素个数记为card(A)。

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

高一数学必修一知识点整理归纳

高一数学必修一知识点整理归纳 【集合与函数概念】 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:https://www.360docs.net/doc/b617390925.html, 非负整数集(即自然数集)记作:N 正整数集:N*或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AíA ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AíB,BíC,那么AíC ④如果AíB同时BíA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

(完整版)高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

高中数学集合知识点(明细)

集合 1.集合的含义与表示 (1 的元素,则记作x∈A。 (2)集合中的元素有三个特征: a.确定性(集合中的元素必须是确定的) b.互异性(集合中的元素互不相同。例如:集合A={1,a},则a 不能等于1) c.无序性(集合中的元素没有先后之分。) (3)常见的集合符号表示: N:非负整数集合或自然数集合{0,1,2,3,…} N*或N+:正整数集合{1,2,3,…} Z:整数集合{…,-1,0,1,…} Q:有理数集合 Q+:正有理数集合 Q-:负有理数集合 R:实数集合(包括有理数和无理数) R+:正实数集合 R-:负实数集合 C:复数集合 ?:空集合(不含有任何元素的集合称为空集合,又叫空集) (4)表示集合的方法: a.列举法:{红,绿,蓝},A={a,b,c,d}··· b.描述法:B={x|x2=2},{代表元素|满足的性质}··· c.Venn 图:用一条封闭的曲线内部表示一个集合的方法。

(1)子集:对于两个集合A,B. 若任意a∈A,都有a∈B,则称集合A 被集合B 所 包含(或集合B 包含集合A),记做A?B,此时称集合A 是集合B的子 集。 (2)真子集:若A?B,且存在a∈B但a?A 则称集合A是集合B的真子集,记做 A?B. (3)由子集的定义可知子集有这样三条主要的性质: a.规定: 空集(不含任何元素的集合叫做空集,记为f)是任何集合的子集 b. 任何一个集合是它本身的子集. c. 子集具有传递性. 如果A?B, B?C ,那么A?C. *假设非空集合A中含有n个元素,则有: 1.A的子集个数为2n。 2.A的真子集的个数为2n-1。 3.A的非空子集的个数为2n-1。 4.A的非空真子集的个数为2n-2。

高考数学知识点:指数函数、函数奇偶性

高考数学知识点:指数函数、函数奇偶性指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数

1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

高一数学集合知识点总结归纳

高一数学集合知识点总结归纳 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:n,z,q,r,n* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈a都有x∈b,则a b(或a b); 2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 ) 3)交集:a∩b={x| x∈a且x∈b} 4)并集:a∪b={x| x∈a或x∈b} 5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ; ②若,,则 ; ③若且,则a=b(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①a∩b=a a b;②a∪b=b a b;③a b c ua c ub; ④a∩cub = 空集 cua b;⑤cua∪b=i a b。 5.交、并集运算的性质 ①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a; ③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub; 6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。 【例1】已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系 a) m=n p b) m n=p c) m n p d) n p m 分析一:从判断元素的共性与区别入手。 解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n ∈z} 对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

高一数学集合知识点归纳

高一数学集合知识点归纳 高一数学的集合学习以及总结需要把集合相关知识点进行归纳,只有把知识点归纳好才可以学好高一数学集合,以下是我总结了高一数学的知识点,希望帮到大家更好地归纳好集合的知识点同时复习好集合。 一、知识点总结 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二、集合知识点整合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称

复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。 求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行: (1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =; (2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等; (3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数 )]([x g f y =的一个单调区间; 若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间; (5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性; (6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。 (7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. (12) 结论:同曾异减 (13) 例1. 求函数222)(-+=x x x f 的单调区间. (14) 解题过程: (15) 外层函数:t y 2= (16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],2 1[+∞-∈x (18) 内层函数的单调减区间:2 1,[--∞∈x (19) 由于外层函数为增函数 (20) 所以,复合函数的增区间为:],2 1[+∞-∈x (21) 复合函数的减区间为: 2 1,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间. (23) 解 原函数是由外层函数u y 2 1log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 2 1log =的单调减区间; (25) 令0232>--=x x u ,解得x 的取值范围为)1,3(-; (26) 解题过程:

指数函数知识点归纳

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2

注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---21 3321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 练习:(1)4 1 2-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,

高一数学上册知识点整理:集合

高一数学上册知识点整理:集合 高一数学上册知识点整理:集合 集合概念 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论: 集合是现代数学的基本概念,专门研究集合的理论叫做 集合论。康托(Cantor,G.F.P.,1845年—1918年,德 国数学家先驱,是集合论的创始者,目前集合论的基本 思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够 区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集, 空集是不含任何元素的集,记做Φ。空集是任何集合的 子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合 A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符 号下加了一个≠符号(如右图),不要混淆,考试时还是 要以课本为准。所有男人的集合是所有人的集合的真子集。』 集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A 与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A 且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作A∩B(或 B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3, 5}B={1,2,5}。那么因为A和B中都有1,5,所以 A∩B={1,5}。再来看看,他们两个中含有1,2,3,5 这些个元素,不管多少,反正不是你有,就是我有。那

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知 f x ()的定义域,求[]f g x ()的定义域 思路:设函数 f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数 f u ()的定义域为(0,1) ,则函数f x (ln )的定义域为_____________。 解析:函数 f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<f x ()的定义域为

指数函数知识点总结(供参考)

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33)2(-= ⑵ 44)2(-= ⑶ 66)3(π-= ⑷ 222y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21). 5. 计算(0.0081)4 1 -- [3×(87)0]1-·[8125 .0-+(38 3)31 -]21 -. 题型二、化简 1. 3 2 13 2b a b a ?- ÷3 211- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0, b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1- = 3,求下列各式的值:

相关文档
最新文档