不锈钢切削加工

不锈钢切削加工
不锈钢切削加工

200 系列—铬-镍-锰奥氏体不锈钢

300 系列—铬-镍奥氏体不锈钢

型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。

型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。

型号303—通过添加少量的硫、磷使其较304更易切削加工。

型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。

型号309—较之304有更好的耐温性。

型号316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1]

型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。

400 系列—铁素体和马氏体不锈钢

型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。

型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。

型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。

型号416—添加了硫改善了材料的加工性能。

型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。

型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

型号440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。

500 系列—耐热铬合金钢。

600 系列—马氏体沉淀硬化不锈钢。

型号630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。

1. 切削速度Vc:加工不锈钢时切削速度稍微提高一点,切削温度就会高出许多,刀具磨

损加剧,耐用度则大幅度下降。为了保证合理的刀具耐用度,就要降低切削速度,一般按车削普通碳钢的40%~60%选取。镗孔和切断时,由于刀具刚性、散热条件、冷却润滑效果及排屑情况都比车外圆差,切削速度还要适当降低。不同种类的不锈钢的切削加工性各不相同,切削速度也需相应调整。一般1Cr18Ni9Ti等奥氏体不锈钢的切削速度校正系数Kv为1.0,硬度在HRC28以下的2cr13等马氏体不锈钢的Kv为1.3~

1.5,硬度为HRC28~35的2Cr13等马氏体不锈钢的Kv为0.9~1.1,硬度在HRC35

以上的2Cr13等马氏体不锈钢的Kv为0.7~0.8,耐浓硝酸不锈钢的Kv为0.6~0.7。

2. 切削深度ap:粗加工时余量较大,应选用较大的切深,可减少走刀次数,同时可避免

刀尖与毛坯表皮接触,减轻刀具磨损。但加大切深应注意不要因切削力过大而引起振动,可选ap=2~5 mm。精加工时可选较小的切削深度,还要避开硬化层,一般采用ap=0.2~

0.5 mm。

3. 进给量f:进给量的增大不仅受到机床动力的限制,而且切削残留高度和积屑瘤高度都

随进给量的增加而加大,因此进给量不能过大。为提高加工表面质量,精加工时应采用较小的进给量。同时,应注意f不得小于0.1 mm/r,避免微量进给,以免在加工硬化区进行切削,并且应注意切削刃不要在切削表面停留。

1. 硫化油:是以硫为极压添加剂的切削油。切削过程中能在金属表面形成高熔点硫化物,

而且在高温下不易破坏,具有良好的润滑作用,并有一定的冷却效果,适用于一般车削、钻孔、铰孔及攻丝。硫化豆油适用于钻、扩、铰孔等工序。直接硫化油的配方是:矿物油98%,硫2%。间接硫化油的配方是:矿物油78%~80%,植物油或猪油18%~20%,硫1.7%。

2. 机油、锭子油等矿物油:其润滑性能较好,但冷却和渗透性较差,适用于外圆精车。

3. 植物油:如菜油、豆油等,其润滑性能较好,适用于车螺纹及铰孔、攻丝等工序。

4. 乳化液:具有较好的冷却和清洗性能。也有一定的润滑作用,可用于不锈钢粗车。

1. 几何形状必须刃磨正确,两切削刃要保持对称。钻头后角过大,会产生“扎刀”现象,引

起颤振,使钻出的孔呈多角形。应修磨横刃,以减小钻孔轴向力。

2. 钻头必须装正,保持钻头锋利,用钝后应及时修磨。

3. 合理选择钻头几何参数和钻削用量,按钻孔深度要求,应尽量缩短钻头长度、加大钻心

厚度以增加刚性。使用高速钢钻头时,切削速度不可过高,以防烧坏刀刃。进给量不宜过大,以防钻头磨损加剧或使孔钻偏,在切入和切出时进给量应适当调小。

4. 充分冷却润滑,切削液一般以硫化油为宜,流量不得少于5~8 L/min,不可中途停止冷

却,在直径较大时,应尽可能采用内冷却方式。

5. 认真注意钻削过程,应及时观察切屑排出状况,若发现切屑杂乱卷绕立即退刀检查,以

防止切屑堵塞。还应注意机床运转声音,发现异常应及时退刀,不能让钻头在钻削表面上停留,以防钻削表面硬化加剧。

1. 合理选择铰刀和铰削用量,是保证铰孔顺利进行的关键。

2. (2)提高预加工工序质量,防止预加工孔出现划沟、椭圆、多边形、锥度或喇叭口、腰鼓

形状、轴心线弯曲、偏斜等现象。

3. 保持工件材质硬度适中,尤其对2Cr13马氏体不锈钢,调质处理后的硬度在HRC28以

下为宜。

4. 正确安装铰刀和工件,铰刀必须装正,铰刀轴线应和工件预加工孔的轴线保持一致,以

保证各刀齿均匀切削。

5. 选用合适的切削液,可以解决不锈钢的切屑粘附问题,并使之顺利排屑,从而降低孔表

面粗糙度和提高刀具耐用度。一般以使用硫化油为宜,若在硫化油中添加10%~

20%CCl4或在猪油中添加20%~30%CCl4,对降低表面粗糙度有显著的效果。由于

CCl4对人体有害,宜采用硫化油85%~90%和煤油10%~15%的混合液。铰刀直径较

大时,可采用内冷却方式。

6. 认真注意铰孔的过程,严格检查刀齿的跳动量,是获得均匀铰削的关键。在铰削过程中,

注意切屑的形状,由于铰削余量小,切屑呈箔卷状或呈很短的螺卷状。若切屑大小不一,有的呈碎末状、有的呈小块状,说明铰削不均匀。若切屑呈条的弹簧状,说明铰削余量

太大。若切屑呈针状、碎片状,说明铰刀已经磨钝。还要防止切屑堵塞,应勤于观察刀

齿有无粘屑,以避免孔径超差。使用硬质合金铰刀铰孔时,会出现孔收缩现象,为防止

退刀时将孔拉毛,可采取加大主偏角来改善这种情况。

14 怎样对不锈钢进行攻丝?

在不锈钢上攻丝比在普遍钢材上攻丝要困难得多。经常出现由于扭矩大,丝锥被“咬死”在螺孔中,崩齿或折断,螺纹表面不光,沟纹,尺寸超差,乱扣和丝锥磨损严重等现象。因此,攻制不锈钢螺纹时应采取相应的技术措施加以解决。

1. 攻制不锈钢螺纹时,“胀牙”现象比较严重,丝锥容易“咬死”在孔中,所以螺纹底孔应适当

加大。一般情况下,螺距为1mm以下的螺纹底孔直径等于公称直径减去螺距;螺距大

于1mm时,螺纹底孔直径等于公称直径减去1.1倍螺距。

2. 选择合适的丝锥和合理的切削用量,是关系到攻丝质量的关键。丝锥材料,应选含钴或

铝超硬高速钢;主偏角和螺距、丝锥把数有关,头锥κr=5°~7°,二锥、三锥为κr=10°~20°;校准部分一般取3~4扣螺纹长度,并有0.05~0.1mm/100 mm的倒锥;容屑槽方向一般取β=8°~15°,可以控制切屑流动方向,对于直槽丝锥,可以将丝锥前端改磨成螺旋形;丝锥的前角一般为γp=15°~20°,后角为8°~12°。

3. 可采用无槽丝锥对不锈钢攻丝,见图10。使用无槽丝锥挤丝前的底孔直径为:

d0=dw-(0.5-0.6)P式中:dw——工件螺纹外径,mm;P——螺距。

4. (4)不锈钢攻丝时,应保证有足够的冷却润滑液。通常可选用硫化油+15%~20%CCl4;

白铅油+机油或其他矿物油;煤油稀释氯化石蜡等。

5. 在攻丝的过程中,万一丝锥折断,可将工件放在硝酸溶液中进行腐蚀,可以很快将高速

钢丝锥腐蚀,而不报废工件。

15 磨削不锈钢有哪些特点?

1. 不锈钢的韧性大,热强度高,而砂轮磨粒的切削刃具有较大的负前角,磨削过程中磨屑

不容易被切离,切削阻力大,挤压、摩擦剧烈。单位面积磨削力很大,磨削温度可达

1000℃~1500℃。同时,在高温高压的作用下,磨屑易粘附在砂轮上,填满磨粒问的

空隙,使磨粒失去切削作用。不锈钢的类型不同,产生砂轮堵塞的情况也不相同,如磨削耐浓硝酸不锈钢及耐热不锈钢,粘附、堵塞现象比1Cr18NiTi严重,而1Cr13、2Cr13等马氏体不锈钢就比较轻。

2. 不锈钢的导热系数小,磨削时的高温不易导出,工件表面易产生烧伤、退火等现象,退

火层深度有时可达0.01~0.02 mm。磨削过程中产生严重的挤压变形,导致磨削表面产

生加工硬化,特别是磨削奥氏体不锈钢时,由于奥氏体组织不够稳定,磨后易产生马氏

体组织,使表面硬化严重。

3. 不锈钢的线膨胀系数大,在磨削热的作用下易产生变形,其尺寸难以控制。尤其是薄壁

和细长的零件,此现象更为严重。

4. 多数类型的不锈钢不能被磁化,在平面磨削时,只能靠机械夹固或专用夹具来夹持工件,

利用工件侧面夹紧工件,产生变形和造成形状或尺寸误差,薄板工件更为突出。同时也

会引起磨削过程中的颤振而出现鳞斑状的波纹。

16 磨削不锈钢时怎样选择砂轮?

1. 磨料:白刚玉具有较好的切削性能和自锐性,适于磨削马氏体及马氏体+铁素体不锈钢;

单晶刚玉磨料适用于磨削奥氏体和奥氏体+铁素体不锈钢;微晶刚玉磨料是由许多微小

的晶体组成的,强度高、韧性和自锐性好,其自锐的特点是沿微晶的缝隙碎裂,从而获

得微刃性和微刃等高性,可以减少烧伤、拉毛等现象,并可以降低磨削表面粗糙度,适

于磨削各种不锈钢;立方氮化硼磨料的硬度很高,热稳定性好,化学惰性高,在1300℃~

1500℃不氧化,磨粒的刃尖不易变钝,产生的磨削热也少,适用于磨削各种不锈钢。为

了减少粘附现象,也可采用碳化硅和人造金刚石为磨料的砂轮。

2. 粒度:磨削不锈钢时,一般以采用36号、46号、60号中等粒度的砂轮为宜,其中粗磨

时,采用36号、46号粒度,精磨用60号粒度。为了同时适用于粗磨和精磨,则采用

46号或60号粒度。

3. 结合剂:磨削不锈钢要求砂轮具有较高的强度,以便承受较大的冲击载荷。陶瓷结合剂

耐热、抗腐蚀,用它制成的砂轮能很好地保持切削性能,不怕潮湿,且有多孔性,适合

于制作磨削不锈钢砂轮的结合剂。磨削耐浓硝酸不锈钢等材料内孔时,可采用树脂结合

剂制造砂轮。

4. 硬度:应选用硬度较低的砂轮,以提高自锐性。一般选用G~N硬度的砂轮,其中以K~

L使用最为普遍,使用微晶刚玉作磨料的内圆磨砂轮,则以J硬度为宜。

5. 组织:为了避免磨削过程中砂轮堵塞,砂轮组织应选较疏松的,一般选用5号~8号较

为合适。

17 磨削不锈钢时怎样选择磨削用量?

陶瓷结合剂砂轮的速度为30~35 m/s;树脂结合剂的砂轮速度为35~50 m/s。当发现表面烧伤时,应将砂轮速度降至16~20 m/s。工件速度,当工件直径小于50 mm时,n=120~150

r/min;大于50 mm时,n=40~80 r/min。用砂轮外圆进行平面精磨时,工作台运动速度一般为15~20 m/min,粗磨时为5~50 m/min。磨削深度和横向进给量小时取大值,横向进给量大时取小值。粗磨深度为0.04~0.08 mm,精磨深度为0.01 mm。修整砂轮后应减小磨削深度。外圆磨削时纵向进给量,粗磨时为(0.2~0.7)B mm/r,精磨时为(0.2~0.3)B mm/r;内圆磨削时纵向进给量,粗磨时为(0.4~0.7)B mm/r,精磨时为(0.25~0.4)B mm/r;砂轮外圆平面磨横向进给量,粗磨时(0.3~0.7)B mm/dst,精磨时为(0.05~0.1)B mm/dst。

18 磨削不锈钢时应注意什么?

1. 应及时修整砂轮,粗磨时砂轮要修整粗一些,精磨时砂轮要始终保持锋利,以免过热烧

伤。修整后的砂轮两侧转角处,不允许有毛刺存在。

2. 低表面粗糙度磨削时,粗精磨应分别进行,精磨余量一般留0.05 mm为宜,工件装夹误

差大时可留0.1 mm。

3. 磨削过程中必须充分冷却,以带走大量的磨削热和进行冲刷,防止砂轮堵塞和工件表面

烧伤。冷却液必须清洁,不能混入磨屑或砂粒,以免将工件拉毛。磨削不锈钢的冷却液,一般选用冷却性能较好的乳化液,或用含有极压添加剂且表面张力小的冷却液。流量为

20~40 L/min,砂轮直径大时为80 L/min。

4. 不锈钢磨削余量应取小一些,外圆磨削时,直径上的磨削余量为0.15~0.3 mm,精磨

余量为0.05 mm。内圆磨削的余量与外圆磨削基本相同。平面磨削时,对面积小、刚性

好的零件,单边留余量为0.15~0.2 mm,刚性差、面积大的零件,单边留磨削余量0.25~

0.3 mm。

19 加工不锈钢的实例有哪些?

不锈钢的用途很广,切削加工的实例也很多,在这里仅举几个切削加工的实例,以供参考。

1. 车削:工件材料为1Cr18Ni9Ti,工件尺寸为?900 mm×720 mm。原用YG8硬质合金

车刀,刀具几何参数γ0=15°~18°,α0=6°~8°,κr=75°,λs=-5°~-8°;切削用量为Vc=28 m/min,ap=0.3~0.5 mm,f=0.16mm/r,精车一刀需刃磨28次车刀,且工件表面接刀

痕十分明显。后改用YG8N硬质合金车刀,除将切削速度提高到42.4m/min外,其他

条件相同,精车一刀外圆,仅需磨刀5次,工件表面粗糙度Ra为3.2μm,接刀痕也不

明显。

2. 车螺纹:工件材料为1Cr18Ni9Ti,螺纹规格为M20×2.5。原用YG8硬质合金,Vc=10

m/min,f=2.5 mm/r,ap=0.3~0.4 mm,刀具刃磨一次加工不了一件。改用813硬质合

金,在Vc=36 m/min的条件下,可加工两件以上,效率和刀具耐用度可提高两倍以上。

3. 铣削:工件材料为Cr17Ni2,铣削平面,切削用量为Vc=90~100 m/min,ap=3~4 mm,

af=0.15 mm/z。刀具为可转位端铣刀,刀具材料为YW4,刀具几何参数为γ0=5°,α0=8°,κr=75°,λs=5°。刀具耐用度为41 min。

4. 镗孔:工件材料为1Cr18Ni9Ti,刀具材料原用YG6和YG10H硬质合金,刀具几何参

数为γ0=20°,α0=8°,κr=75°,λs=-3°。切削用量为Vc=20 m/min,ap=3 mm,f=0.32mm/r。

在相同的条件下,YG6的刀具耐用度为15 min,且不断屑而粘刀,YG10H的刀具耐用

度为60 min,而且切削质量良好。

常用不锈钢牌号的主要用途及表面分类

常用不锈钢牌号的主要用途

中国牌号美国牌号类型性能及用途

1Cr17Mn6Ni5N ->201 "200系列钢具有以下特性:①固溶处理后的抗拉强度偏高,一般为800~1100Mpa,而且无法将抗拉强度降下来。②冷加工硬化率急剧上升,冷加工强化系数K>15,加工难度大,过程成本增加。③200系列钢具有优良的耐磨性能。④200系列钢弯曲成形、冷镦和冲压性能较差。⑤传统的200系列钢,对晶间腐蚀很敏感,而且加稳定化元素也无法改变其敏感性。⑥部分钢(如205、Cr15Mn15Ni2N等)由于其稳定奥氏体元素含量相对比304高,抗磁性能优于304。" 钢丝主要用于制作弹簧、筛网和精密轴等

1Cr18Mn8Ni5N ->202

2Cr15Mn15Ni2N ->205

1Cr17Ni7 ->301 奥氏体型经冷加工有高的强度。适用于高强度构件铁道车辆,传送带螺栓螺母用

1Cr18Ni9 ->302 奥氏体型经冷加工有高的强度,建筑用装饰部件

Y1Cr18Ni9 ->303 奥氏体型

0Cr18Ni9 ->304 奥氏体型具有良好的耐蚀性、耐热性、低温强度和机械性能,冲压弯曲等热加工性好,无热处理硬化现象,无磁性。作为不锈耐热钢使用最广泛、食品用设备,一般化工设备,原子能工业用

0Cr19Ni9N ->304N1 奥氏体型在牌号0Cr19Ni9上加N,强度提高,塑性不降低。使材料的厚度减少。作为结构用强度部件

0Cr19Ni10 ->304L 奥氏体型耐蚀性和耐热性优良;低温强度和机械性能优良;单相奥氏体组织,无热处理硬化现象(无磁性,使用温度-196--800℃)。奥氏体基本钢种,用途最为广泛;

00Cr19Ni10 比0Cr19Ni9碳含量更低的钢,

耐晶间腐蚀性优越,为焊接后不进行热处理部件类. 用于抗晶间腐蚀性要求高的化学、煤炭、石油产业的野外露天机器、建材、耐热零件及热处理有困难的零件

00Cr18Ni10N ->304LN 奥氏体型在牌号00Cr19Ni10(304L)上添加N,具有以上牌号同样特性,用途与0Cr19Ni9N(304N1)相同,但耐晶间腐蚀性更好

0Cr18Ni9Cu3 ->304Cu 奥氏体型以17Cr-7Ni-2Cu为基本组成的奥氏不锈钢;成形性优良,特别是拔丝和抗时效裂纹性好;--耐腐蚀性与304相同。

1Cr18Ni12 ->305

0Cr23Ni13 ->309S

0Cr25Ni20 ->310S 奥氏体型抗氧化性比0Cr23Ni13好。炉用材料,汽车排气净化装置用材料,实际上多作为耐热钢使用

0Cr17Ni11Mo2

0Cr17Ni12Mo2 ->316 奥氏体型耐蚀性和高温强度特别好,可在苛刻的条件下使用,加工硬化性好,无磁性。适于海水用设备、化学、染料、造纸、草酸、肥料生产设备、照相、食品工业、沿海设施.主要作耐点蚀材料

0Cr17Ni12Mo2N ->316N 奥氏体型在牌号0Cr17Ni12Mo2中加入N,提高强度,不降低塑性,使材料的厚度减薄。作耐腐蚀性较好的强度较高的部件

0Cr17Ni12Mo3

00Cr17Ni14Mo2 ->316L 奥氏体型钢中添加Mo(2-3%),故耐蚀性和高温强度优良;SUS316L含碳量比SUS316低,因此,抗晶间腐蚀性比SUS316优良;高温蠕变强度高。可在苛刻的条件使用,加工硬化性好,无磁性。适于海水用设备、化学、染料、造纸、草酸、肥料生产设备、照相、食品工业、沿海设施.

00Cr17Ni13Mo2N ->316LN 奥氏体型在牌号00Cr17Ni14Mo2(316L)中加入N,具有以上牌号同样特性,用途与0Cr17Ni12Mo2N相同,但耐晶间腐蚀性更好

0Cr19Ni13Mo3 ->317 奥氏体型耐点腐蚀性比0Cr17Ni12Mo2好,作染色设备材料等

00Cr19Ni13Mo3 ->317L 奥氏体型为0Cr19Ni13Mo3的超低碳钢,比0Cr19Ni13Mo3(317)耐晶间腐蚀性好

1Cr18Ni9 奥氏体型经冷加工有高的强度,建筑用装饰部件

1Cr18Ni9Ti ->321 奥氏体型在304钢中添加Ti,故抗晶间腐蚀性优良;高温强度和高温抗氧性优良;成本高,加工性比SUS304差。使用最广泛,耐热材料、汽车、飞行器排气管管路,锅炉炉盖、管道,化学装置、热交换器.适用于食品、化工、医药、原子能工业

0Cr18Ni10Ti

0Cr16Ni15Mo2 ->329 双相不锈钢奥氏体型+铁素体

0Cr18Ni11Nb ->347 奥氏体型含Nb提高耐晶间腐蚀性

0Cr17Ni12Mo2 奥氏体型适用于在海水和其它介质中,主要作耐点蚀材料,照相、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母

00Cr17Ni14Mo2 奥氏体型为0Cr17Ni12Mo2的超低碳钢,用于对抗晶间腐蚀性有特别要求的产品

1Cr18Ni12Mo2Ti 奥氏体型用于抗硫酸、磷酸、甲酸、乙酸的设备,有良好的耐晶间腐蚀性

0Cr18Ni12Mo2Ti 奥氏体型同上

0Cr18Ni10Ti 奥氏体型添加Ti提高耐晶间腐蚀,不

不锈钢加工刀具选择

不锈钢加工刀具选择 1.引言 随着航空、航天、石油、化工、冶金和食品等工业的蓬勃发展,不锈钢材料已得到广泛应用,而不锈钢材料由于韧性大、热强度高、导热系数低、切削时塑性变形大、加工硬化严重、切削热多、散热困难等原因,造成刀尖处切削温度高、切屑粘附刃口严重、容易产生积屑瘤,既加剧了刀具的磨损,又影响加工表面粗糙度。此外,由于切屑不易卷曲和折断,也会损伤已加工表面,影响工件的质量。为提高加工效率和工件质量,正确选择刀具材料、车刀几何参数和切削用量至关重要。 2.刀具材料的选择 正确选用刀具材料是保证高效率加工不锈钢的决定因素。根据不锈钢的切削特点,刀具材料应具备足够的强度、韧性、高硬度和高耐磨性且与不锈钢的粘附性要小。常用的刀具材料有硬质合金和高速钢两大类,形状复杂的刀具主要采用高速钢材料。由于高速钢切削不锈钢时的切削速度不能太高,因此影响生产效率的提高。对于较简单的车刀类刀具,刀具材料应选用强度高、导热性好的硬质合金,因其硬度、耐磨性等性能优于高速钢。常用的硬质合金材料有:钨钴类(YG3、YG6、YG8、YG3X、YG6X),钨钴钛类(YT30、YT15、YT14、YT5),通用类(YW1、YW2)。YG类硬质合金的韧性和导热性较好,不易与切屑粘结,因此适用于不锈钢粗车加工;而YW类硬质合金的硬度、耐磨性、耐热性和抗氧化性能以及韧性都较好,适合于不锈钢的精车加工。加工1Cr18Ni9Ti奥氏体不锈钢时,不宜选用YT类硬质合金,由于不锈钢中的Ti和YT类硬质合金中的Ti 产生亲合作用,切屑容易把合金中的Ti带走,促使刀具磨损加剧。 〕 3.刀具几何角度的选择 刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。 (1)车刀前角γ0的选择 前角的大小决定刀刃的锋利与强度。增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。车削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12°~20°。

2205双相不锈钢和它地机械的性能

2205双相不锈钢和它的机械性能 浏览次数:3087 添加时间:2008-9-9 14:41:47 2205 合金( UNS S32305/S31803 )是由22%铬,3%钼及5-6%镍氮合金构成的复式不锈钢。它具有高强度、良好的韧性以及良好的整体和局部的抗协强腐蚀能力。 与316L 和317L 奥氏体不锈钢相比,2205 合金在抗蚀损斑及裂缝方面的性能更优越,它具有很高的抗腐蚀能力,与体相比,它的热膨胀系数更低,导热性更高。 与奥氏体不锈钢相比,它的耐压强度是其两倍,与316L 和317L 相比,设计者可以减轻其重量,其成本也更低。 General Properties 2205复式不锈钢2205合金是由22%铬,3%钼及5-6%镍氮合金构成的复式不锈钢。它具有高强度、良好的冲击韧性以好的整体和局部的抗应力腐蚀能力。 与316L和317L奥氏体不锈钢相比,2205合金在抗斑蚀及裂隙腐蚀方面的性能更优越,它具有很高的抗腐蚀能力,与奥氏体它的热膨胀系数更低,导热性更高。 与奥氏体不锈钢相比,它的耐压强度是其两倍,与316L和317L相比,设计者可以减轻其重量,故其成本也更低。这种合金特用于—50?F/+600?F温度范围内,在严格限制的情况下(尤其对于焊接结构),也可以用于更低的温度. 应用领域 压力器皿、高压储藏罐、高压管道、热交换器(化学加工工业)。 石油天然气管道、热交换器管件。 污水处理系统。 纸浆和造纸工业分类器、漂白设备、贮存处理系统。 高强度耐腐蚀环境下的回转轴、压榨辊、叶片、叶轮等。 轮船或卡车的货物箱 食品加工设备

抗腐蚀能力 一般腐蚀由于其较高的铬 钼及氮含量,2205的抗腐蚀特性在大多数环境下优于316L和317L 局部抗腐蚀 2205中铬、钼及氮的含量使其在腐蚀性及酸性的溶液中, 对锈斑及裂隙腐蚀具有很强的抵抗能力。 在含2000ppm 氯化物的硫磺酸溶液中等腐蚀曲线4 mpy (0.1 mm/yr) 抗应力腐蚀 不锈钢的复式微观结构有助于提高其抗应力裂隙腐蚀的能力。 在一定的温度、压强、氧气及氯化物存在的情况下,氯化物应力腐蚀的现象会发生。因为这些条件不宜控制。304L、31 317L的使用在这方面受到限制。 疲劳强度腐蚀 2205 合金的高强度及抗腐蚀能力使其具有很高的抗腐蚀抗疲劳强度。主要应用于具有较强腐蚀性的环境中。 采用AvestaPolarit 蚀损电池测得1M NaCl 中蚀损临界温度。

不锈钢材料加工难点分析

不锈钢材料加工难点分析 不锈钢材料加工难点主要有以下几个方面: 1. 切削力大,切削温度高 该类型材料强度大,切削时切向应力大、塑性变形大,因而切削力大。此外材料导热性极差,造成切削温度升高,且高温往往集中在刀具刃口附近的狭长区域内,从而加快了刀具的磨损。 2. 加工硬化严重 奥氏体不锈钢以及一些高温合金不锈钢均为奥氏体组织,切削时加工硬化倾向大,通常是普通碳素钢的数倍,刀具在加工硬化区域内切削,使刀具寿命缩短。 3. 容易粘刀 无论是奥氏体不锈钢还是马氏体不锈钢均存在加工时切屑强韧、切削温度很高的特点。当强韧的切屑流经前刀面时,将产生粘结、熔焊等粘刀现象,影响加工零件表面粗糙度。 4. 刀具磨损加快 上述材料一般含高熔点元素、塑性大,切削温度高,使刀具磨损加快,磨刀、换刀频繁,从而影响了生产效率,提高了刀具使用成本。 主要是降低切削线速度,进给。采用专门加工不锈钢或者高温合金的刀具,钻孔攻丝最好内冷。 不锈钢零件加工工艺

通过上述加工难点分析,不锈钢的加工工艺及相关刀具参数设计与普通结构钢材料应具有较大的不同,其具体加工工艺如下: 1.钻孔加工 在钻孔加工时,由于不锈钢材料导热性能差,弹性模量小,孔加工起来也比较困难。解决此类材料的孔加工难题,主要是选用合适的刀具材料,确定合理的刀具的几何参数以及刀具的切削用量。钻削上述材料时,钻头一般应选用W6Mo5Cr4V2Al、W2Mo9Cr4Co8等材质的钻头,这些材质钻头缺点是价格比较昂贵,而且难以采购。而采用常用的W18Cr4V普通标准高速钢钻头钻孔时,由于存在顶角较小、切屑太宽而不能及时排出孔外、切削液不能及时冷却钻头等缺点,再加上不锈钢材料导热性差,造成集中在刀刃上的切削温度升高,容易导致两个后刀面和主刃烧伤及崩刃,使钻头的使用寿命降低。 1)刀具几何参数设计在采用W18Cr4V普通高速钢钻头钻孔时,切削力及切削温度均集中在钻尖上,为提高钻头切削部位的耐用度,可以适当增大顶角角度,顶角一般选135°~140°,顶角增大也将使外缘前角减小,钻屑变窄,以利于排屑。但是加大顶角后,钻头的横刃变宽,造成切削阻力增大,因而必须对钻头横刃进行修磨,修磨后横刃的斜角为47°~55°,横刃前角为3°~5°,修磨横刃时,应将切削刃与圆柱面转角处修磨成圆角,以增加横刃强度。由于不锈钢材料弹性模量较小,切屑层下的金属弹性恢复大,加之加工过程中加工硬化严重,后角太小会加快钻头后刀面的磨损,而且增加了切削温度,降低钻头的寿命。因此须适当加大后角,但后角太大,将使钻头的主刃变得单薄,减小了

不锈钢的切削加工

1 什么是不锈钢? 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,有的甚至很难切削。 2 不锈钢可分为哪几类? 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。 工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 1.马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2 Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。 2.铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1 Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。 3.奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr1 8Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2 Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。 4.奥氏体+铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的 有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2 N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。 5.沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7A l、0Cr15Ni7M02Al等。 前两类为铬不锈钢,后三类为铬镍不锈钢。 3 不锈钢有哪些物理、力学性能? 1.马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性, 有的有磁性,但内应力大且脆。经低温回火后可消除其应力,提高塑性,切削加工较困 难,有切屑擦伤或粘结的明显趋向,刀具易磨损。 当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,工件已加工表面质量低。含碳量达0.4%~0.5%时,切削加工性较好。

切削不锈钢时怎样选择切削用量

不锈钢的切削加工 核心提示:本文重点介绍分析了不锈钢的性能,切削特点,怎样选择刀具材料、刀具几何参数、切削用量,切削液和冷却方式,加工方式等等 1 什么是不锈钢? 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,有的甚至很难切削。 2 不锈钢可分为哪几类? 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。 工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。 铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。 奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr18Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。 奥氏体+铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。 沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7Al、0Cr15Ni7M02Al等。 前两类为铬不锈钢,后三类为铬镍不锈钢。 3 不锈钢有哪些物理、力学性能?切削不锈钢时怎样选择刀具断(卷)屑槽和刃口形式? 切削不锈钢时还应选择合适的刀具断(卷)屑槽,以便控制连绵不断的切屑,通常采用全圆弧形或直线圆弧形断(卷)屑槽。断(卷)屑槽的宽度Bn=3~5 mm,槽深h=0.5~1.3 mm,Rn=2~8 mm。一般情况下,粗车时ap、f大,断(卷)屑槽宜宽而浅;精车时ap、f小,应窄而深些。 断(卷)屑槽的形式见图2。

不锈钢加工参数

不锈钢切削加工 不锈钢切削加工摘要:螺纹类零件10的数控车床加工编程NUM公司力推新一代Axium Power 数控系统数控铣削的编程与工艺分析基于细胞神经网络刀具磨损图像处理的研究中国最大乙烯装置的裂解气压缩机试车成功发动机盲孔除切屑机的研制与应用在不断变化时代的工具钢加工什么是智能变送器?机械故障的形成及其特性分析数控车间(机床)集成管理技术及产品浅谈CAD的特征造型技术轴承钢的表面强化方法如何进行电话销售?拉刀齿距及同时工作齿数的确定大型水轮机叶片的多轴联动数控加工编程技术张晓静:计算机在冲压领域的应用 PLC位控单元在精密磨削控制中的应用硬质材料铣削技术 CAD技术发展趋势数控机床软件界面人的因素分析 [标签:tag] 1 什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。钢中含铬量达12%以上时,. 1?什么是不锈钢? 通常,人们把含铬量大于12%或含镍量大于8%的合金钢叫不锈钢。这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。 钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的则不能热处理。 由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。所含的合金元素对切削加工性影响很大,有的甚至很难切削。2?不锈钢可分为哪几类? 不锈钢按其成分,可分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。 工业上常用的不锈钢一般按金相组织分类,可分为以下五大类: 马氏体不锈钢:含铬量12%~18%,含碳量0.1%~0.5%(有时达1%),常见的有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV、30Cr13Mo等。?铁素体不锈钢:含铬量12%~30%,常见的有0Cr13、0Cr17Ti、0Cr13Si4NbRE、1Cr17、1Cr17Ti、1Cr17M02Ti、1Cr25Ti、1Cr28等。?奥氏体不锈钢:含络量12%~25%,含镍量7%~20%(或20%以上),最典型的代表是1Cr18Ni9Ti,常见的还有00Cr18Ni10、00Cr18Ni14Mo2Cu2、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、0Cr23Ni28M03Cu3Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4、1Cr18Mn8Ni5N等。?奥氏体铁素体不锈钢:与奥氏体不锈钢相似,仅在组织中含有一定量的铁素体,常见的有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5M03N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3M03Cu2N、Cr2bNi17M03CuSiN、1Cr18Ni11Si4AlTi等。?沉淀硬化不锈钢:含有较高的铬、镍和很低的碳,常见的有0Cr17Ni4Cu4Nb、0Cr17Ni7Al、0Cr15Ni7M02Al等。 前两类为铬不锈钢,后三类为铬镍不锈钢。 3?不锈钢有哪些物理、力学性能? 马氏体不锈钢:能进行淬火,淬火后具有较高的硬度、强度和耐磨性及良好的抗氧化性,有的有磁性,但内应力大且脆。经低温回火后可消除其应力,提高塑性,切削加工较困难,有切屑擦伤或粘结的明显趋向,刀具易磨损。 当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时容易产生积屑瘤,且断屑困难,

双相不锈钢基本特性

第一类属低合金型,代表牌号UNS S32304(23Cr-4Ni-0.1N),钢中不含钼,PREN值为24-25,在耐应力腐蚀面可代替AISI304或316使用。 第二类属中合金型,代表牌号是UNS S31803(22Cr-5Ni-3Mo-0.15N),PREN值为32-33,其耐蚀性能介于AISI 316L和6%Mo+N奥氏体不锈钢之间。 第三类属高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号UNSS32550(25Cr-6Ni-3Mo-2Cu-0.2N),PREN值为38-39,这类钢的耐蚀性能高于22%Cr的双相不锈钢。 第四类属超级双相不锈钢型,含高钼和氮,标准牌号UNS S32750(25Cr-7Ni-3.7Mo-0.3N),有的也含钨和铜,PREN值大于40,可适用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。国外主要双相不锈钢牌号的近似对照见表2。 表1 双相不锈钢(DSS)代表牌号的主要化学成分和蚀抗力当量值 Representative Duplex Stainless Steel Types,Main Chemical Analysis and Pitting Resistance Equivalent Number - . -考试文档-

- . -考试文档-

- . -考试文档-

表2 各国主要双相不锈钢牌号的近似对照 Comparison of Main Duplex Stainless Steels Of Different Countries - . -考试文档-

不锈钢加工对刀具材质和参数的要求

不锈钢加工对刀具材质和参数的要求 1 不锈钢加工对刀具的基本要求 对刀具几何参数的要求加工不锈钢时,刀具切削部分的几何形状,一般应从前角、后角方面的选择来考虑。在选择前角时,要考虑卷屑槽型、有无倒棱和刃倾角的正负角度大小等因素。不论何种刀具,加工不锈钢时都必须采用较大的前角。增大刀具的前角可减小切屑切离和清出过程中所遇到的阻力。对后角选择要求不十分严格,但不宜过小,后角过小容易和工件表面产生严重摩擦,使加工表面粗糙度恶化,加速刀具磨损。并且由于强烈摩擦,增强了不锈钢表面加工硬化的效应;刀具后角也不宜过大,后角过大,使刀具的楔角减小,降低了切削刃的强度,加速了刀具的磨损。通常,后角应比加工普通碳钢时适当大些。 对刀具切削部分表面粗糙度的要求提高刀具切削部分的表面光洁度可减少切屑形成卷曲时的阻力,提高刀具的耐用度。与加工普通碳钢相比较,加工不锈钢时应适当降低切削用量以减缓刀具磨损;同时还要选择适当的冷却润滑液,以便降低切削过程中的切削热和切削力,延长刀具的使用寿命。 对刀杆材料的要求加工不锈钢时,由于切削力较大,故刀杆必须具备足够的强度和刚性,以免在切削过程中发生颤振和变形。这就要求选用适当大的刀杆截面积,同时还应采用强度较高的材料来制造刀杆,如采用调质处理的45号钢或50号钢。 对刀具切削部分材料的要求加工不锈钢时,要求刀具切削部分的材料具有较高的耐磨

性,并能在较高的温度下保持其切削性能。目前常用的材料有:高速钢和硬质合金。由于高速钢只能在600°C以下保持其切削性能,因此不宜用于高速切削,而只适用于在低速情况下加工不锈钢。由于硬质合金比高速钢具有更好的耐热性和耐磨性,因此用硬质合金材料制成的刀具更适合不锈钢的切削加工。 硬质合金分钨钴合金(YG)和钨钴钛合金(YT)两大类。钨钴类合金具有良好的韧性,制成的刀具可以采用较大的前角与刃磨出较为锋利的刃口,在切削过程中切屑易变形,切削轻快,切屑不容易粘刀,所以在一般情况下,用钨钴合金加工不锈钢比较合适。特别是在振动较大的粗加工和断续切削加工情况下更应采用钨钴合金刀片,它不象钨钴钛合金那样硬脆,不易刃磨,易崩刃。钨钴钛合金的红硬性较好,在高温条件下比钨钴合金耐磨,但它的脆性较大,不耐冲击、振动,一般作不锈钢精车用刀具。 2 刀具材料牌号的选择 刀具材料的切削性能关系着刀具的耐用度和生产率,刀具材料的工艺性影响着刀具本身的制造与刃磨质量。宜选择硬度高、抗粘结性和韧性好的刀具材料,如YG类硬质合金,最好不要选用YT类硬质合金,尤其是在加工1Gr18Ni9Ti奥氏体不锈钢应绝对避免选用YT类硬质合金,因为不锈钢中的钛(Ti)和YT类硬质合金中的Ti产生亲合作用,切屑容易把合金中的Ti带走,促使刀具磨损加剧。生产实践表明,选用YG532、YG813及YW2三种牌号材料加工不锈钢具有较好的加工效果(见附表)。 三种硬质合金牌号的性能比较

不锈钢加工难点分析及解决办法【全面分析】

不锈钢加工难点分析及解决办法【全面分析】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 【摘要】新产品的不断涌现对零件的材料提出了更高的要求,所需材料有时必须满足高硬度、高耐磨性、高韧性等特殊要求,由此产生了一批难加工材料,对加工工艺提出了更高的要求。本文以不锈钢等难加工材料为对象,结合我所加工遇到的实际问题,分析不锈钢的加工难点,并提出了切实有效的解决方法。 【关键词】不锈钢;切削加工;加工方法 1.引言 与优质碳素结构钢相比,不锈钢材料加入了Cr、Ni、N、Nb、Mo等合金元素。这些合金元素的增加,不仅提高了钢的耐蚀性,对不锈钢的机械性能也有一定影响。如马氏体不锈钢4Cr13与45号中碳钢相比,具有相同的含碳量,但相对切削加工性只有45钢的58%;奥氏体不锈1Cr18Ni9Ti只有40%,而奥氏体—铁素体双相不锈钢韧性高、切削性更差。 2.不锈钢材料切削难点分析 在实际加工中,切削不锈钢往往伴随着断刀、粘刀现象的发生。由于不锈钢在切削时塑性变形大,产生的切屑不易折断、易粘结,导致在切削过程中加工硬

化严重,每一次走刀都对下一次切削产生硬化层,经过层层积累,不锈钢在切削过程中的硬度越来越大,需要的切削力也随之升高。 加工硬化层的产生、切削力的增高必然导致刀具与工件之间的摩擦增大,切削温度也随之升高。并且,不锈钢的导热系数较小,散热条件差,大量切削热集中刀具与工件之间,使已加工表面恶化,严重影响了已加工表面的质量。而且,切削温度的升高会加剧刀具磨损,使刀具前刀面产生月牙洼,切削刃产生缺口,从而影响工件表面质量,降低了工作效率,增加了生产成本。 3.提高不锈钢加工质量的方法 由上可以看出,不锈钢的加工比较困难,切削时易产生硬化层,容易断刀;产生的切屑不易折断,导致粘刀,会加剧刀具的磨损。针对不锈钢这些切削特点,结合生产实际,我们从刀具材料、切削参数及冷却方式三方面入手,找到提高不锈钢加工质量的方法。 3.1 刀具材料的选择 选择合适的刀具是加工出高质量零件的基础。刀具太差,加工不出合格的零件;选择过好的刀具,虽然能满足零件的表面质量要求,但容易造成浪费,提高了生产成本。结合不锈钢切削时散热条件差、产生加工硬化层、易粘刀等特点,选择的刀具材料应满足耐热性好、耐磨性高、与不锈钢亲和作用小的特点。 3.1.1 高速钢 高速钢是加入W、Mo、Cr、V、Go等合金元素的高合金工具钢,具有较好的工艺性能,强度和韧性配合好,抗冲击振动的能力较强。在高速切削产生高热情况下(约500℃)仍能保持高的硬度(HRC仍在60以上),高速钢红硬性好,适合制作铣刀、车刀等铣削刀具,可以满足不锈钢切削时产生的硬化层及散

不锈钢零件机加工工艺

不锈钢零件机加工工艺 1不锈钢材料加工难点 1.1切削力大,切削温度高 该类型材料强度大,切削时切向应力大、塑性变形大,因而切削力大。此外材料导热性极差,造成切削温度升高,且高温往往集中在刀具刃口附近的狭长区域内,从而加快了刀具的磨损。 1.2加工硬化严重 奥氏体不锈钢以及一些高温合金不锈钢均为奥氏体组织,切削时加工硬化倾向大,通常是普通碳素钢的数倍,刀具在加工硬化区域内切削,使刀具寿命缩短。 1.3容易粘刀 论是奥氏体不锈钢还是马氏体不锈钢均存在加工时切屑强韧、切削温度很高的特点。当强韧的切屑流经前刀面时,将产生粘结、熔焊等粘刀现象,影响加工零件表面粗糙度。 1.4刀具磨损加快 上述材料一般含高熔点元素、塑性大,切削温度高,使刀具磨损加快,磨刀、换刀频繁,从而影响了生产效率,提高了刀具使用成本。 2 不锈钢零件加工工艺 通过上述加工难点分析,不锈钢的加工工艺及相关刀具参数设计与普通结构钢材料应具有较大的不同,其具体加工工艺如下: 2.1钻孔加工 在钻孔加工时,由于不锈钢材料导热性能差,弹性模量小,孔加工起来也比较困难。解决此类材料的孔加工难题,主要是选用合适的刀具材料,确定合理的刀具的几何参数以及刀具的切削用量。钻削上述材料时,钻头一般应选用W6Mo5Cr4V2Al、W2Mo9Cr4Co8等材质的钻头,这些材质钻头缺点是价格比较昂贵,而且难以采购。而采用常用的W18Cr4V普通标准高速钢钻头钻孔时,由于存在顶角较小、切屑太宽而不能及时排出孔外、切削液不能及时冷却钻头等缺点,再加上不锈钢材料导热性差,造成集中在刀刃上的切削温度升高,容易导致两个后刀面和主刃烧伤及崩刃,使钻头的使用寿命降低。 (1)刀具几何参数设计在采用W18Cr4V普通高速钢钻头钻孔时,切削力及切削温度均集中在钻尖上,为提高钻头切削部位的耐用度,可以适当增大顶角角度,顶角一般选135°~140°,顶角增大也将使外缘前角减小,钻屑变窄,以利于排屑。但是加大顶角后,钻头的横刃变宽,造成切削阻力增大,因而必须对钻头横刃进行修磨,修磨后横刃的斜角为47°~55°,横刃前角为3°~5°,修磨横刃时,应将切削刃与圆柱面转角处修磨成圆角,以增加横刃强度。由于不锈钢材料弹性模量较小,切屑层下的金属弹性恢复大,加之加工过程中加工硬化严重,后角太小会加快钻头后刀面的磨损,而且增加了切削温度,降低钻头的寿命。因此须适当加大后角,但后角太大,将使钻头的主刃变得单薄,减小了主刃的刚性,所以后角应以12°~15°为宜。为使钻屑变窄,利于排屑,还需要在钻头两个后刀面上开交错分布的分屑槽。 (2)切削用量选择钻削时,切削用量的选择应从降低切削温度的基本点出发,因为高速切削将会使切削温度升高,而高的切削温度将加剧刀具磨损,因而切削用量中最重要的是选择切削速度。一般情况下,切削速度以12~15m/min较为合适。进给量对刀具寿命影响较小,但进给量选择太小将会使刀具在硬化层内切削,加剧磨损;而进给量如果太大,又会使表面粗糙度变差。综合上述两个因素,进给量选择为0.32~0.50mm/r为宜。 (3)切削液选择钻削时,为降低切削温度,可采用乳化液作为冷却介质。 2.2铰孔加工 (1)刀具几何参数设计不锈钢材料的铰削加工大部分使用硬质合金铰刀。铰刀的结构和几何参数与普通铰刀有所不同。为增强刀齿强度并防止铰削时产生切屑堵塞现象,铰刀齿数一般比较少。铰刀前角一般为8°~12°,但在某些特定情况,为了实现高速铰削,也可采用0°~

不锈钢切削加工及刀具

1. 刀具材料的选择............................................ 正确选用刀具材料是保证高效率加工不锈钢的决定因素。根据不锈钢的切削特点,刀具材料应具备足够的强度、韧性、高硬度和高耐磨性且与不锈钢的粘附性要小。常用的刀具材料有硬质合金和高速钢两大类。 由于高速钢切削不锈钢时的切削速度不能太高,因此影响生产效率的提高。对于铣刀类刀具,刀具材料应选用强度高、导热性好的硬质合金,因其硬度、耐磨性等性能优于高速钢。 常用的硬质合金材料有:钨钴类,钨钴钛类,通用类。钨钴类硬质合金的韧性和导热性较好,不易与切屑粘结,因此适用于不锈钢粗铣加工;而钨钴钛类硬质合金的硬度、耐磨性、耐热性和抗氧化性能以及韧性都较好,适合于不锈钢的精铣加工。 加工1Cr18Ni9Ti 奥氏体不锈钢时,不宜选用钨钴钛类硬质合金,由于不锈钢中的Ti 和钨钴钛类类硬质合金中的Ti 产生亲合作用,切屑容易把合金中的Ti 带走,促使刀具磨损加剧。 2. 刀具几何角度的选择............................................ 刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。 (1)铣刀第一隙角的选择( Radius Angle ) 前角的大小决定刀刃的锋利与强度。增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。 铣削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12°~20°。 (2)铣刀第二隙角α0的选择( Secend Angle ) 在切削过程中,后角可以减小后刀面与切削表面的摩擦。若后角过大,则楔角减小,使散热条件恶化,刀具刃口强度下降,降低刀具耐用度;若后角过小,摩擦严重,则会使刃口变钝,增大切削力,增高切削温度,加剧刀具磨损。 在一般情况下,后角变化不大,但必须有一个合理的数值,以利于提高刀具的耐用度。铣削不锈钢时,由于不锈钢的弹性和塑性都比普通碳素钢大,所以刀具后角过小会使切断表面与铣刀后角的接触面积增大,摩擦产生的高温区集中于铣刀后角,加快铣刀磨损,降低被加工表面光洁度。

不锈钢的铣削加工参数

不锈钢的铣削加工 铣削不锈钢的特点是:不锈钢的粘附性及熔着性强,切屑容易粘附在铣刀刀 齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。 铣削不锈钢除端铣刀和部分立铣刀可用硬质合金作铣刀刀齿材料外,其余各类铣刀均采用高速钢,特别是钨—钼系和高钒高速钢具有良好的效果,其刀具耐用度可比W18Cr4V提高1~2倍。适宜制作不锈钢铣刀的硬质合金牌号有YG8、YW2、813、798、YS2T、YS30、YS25等。 铣削不锈钢时,切削刃既要锋利又要能承受冲击,容屑槽要大。可采用大螺旋角铣刀(圆柱铣刀、立铣刀),螺旋角b从20°增加到45°(g n =5°),刀具耐用度可 提高2倍以上,因为此时铣刀的工作前角g 0e 由11°增加到27°以上,铣削轻快。但b值不宜再大,特别是立铣刀以b≤35°为宜,以免削弱刀齿。 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数 采用波形刃立铣刀加工不锈钢管材或薄壁件,切削轻快,振动小,切屑易碎,工件不变形。用硬质合金立铣刀高速铣削、可转位端铣刀铣削不锈钢都能取得良好的效果。 用银白屑(SWC)端铣刀铣削1Cr18Ni9Ti,其几何参数为g f =5°、g p =15°、a f =15°、 a p =5°、k r =55°、k′ r =35°、g 01 =-30°、b g =0.4mm、r e =6mm,当V c =50~90 m/min、 V f =630~750mm/min、a′ p =2~6mm并且每齿进给量达0.4~0.8mm时,铣削力减小 10%~15%,铣削功率下降44%,效率也大大提高。其原理是在主切削刃上磨出负倒棱,铣削时人为地产生积屑瘤,使其代替切削刃进行切削,积屑瘤的前角g b 可达20~~302,由于主偏角的作用,积屑瘤受到一个前刀面上产生的平行于切削刃的推力作用而成为副屑流出,从而带走了切削热,降低了切削温度。 铣削不锈钢时,应尽可能采用顺铣法加工。不对称顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。 高速钢刀具加工参数: 直径:主轴转速(r/min)进给量mm/min 3~4 1100~750 10~15 5~6 750~ 550 15~20 8~10 600~350 20~30 12~14 350~270 30~37 16~18 270~230 37~47,5 20~22 250~200 47~55 硬制合金刀具:1500~2000 F120~150

双相不锈钢2205

双相不锈钢2205 2205双相不锈钢合金是由21%铬,2.5%钼及4.5%镍氮合金构成的复式不锈钢。它具有高强度、良好的冲击韧性以及良好的整体和局部的抗应力腐蚀能力。 2205双相不锈钢合金的屈服强度是奥氏体不锈钢的两倍,这一特性使设计者在设计产品时减轻重量,让这种合金比316,317L更具有价格优势。这种合金特别适用于-50°F/+600°F 温度范围内。超出这一温度范围的应用,也可考虑这种合金,但是有一些限制,尤其是应用于焊接结构的时候。 化学成分 C≤0.030 Mn≤2.00 Si≤1.00p≤0.030 S≤0.020 Cr 22.0~23.0 Ni 4.5~6.5 Mo3.0~3.5 N0.14~0.20(奥氏体-铁素体型) 2205双相钢应用领域 ·压力器皿、高压储藏罐、高压管道、热交换器(化学加工工业)。 ·石油天然气管道、热交换器管件。 ·污水处理系统。 ·纸浆和造纸工业分类器、漂白设备、贮存处理系统。 ·高强度耐腐蚀环境下的回转轴、压榨辊、叶片、叶轮等。 ·轮船或卡车的货物箱 ·食品加工设备 标准号:ASTM A240/A240M--01 ASTM/ASME...........A240 UNS S32205/S31803 EURONORM...........1.4462 X2CrNiMoN 22.5.3 AFNOR...................Z3 CrNi 22.05 AZ DIN.........................W. Nr 1.4462 抗腐蚀能力 均匀腐蚀由于铬含量(22%),钼(3%)及氮含量(0.18%),2205的抗腐蚀特性在大多数环境下优于316L和317L。 局部抗腐蚀 不锈钢的双相微观结构有助于提高不锈钢的抗应力腐蚀龟裂能力。在一定的温度、应张力、氧气及氯化物存在的情况下,奥氏体不锈钢会发生氯化物应力腐蚀。由于这些条件不易控制,因此304L、316L和317L的使用在这方面受到限制。 抗腐蚀疲劳 2205双相钢的高强度及抗腐蚀能力使其具有很高的抗腐蚀疲劳强度。加工设备易受腐蚀环境和加载循环的影响,2205的特性非常适合这样的应用。 结构

不锈钢车削方法

1切削过程中的难点及原因分析 在零件试生产时,我们按车削普通碳钢的工艺方法对3Cr13不锈钢进行了车削试验,结果是刀具磨损非常严重,生产率极低,零件表面质量达不到要求。 比较3Cr13钢与40钢、45钢等碳素结构钢的机械性能可知,3Cr1 3钢的强度比40钢和45钢高,它是一种强度高、塑性好的中碳马氏体不锈钢。由于切削时加工硬化严重,切削抗力大,切削温度高,导致刀具磨损严重,磨刀次数增多,增加了停机时间和机床调整时间,降低了生产率。同时又容易粘刀,产生积屑瘤,引起工件尺寸的变化并影响表面粗糙度,而且切屑不易卷曲和折断,易损伤工件已加工表面,影响零件质量。所以,不能用切削45钢的工艺来切削3Cr13,也不能把通用车床上的加工方法照搬到自动车床上来。因为一般自动车床装刀较少,要求最好一次走刀就能使被加工表面达到要求的尺寸和表面粗糙度,以保证较高的生产率。 2主要技术措施 1. 通过热处理,改变材料的硬度 马氏体不锈钢在热处理后的不同硬度,对车削加工的影响很大。表1是用YW2材料的车刀对热处理后不同硬度的3Cr13钢的车削情况。可见,退火状0.10.10.1态的马氏体不锈钢虽然硬度低,但车削性能差,这是因为材料塑性和韧性大,组织不均匀,粘附,熔着性强,切削过程易产生刀瘤,不易获得较好的表面质量。而调质处理后硬度在HRC30以下的3Cr13材料,车削加工性较好,易达到较好的表面质量。用硬度在HRC30以上的材料加工出的零件,表面质量虽然较好,但刀具易磨损。所以,在条件允许的情况下,可以在材料进厂后,先进行调质处理,硬度达到HRC25~HRC30,然后再进行切削加工。 表1 3Cr13钢材料切削用 量刀具 耐用 度 min 加工表 面粗糙 度 μm ν m/ mi n s m m /r HB240(退火)45 ~ 55 . 1 90~ 115 Ra6.3~ Ra3.2 HRC25~30(调质)45 ~ 55 . 1 95~ 110 Ra3.2 HRC35~38(调质)45 ~ 55 . 1 60~ 75 Ra3.2 2. 刀具材料的选择 在自动车床上车削不锈钢,一般使用的硬质合金的刀具材料有:YG6、YG8、YT15、YT30、YW1、YW2等材料。 常用的高速钢刀具有:W18Cr4V、W6M05Cr4V2AL等材料。我们在切削参数相同的条件

不锈钢的切削加工总结

不锈钢的切削加工 在不锈钢的切削加工中,首先要对被加工件的被切削性能有所了解,不锈钢在切削过程中有如下几方面特点: 1. 加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。因为不锈钢的塑性大,塑性变形时晶格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。 2. 切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。 3. 切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;大量切削热都集中在切削区和刀削接触的界面上,散热条件差。在相同的条件下切削温度比45号钢高200℃左右。 4. 切削不易折断、易粘结:不锈钢的塑性、韧性都很大,在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积削瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。含碳量较低的马氏体不锈钢的这一特点更为明显。 5. 刀具易磨损:切削不锈钢过程中的亲和作用,使刀削间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,

切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。 切削不锈钢时应怎样选择刀具的材料: 合理选择刀具材料是保证高效率切削加工不锈钢的重要条件。根据不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点,YG类硬质合金的韧性较好,可采用较大的前角,刀刃也可以磨得锋利些,使切削轻快,且切屑与刀具不易产生粘结,较适于加工不锈钢。另外,YG类合金的导热性较好,其导热系数比高速钢高将近两倍,比YT类合金高一倍。 切削不锈钢时怎样选择刀具几何参数? 前角:不锈钢的硬度、强度并不高,但其塑性、韧性都较好,热强性高,切削时切屑不易被切离。在保证刀具有足够强度的前提下,应选用较大的前角,这样不仅能够减小被切削金属的塑性变形,而且可以降低切削力和切削温度,同时使硬化层深度减小。 后角:加大后角能减小后刀面与加工表面的摩擦,但会使切削刃的强度和散热能力降低。后角的合理值取决于切削厚度,切削厚度小时,宜选较大后角,我们三轨由于切削量大,所以选用20°的后角。 选择合适的涂层对于金属切削来说能起到非常重要的作用,TiAICRN(碳氮化铝钛)涂层在不锈钢切削加工中起着非常重要的作用涂层材料作为化学屏障和热屏障,减小了月牙洼磨损,耐磨性良好。与未涂层刀具相比,涂层刀具加工精度提高0.5~1级,刀具消耗费用降低20%~50%,耐磨性提高2~10倍,切削速度提高25%~70%,使用寿命延长3~5倍。

2205双相不锈钢在制药和生物技术领域的应用

2205双相不锈钢在制药和生物技术领域的应用

2 目录制造材料 32205双相不锈钢是一种什么材料? 3腐蚀特性 4耐点蚀性能4应力腐蚀开裂4红锈4加工特性 5双相不锈钢的电解抛光6标准规范和质量控制标准6参考文献 7 2205双相不锈钢在制药和生物技术领域的应用 2011年第1版? IMOA 2011 ISBN 978-1-907470-26-4 由位于英国伦敦的国际钼协会(IMOA)出版https://www.360docs.net/doc/b63631523.html, info@https://www.360docs.net/doc/b63631523.html, 编者:Jim Fritz博士,美国宾夕法尼亚州匹兹堡TMR Stainless公司由德国慕尼黑circa drei设计 封面照片:配置了不锈钢设备的洁净室?https://www.360docs.net/doc/b63631523.html,/xxapril 国际钼协会(IMOA)一直不遗余力地确保所提供信息在技术上的正确性。但是,IMOA不宣称或担保本手册所包含信息的准确性,也不担保这些信息适用于任何一般或特定用途。本出版物包含的资料信息仅供参考,不能替代任何个人决策,在未获得专业建议之前不应依靠它或用于任何特定或一般用途。IMOA、协会成员、员工和顾问对由于使用本出版物所包含信息而导致的损失、损害或伤害不承担任何义务或责任。本出版物主要使用ASTM和EN国际标准,而各个国家的材料标准可能存在差异。

3 制药和生物技术行业的卫生要求相对较高,用于制造加工容器和管道系统的材料必须证明具有卓越的耐腐蚀性和清洁性,以确保药物产品的纯度和品质。材料必须能够耐受生产环境以及消毒和清洁工序中的温度、压力和腐蚀性。此外,材料必须具有良好的焊接性,必须能够满足行业对表面光洁度的要求。 制药和生物技术行业工艺设备的主要制造材料为316L(UNS S31603, EN 1.4404)奥氏体不锈钢。316L不锈钢所具有的耐腐蚀性、焊接性、电解抛光特性以及供货方便的特点,使其成为绝大多数制药应用的理想候选材料。尽管316L不锈钢在许多工艺环境下表现良好,但用户仍然通过审慎选择特定的316L不锈钢化学成份以及采用改进的生产工艺如电渣重熔(ESR),来提高316L不锈钢的性能表现。如果对于316L不锈钢而言,工艺介质条件腐蚀性过强的话,用户若能接受维护成本的增加可以继续使用316L不锈钢,也可以转而选用合金成份更高的6%钼超级奥氏体不锈钢,如AL-6XN ?(UNS N08367)或254 SMO ?(UNS S31254,EN 1.4547)。最近,生物技术行业已经认识到了采用2205(UNS S32205,EN 1.4462)双相不锈钢制造工艺设备的好处。 图1 采用厚度标号为10的2205双相不锈钢板和3/16英寸(4.8毫米)厚的2205双相不锈钢板制造的制药行业用研发容器。与产品接触的表面经电解抛光使光洁度达到ASME BPE - SF4。(照片来源:Genentech) 2205双相不锈钢是一种什么材料? 制造材料 316L不锈钢的显微组织中包括了奥氏体相和非常少量的铁素体相。这主要是通过向合金中添加足够量的镍来稳定奥氏体相而形成的。锻轧316L不锈钢的镍含量一般为10-11%。双相不锈钢的化学成份经过调整,形成了一种含有大致等量的铁素体相和奥氏体相的显微组织(图2)。2205双相不锈钢是通过减少镍含量至约5%并调整锰和氮的添加量至形成约40-50%的铁素体而形成的。2205双相不锈钢的化学成份是平衡的,因此奥氏体相和铁素体相具备大至相当的耐腐蚀性。“双相”指具有奥氏体/铁素体两相的显微组织。 2205双相不锈钢氮含量的增加及其细晶粒的显微组织使其具有比304L和316L等常见奥氏体不锈钢更高的强度。在固熔退火条件下,2205双相不锈钢的屈服强度大 约是316L不锈钢的两倍。由于这一较高的强度, 2205双相不锈钢的许用应力可以高得多,这取决于工艺设备制造所采用的设计规范。在许多应用中,可以减薄壁厚,从而减轻重量,节约成本。 图2 (A)锻轧316L不锈钢的显微组织显示出奥氏体晶粒以及偶尔可见的铁素体长条。(B) 锻轧2205双相不锈钢显微组织显示出奥氏体(浅色相)和铁素体(深色相)的数量大致相等。 (A) 放大倍数 ≈ 200X (B) 放大倍数 ≈ 400X 注:AL-6XN ?为ATI Properties公司的商标,254SMO ?是Outokumpu Stainless的商标。

相关文档
最新文档