煤岩力学性质测试分析与应用

煤岩力学性质测试分析与应用
煤岩力学性质测试分析与应用

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

煤岩地层岩石的力学特性分析(初稿)

煤岩地层岩石的力学特性分析 摘要:煤岩地层岩石的力学特性包括变形特征和强度特征。本文对煤岩的力学特性进行了系统的分析,探讨了岩石试件在各种载荷作用下的变形规律和开始破坏时的最大应力(强度极限)以及应力与破坏之间的关系,为煤矿的开采和煤层气的开发提供理论依据。 关键词:煤岩力学特性变形特征强度特征 1、煤岩的结构构造特征 岩石的组成成分、结构构造特征造成了岩石物质成分的非均质性、物理力学性质的各向异性和结构构造的不连续性。这是区别于其他力学材料的最突出特征,而煤岩层的这些特征尤为显著。 煤岩的非均质性和各向异性突出表现在其组成成分在同一煤层中纵向(垂直层理)和横向不同方向和深度上的差异,以及在其生成过程中所形成的明显层状构造和孔隙结构所体现出的差异。通常煤岩中存在有两组近于垂直的割理,主要裂隙组面割理发育较完善延伸可至数百米,而端割理发育在面理之间,沟通了面割理。两组割理与层理面近于垂交或陡角相交。由于煤岩层状构造发育,空隙结构特殊,构造作用对后期的改造或产生裂隙,都充分体现出了煤岩结构构造的不连续性。 2、煤岩地层岩石的强度特征

2.1单轴压缩条件下煤岩的强度特征 对鲍店矿3煤31个煤样和新河矿3煤48个煤样在MTS815.03岩石伺服试验机上采用s 15- ?的轴向应变加载速度进行 10 mm/ 单轴压缩试验(加载方向均垂直于煤层层面),得出的详细力学参数见论文第3章表.33和.34,结果汇总在表4.1中。 煤岩强度较低且离散性大的原因除与试验条件、取样制样技术等外在因素有关外,第2章的研究结果表明,主要与其微组分、微孔隙裂隙、微结构等内在因素有关。对煤岩单轴抗压强度的试验结果表明,煤岩强度与其容重、空隙率、含水率、煤体结构以及煤岩变质程度等有关。具体来讲,煤块的单轴抗压强度随其容重的增加而增加;随其孔隙率的增加而减小;煤体节理裂隙越发育,其强度越低;受火成岩影响,煤的变质程度越高,其强度越高。 2.2三轴压缩条件下煤样的强度特征 岩石在三轴压缩条件下的最大承载能力称三轴极限强度或

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

煤系地层常见岩石力学参数

常见岩层力学参数 组号岩石名称容重d/ (kg/m3) 弹性模量E /GPa 体积模量K/GPa K=E/(3(1-2v)) 剪切模量 G/GPa G=E/(2(1+v))泊松比v 内聚力 /MPa 摩擦角 /° 抗拉强度 /MPa 1 粉砂岩246019.510.838.13 0.2 2.7538 1.84泥岩24618.75 6.08 3.47 0.26 1.2300.605砂质泥岩2510 5.425 2.56 2.36 0.147 2.16360.75细砂岩287333.421.01 13.52 0.235 3.242 1.29砂岩248713.5 5.97 6.01 0.123 2.0640 1.13 13煤1380 5.3 4.91 2.01 0.32 1.25320.15泥岩248317.79.97 7.35 0.204 1.2320.58粉砂岩246019.510.83 8.13 0.2 3.7538 1.84砂岩258025.012.22 10.79 0.159 2.542 3.6砂质泥岩253010.85 5.12 4.73 0.147 2.4540 2.01粉砂岩246019.510.83 8.13 0.2 2.7538 1.84 2中砂岩2580 5.99 3.3 2.50.20 4.037 1.2土层19600.25 0.280.0930.35 0.85250.35细砂岩2540 4.01 2.7 1.60.25 2.035 1.0煤14000.99 0.850.380.31 1.0280.5粗砂岩25607.07 4.2 2.90.22 5.034 1.5

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

131-煤岩物理力学性质与冲击倾向性关系

煤岩物理力学性质与冲击倾向性关系 李宏艳 1,2 (1.煤炭科学研究总院,北京100013;2.煤炭资源高效开采与洁净利用国家重点实验室(煤炭科学研究总院),北京100013) [摘 要] 冲击倾向性是煤岩介质的固有属性,是发生冲击矿压的必要条件,物理力学参数表征煤岩介质的性质,基于大量煤岩介质物理力学参数数据及冲击倾向性结果,分析了煤岩物理力学性质中吸水性、强度参数、变形参数与冲击倾向性之间的定量或定性关系。试验研究及理论分析结果表明,随着煤岩介质吸水性增强,其动态破坏时间越长,冲击能量指数越低,冲击倾向性程度越低;煤岩介质随着单轴抗压强度的增强,受载过程中积蓄的弹性应变能增大而耗散的永久变形能减少,冲击倾向性增加;弹性模量大于9G P a 时,冲击倾向性类别只为强冲击。 [关键词] 冲击倾向性;物理力学参数;动态破坏时间;冲击能量指数;弹性能量指数[中图分类号]T U 45 [文献标识码]A [文章编号]1006-6225(2011)03-0043-04 P h y s i c a l a n dMe c h a n i c a l P r o p e r t y o f C o a l a n dR o c k a n dI t s R e l a t i o n s h i pw i t hR o c k -b u r s t L i a b i l i t y L I H o n g -y a n 1,2 (1.C h i n a C o a l R e s e a r c h I n s t i t u t e ,B e i j i n g 100013,C h i n a ; 2.S t a t eK e y L a b o r a t o r y o f C o a l R e s o u r c e s H i g h -e f f i c i e n c y M i n i n g a n d C l e a nU t i l i z a t i o n ,C h i n a C o a l R e s e a r c hI n s t i t u t e ,B e i j i n g 100013,C h i n a ) A b s t r a c t :R o c k -b u r s t l i a b i l i t y i s i n n e r p r o p e r t y o f c o a l a n d r o c k b o d y a n d i s n e c e s s a r y c o n d i t i o n o f r o c k -b u r s t .P h y s i c a l a n d m e c h a n i c a l p a r a m e t e r s r e p r e s e n t c o a l a n dr o c kb o d y 's p r o p e r t y . B a s e d o na m o u n t o f e x p e r i m e n t a l d a t a o f p h y s i c a l ,m e c h a n i c a l p a r a m e t e r a n d r o c k -b u r s t l i a b i l i t y o f c o a l a n dr o c kb o d y ,t h e q u a l i t a t i v e a n d q u a n t i t a t i v e r e l a t i o n s h i p s o f w a t e r a b s o r b a b i l i t y ,s t r e n g t h ,d e f o r m a t i o n m o d u l e a n d r o c k -b u r s t l i a b i l i t y w e r e a n a l y z e d .R e s u l t s s h o w e d t h a t w i t h a b s o r b a b i l i t y o f c o a l a n d r o c k b o d y i n c r e a s i n g ,i t s d y n a m i c d a m a g e t i m e i n c r e a s e d ,r o c k -b u r s t e n e r g y i n d e x r e d u c e d a n d r o c k -b u r s t l i a b i l i t y d e c r e a s e d .W i t h u n i a x i a l c o m p r e s s i o n s t r e n g t hi n c r e a s e d ,e l a s t i c e n -e r g ya c c u m u l a t e di nl o a d i n gp r o c e d u r ei n c r e a s e da n dr e l e a s e dp e r m a n e n t d e f o r m a t i o ne n e r g yr e d u c e d ,s or o c k -b u r s t l i a b i l i t yi n -c r e a s e d .Wh e ne l a s t i c m o d u l e w a s l a r g e r t h a n 9G P a ,r o c k -b u r s t l i a b i l i t y o f a l l s a m p l e s w a s s t r o n g . K e yw o r d s :r o c k -b u r s t l i a b i l i t y ;p h y s i c a l a n d m e c h a n i c a l p a r a m e t e r ;d y n a m i cd a m a g e t i m e ;r o c k -b u r s t e n e r g yi n d e x ;e l a s t i c e n e r g y i n d e x [收稿日期]2011-02-25 [基金项目]国家重点基础研究发展计划(973计划)课题(2010226801) [作者简介]李宏艳(1978-),女,河北唐山人,博士后,高级工程师,主要从事矿山岩石力学与煤岩动力灾害防治相关研究工作。 煤岩作为典型的脆性岩石赋存于复杂的地质环境中,煤岩介质的物理力学性质更趋于复杂化,尤其是具有积蓄变形能并产生冲击式破坏的性质,即 冲击倾向性,冲击倾向性是煤岩介质固有属性。煤岩介质冲击倾向性是引发煤矿冲击矿压等煤岩动力灾害的必要条件。因此,准确把握煤岩介质冲击倾向性的强弱,是控制冲击矿压等煤矿突发性灾害的重要前提。针对煤岩介质冲击倾向性实验、指标、判别,国内外学者作了大量研究工作,从不同角度对冲击倾向性的影响因素进行了分析,从而提出了一系列冲击倾向性评价指标,例如弹性能指标(W E T ) [1-3]、能量指标(P E S )[2] 、脆性指标修正值 (B I M )[4] 、能量耗散指标(K )[5]、动态破坏时间(D T )[6]、有效释放率 (B E R )[3,7] 、脆性指标 (B )[8] ,能量释放率(E R R)[9] 、有效冲击能 [10] 等。指标的提出为冲击倾向性评价奠定了基础,同时也为冲击矿压的预测预报提供了依据。而影响煤岩介质冲击倾向性的因素较多,主要分为内在因素与外部因素。内在因素以煤岩属性(矿物成分、碎屑含量、颗粒大小、岩石结构、颗粒接触方式、 胶结物成分、胶结类型)为主要影响因素的研究主要包括煤岩介质矿物成分及细观结构对冲击倾向性的影响 [11-12] 。外部因素主要体现在对煤岩体生 成条件、赋存环境、围岩应力、围岩性质(顶底板条件)以及密度、温度和湿度等的影响,如对组合煤岩结构冲击倾向性的试验研究 [13-14] ,探讨含水量对煤岩冲击倾向性的影响的研究 [15] 。煤岩 介质内在属性是决定煤岩介质冲击倾向性的内在因素,通过煤岩介质的物理力学参数加以定量表征,因此以煤岩物理力学参数为媒介,探讨冲击倾向性 第16卷第3期(总第100期) 2011年6月 煤 矿 开 采C o a l m i n i n g T e c h n o l o g y V o 1.16N o .3(S e r i e s N o .100) J u n e 2011 DOI :10.13532/j .cn ki .cn11-3677/td .2011.03.013

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

岩块和岩体的地质特征概述岩体与岩块本质的区别

第二章岩块和岩体的地质特征 第一节概述 岩体与岩块本质的区别: ①岩体中存在有各种各样的结构面; ②不同于自重应力(场)的天然应力场和地下水。 第二节岩块 一、岩块的物质组成(substance composition) 1.岩块(rock or rock block) 指不含显著结构面的岩石块体,是构成岩体的最小岩石单元。 国内外,有些学者又称为结构体(structural element)、岩石材料(rock material)及完整岩石(intact rock)等等。 2.岩石(rock) 具有一定结构构造的矿物(含结晶和非结晶的)集合体。 3.岩块的力学性质 一般取决于组成岩块的矿物成分及其相对含量。 造岩矿物五大类:含氧盐、氧化物及氢氧化物、卤化物、硫化物、自然元素。 其中,含氧盐中的硅酸盐、碳酸盐及氧化物类矿物最常见,构成99.9%的岩石。 (1)硅酸盐类矿物:长石、辉石、角闪石、橄榄石及云母和粘土矿物等。 ①长石、辉石、角闪石和橄榄石,硬度大,呈粒、柱状晶形,如含此类矿物多的岩石:花岗岩、闪长岩及玄武岩等,强度高,抗变形性能好。多生成于高温环境,易风化成高岭石、水云母等,无以橄榄石的基性斜长石等抗风化能力最差,长石、角闪石次之。 ②粘土矿物:属层状硅酸盐类矿物,主要有高岭石、水云母(伊利石)和蒙脱石三类,具薄片状或鳞片状构造,硬度小。含此类矿物多的岩石如粘土岩、粘土质岩,物理力学性质差,并具有不同程度的胀缩性。(2)碳酸盐类矿物 是石灰岩和白云岩类的主要造岩矿物。岩石的物理力学性质取决于岩石中CaCO3及酸不溶物的含量。CaCO3含量↑,如纯灰岩、白云岩等强度高,抗变形和抗风化性能比较好; 泥质含量↑,如泥质灰岩、泥灰岩等,力学性质较差; 硅质含量↑,岩石性质将娈好。 碳酸盐类岩体中,常发育岩溶现象。 (3)氧化物类矿物 以石英最常见,是地壳岩石的主要造岩矿物。 硬度大,化学性质稳定。石英↑,岩块的强度和抗变形性能明显增强。 4.岩块的矿物组成与岩石的成因及类型密切相关 (1)岩浆岩:多以硬度大的粒柱状硅酸盐、石英等矿物为主,物理力学性质一般很好。 (2)沉积岩:粗碎屑岩如砂砾岩等,力学性质很大程度上取决于胶结物成分及其类型;细碎屑岩如页岩、泥岩等,多以片状的粘土矿物为主,力学性质一般很差。 (3)变质岩:与母岩类型及变质程度有关。 浅变质岩如千枚岩、板岩等,多含片状矿物(如绢云母、绿泥石及粘土矿物等),岩块力学性质较差。 深变质岩如片麻岩、混合岩、石英岩等,多以粒状矿物(如长石、石英、角闪石等)为主,力学性质好。 二、岩块的结构与构造(structure and construct) 1.岩块的结构(岩石结构) 指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、形状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。 二者对岩块(石)的工程性质影响最大。

最新最全岩石力学基础练习题复习完整版.doc

岩石力学练习题 (填空,选择,判断) 一、填空题 1.表征岩石抗剪性能的基本指数是()和()。 2.如果将岩石作为弹性体看待,表征其变形性质的基本指标是()和()。 3.岩石在单轴压力作用下,随加荷、卸荷次数的增加,变形总量逐次(),变形增量逐次()。4.所谓洞室围岩一般是指洞室周围()倍半径范围内的岩体。 5.边坡岩体中,滑移体的边界条件包括()、()和()三种类型。 6.垂直于岩石层面加压时,其抗压强度(),弹性模量();顺层面加压时的抗压强度(),弹性模量()。 7.莫尔强度理论认为:岩石的破坏仅与()应力和()应力有关,而与()应力无关。8.岩石在复杂应力状态下发生剪切破坏时,破坏面的法线与最大主应力之间的夹角总是等于()的;而破坏面又总是与中间主应力()。 9.不论何种天然应力条件下,边坡形成后,在边坡表面岩体中的最大主应力的作用方向与边坡面(),最小主应力作用方向与边坡面()。 10.主要的岩体工程分类有()、()、()、()等。 11.水对边坡岩体的影响表现在()、()和()。 12.天然应力场的主要成分有()、()和()。 13.地质结构面对岩体力学性质的影响表现在()和()。 14.结构面在法向应力作用下,产生()变形,其变形性质用指标()表征。 15.岩石抗拉强度的试验室方法有()和()。 16.地质结构面按力学条件可分为()和()。 17.岩体结构类型可分为()、()、( )、()和()。 18.岩体的强度处在()强度与()强度之间。 19.结构面的线连续性系数是在()至()变化的。 20.水对岩石力学性质的影响表现在()、()和()。 21.格里菲斯强度理论认为材料破坏的原因是()。 22.八面体强度理论认为材料破坏的原因是()。 23.有一对共轭剪性结构面,其中一组走向为N30E,而另一组为N30W,则岩体中最大主应力方向为()。如果服从库仑-纳维尔判据,则岩体的内摩擦角为()。 24.软弱夹层的基本特点有()、()、( )、()和()。 25.岩体中逆断层形成时,最大主应力方向为(),最小主应力方向为()。 26.原生结构面据其成因中划分为()、()、()。 27.表征岩块变形特性的指标有()和()。 28.根据库仑强度理论,最大主应力与破裂面的夹角为()。 29.据岩体力学的观点看,岩体的破坏类型有()和()。 30.岩体中的结构面据其地质成因分为()、()和()。 31.岩体中一点的水平天然应力与铅直天然应力之比称为()。 32.岩体中正断层形成时的应力状态是:最在主应力方向为(),最小主应力方向为()。33.均质各向同性的连续岩体中的圆形洞室洞壁上一点的剪应力为()。 34.洞室围岩压力的基本类型有()、()、()和()。 35.边坡形成后,边坡表面岩体中的最大主应力作用方向与边坡面(),最小主应力作用方

岩石力学作业

岩石力学习题 第一章绪论 1.1 解释岩石与岩体的概念,指出二者的主要区别与联系。 1.2 岩体的力学特征是什么? 1.3 自然界中的岩石按地质成因分类可分为几大类,各有什么特点? 1.4 简述岩石力学的研究任务与研究内容。 1.5 岩石力学的研究方法有哪些? 第二章岩石的物理力学性质 2.1 名词解释:孔隙比、孔隙率、吸水率、渗透性、抗冻性、扩容、蠕变、松弛、弹性后效、长期强度、岩石的三向抗压强度 2.2 岩石的结构和构造有何区别?岩石颗粒间的联结有哪几种? 2.3 岩石物理性质的主要指标及其表示方式是什么? 2.4 已知岩样的容重=22.5kN/m3,比重,天然含水量,试计算该岩样的孔隙率n,干容重及饱和容重。 2.5 影响岩石强度的主要试验因素有哪些? 2.6 岩石破坏有哪些形式?对各种破坏的原因作出解释。 2.7 什么是岩石的全应力-应变曲线?什么是刚性试验机?为什么普通材料试 验机不能得出岩石的全应力-应变曲线? 2.8 什么是岩石的弹性模量、变形模量和卸载模量?

2.9 在三轴压力试验中岩石的力学性质会发生哪些变化? 2.10 岩石的抗剪强度与剪切面上正应力有何关系? 2.11 简要叙述库仑、莫尔和格里菲斯岩石强度准则的基本原理及其之间的关系。 2.12 简述岩石在单轴压力试验下的变形特征。 2.13 简述岩石在反复加卸载下的变形特征。 2.14 体积应变曲线是怎样获得的?它在分析岩石的力学特征上有何意义? 2.15 什么叫岩石的流变、蠕变、松弛? 2.16 岩石蠕变一般包括哪几个阶段?各阶段有何特点? 2.17 不同受力条件下岩石流变具有哪些特征? 2.18 简要叙述常见的几种岩石流变模型及其特点。 2.19 什么是岩石的长期强度?它与岩石的瞬时强度有什么关系? 2.20 请根据坐标下的库仑准则,推导由主应力、岩石破断角和岩石单轴抗压强度给出的在坐标系中的库仑准则表达式,式中。 2.21 将一个岩石试件进行单轴试验,当压应力达到100MPa时即发生破坏,破坏面与大主应力平面的夹角(即破坏所在面与水平面的仰角)为65°,假定抗剪强度随正应力呈线性变化(即遵循莫尔库伦破坏准则),试计算: 1)内摩擦角。 2)在正应力等于零的那个平面上的抗剪强度。

煤岩动静力学参数关系试验研究

第43卷 第1期 煤田地质与勘探 Vol. 43 No.1 2015年2月 COAL GEOLOGY & EXPLORA TION Feb . 2015 收稿日期: 2013-08-30 基金项目: 山东省自然科学基金项目(ZR2011DM014;ZR2011EEM019);国家自然科学基金项目(51274135) 作者简介: 于师建(1962—),男,山东章丘人,博士,教授,从事岩石力学性质实验研究. E-mail :ysj7179@https://www.360docs.net/doc/b67180163.html,. 引用格式: 于师建,杨永杰,刘伟韬. 煤岩动静力学参数关系试验研究[J]. 煤田地质与勘探,2015,43(1):17–21. 文章编号: 1001-1986(2015)01-0017-05 煤岩动静力学参数关系试验研究 于师建,杨永杰 刘伟韬 (山东科技大学资源与环境工程学院,山东 青岛 266590) 摘要: 煤岩的动、静力学参数关系的试验研究,对研究煤岩的位移和变形特征及工程支护设计具有重要意义。将取自新河煤矿3煤的煤样加工成Φ50 mm×100 mm 的圆柱体标准试件;采用500 kHz 频率的纵横波换能器分别进行纵横波速度测试;在MTS815.03电液伺服试验机上进行单轴压缩试验,得到静态弹性模量和泊松比。试验结果表明:煤岩动弹性模量与横波速度相关性强于与纵波速度的相关性,煤岩介质的纵波对孔隙和裂隙发育程度的敏感程度要比横波高;煤岩试件Ed/Es 比值主要集中在1.4~1.7,室内煤岩试件动、静弹性模量和动静泊松比之间存在较好的线性相关关系。 关 键 词:煤岩;弹性模量;泊松比;纵波速度;横波速度 中图分类号:P631 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2015.01.004 Experimental study on the relationship between dynamic and static mechanical parameters of coal YU Shijian, Y ANG Yongjie, LIU Weitao (College of Natural Resources and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590, China ) Abstract: Experimental study on relationships between dynamic and static mechanical parameters of coals is highly significant for study on displacement and deformation characteristics of coal and design of support project. Coal samples taken from the 3th seam in Xinhe mine are shaped into standardized cylinder samples (Φ50 mm×100 mm). P-wave and s-wave velocities were measured using transducer with a frequency of 500 kHz. The uniaxial compre-ssion tests were carried out on the MTS815.03 Electro-hydraulic servo-controlled testing machine to obtain the static elastic modulus and Poisson’s ratio. Experimental results showed that the correlativity between dynamic elastic modulus and s-wave velocity of coal is better than that with p-wave velocity. The ratio of Ed/Es is mainly distributed between 1.4 and 1.7 in the tested samples. There is a good linear relationship between dynamic/static elastic modulus and dynamic/static Poisson’s ratio in tested samples. Key words: coal; elastic modulus; Poisson’s ratio; p-wave velocity; s-wave velocity 煤岩的位移和变形特征对煤岩巷道支护的设计 具有重要意义,而煤岩的位移和变形特征取决于煤 岩的力学参数。然而煤是远古地表腐植物沉积演化 的一种岩类矿物,成岩后具有不均匀性,由不同形 状、大小的块状颗粒叠压而成,微空洞、微裂隙非 常发育,加上层理、节理等软弱结构面的影响,煤 岩是一类含有原始损伤的微观非均质体。同其他沉 积岩石相比,煤岩微组分更为复杂多样,煤岩微结 构也更为复杂多变,受煤岩微组分和微结构的影响, 煤岩的物理力学参数更为复杂,因此,现场测试煤 岩的力学参数是确定煤岩位移特征的有效方法。现 场加载测试岩体弹性模量的方法有承压板法[1]、狭缝法[2]、钻孔千斤顶法[3]。这几类方法需要耗费大量的人力物力,难以大范围推广应用。 材料的形变特性与弹性波在材料中的传播速度存在确定的数量关系[4],是求取材料动态力学参数的基本关系式。煤岩弹性波速度测试能够方便地在现场或实验室进行,因而煤岩动态力学参数可以通过声波测试的方法得到[5]。由于煤岩不是线弹性、均匀和各向同性介质,动态力学参数不能取代静态力学参数而直接用于工程设计。如果通过实验得到煤岩动静力学参数的统计关系,就能够由动态力学参数值估算出静态力学参数值。 许多研究者对岩(石)体的动弹性力学参数与静

相关文档
最新文档