热分析方法简介

热分析方法简介
热分析方法简介

热分析方法简介

热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。

物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。

表1热分析方法的分类

(一)差热分析(DTA)

差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。

图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

在理想条件下,差热分析曲线如图图2所示。图中的纵坐标表示试样和参

比物之间的温度差;横坐标表示温度T、或升温过程的时间t。如果参比物的热容和被测试样的热容大致相同,而试样又无热效应时,两者的温度差非常微小,此时得到的是一条平滑的基线AB。随者温度的上升,试样发生了变化,产生了热效应,在差热分析曲线上就出现一个峰如图2中的BCD和EFG。热效应越大,峰的面积也就越大。在差热分析中通常规定, 峰顶向上的峰为放热峰,它表示试样的温度高于参比物的温度。相反峰顶向下的峰为吸热峰则表示试样的温度低于参比物的温度。

图1差热分析装置示意图图2 理想的差热分析

曲线

差热分析的实验条件、操作因素对实验结果有很大的影响。为便于比较,在谱图上都要标明实验操作条件。实验条件的确定通常可从以下几方面加以考虑:

(1)升温速率。升温速率对实验结果的影响比较明显。一般控制在2~20℃·min-1,常用5℃·min-1。升温过快,基线漂移明显,峰的分辨率较差,同时峰顶温度会向高温方向偏移。

(2)参比物。要得到平稳的基线应尽可能选择与试样的热容、导热系数、粒

度等性质比较相近的热惰性物质作为参比物。常用的参比物有、煅烧过的MgO和SiO

等。

2

(3)气氛和压力某些样品或其热分解产物可能与周围的气体进行反应,因此应根据需要选择适当的气氛。另一方面,对于释放或吸收气体的反应、出峰的温度和形状还会受到气体压力的影响。

(4)样品的预处理及用量一般非金屑固体样品均应经过研磨。试样和参比物的装填情况应基本一致。样品用量不宜过多, 这样可以得到较尖锐的峰同时将提高其分辨率。

由于各种条件的影响,实际得到的差热分析曲线比理想曲线要复杂些。图3是一个典型的差热分析曲线。图中T ini为基线开始偏离基线的温度,也就是仪器检测到反应开始进行的温度,它与仪器灵敏度密切相关。仪器的灵敏度高,测得的就低些。许多物质的差热曲线开始偏离基线的速度是很慢的,因而要精确确定T

有着一定困难。T p称峰顶温度,它表示试样和参比物之间的温差最大,但这ini

并不意味着反应的终结。T p受实验条件的影响较大,因此不能作为鉴定物质的特征温度。国际热分析会议决定,用外延起始温度T e作为反应的起始温度,并可用以表征某一特定物质。这是因为T e受实验条件的影响较小,同时它与其他方法求得的反应起始温度也较一致。

图3 实际测得的差热分析曲线

(二)热重分析法(TG)

综合热分析仪能够同时进行热重分析、差热分析、微分热重分析并测定温度和时间的关系。

热重分析是研究试样在恒温或等速升温时其质量随时间或温度变化的关系。专门用于热重分析测定的仪器叫热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。而具有多种功能联用型的热分析仪,则便于从不同角度对试样进行综合分析。

许多物质在加热过程中常发生质量的变化,如含水化合物的脱水、化合物的分解、固体的升华、液体的蒸发等均会引起试样失重;另一方面,待测试样与周围气氛的化合又将导致质量的增加。热重分析就是以试样的质量对温度T或时间t作图得到的热分析结果;而测试质量变化速度dW/dt对温度T的曲线则称为微分热重曲线。

理想热重见曲线图4(a),表示热重过程是在某一特定温度下发生并完成的。曲线上每一个阶梯都与一个热重变化机理相对应。每一条水平线意味着某一稳定化合物的存在;而垂直线的长短则与试样变化对质量的改变值成正比。

然而由实际热重曲线图4(b)可见,热重过程实际上是一个温度区间内完成的,曲线上往往并没有明晰的平台。两个相继发生的变化有时不易划分,因此,也就难以分别计算出质量的变化值。微分热重曲线图4(c)已将热重曲线对时间微分,结果提高了热重分析曲线的分辨力,可以较准确地判断各个热重过程的发生和变化情况。

图4热重分析和微分热重分析曲线示意图

图5所示的热失重曲线,试样质量的W

0在初始阶段有一定的质量损失(W

W

1

),这往往是吸附在试样中的物质受热解吸所致:水是最常见的吸附质。

一个热重过程的温度由曲线的直线部分外延相交加以确定。图中的T

1

为一种稳定相的分解温度。在T2至T3温度区间内,存在着另一种稳定相,两者的质量差为(W1-W2),其质量因子关系当然也可由此进行计算。

测定过程中升温速度过快,会使温度测得值偏高。所以要有合适的操作条件才能得到再现性良好的可靠结果。通常,升温速率可控制在5~10℃/min范围。试样的颗粒如果太小,测得温度会偏低;太大则影响热量的传递。试样还宜铺成薄层,以免逸出的气体将试样粉末带走。

图5热失重曲线

(三)差示扫描量热法

差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,把固体试样S与热惰性的参比物R置于同一加热炉中,所不同的两个坩埚下面还各自安装着一套加热器和测温元件。测定过程中,加热电炉按照一定的速率升温或降温,当试样有热放应发生时,欲维持S与R之间的温度差为零,则要用电功予以补偿。所以,将两个加热器的补偿功率之差随温度变化的关系记录下来,就可以测量试样受热变化过程中焓变的大小。还有一种热流式的差示扫描量热仪,这里不作介绍。

图6为差示扫描量热仪工作原理示意图。记录仪图纸的横坐标为温度或时间,

纵坐标则以焓对时间的微分(dH/dt)来表示。峰面积与受热过程的焓变值成

正比。为了准确求得,需要选用已知的纯物质作为基准进行标定。根据待测物温度变化范围,本实验以熔点为156.5℃的纯铟作为基准物,其熔化热为28.4 J·g-1。因此,用差示扫描量热法可以直接测量热量,这是与差热分析的一个重要区别。此外,DSC与DTA相比,另一个突出的优点是后者在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如在升温时试样由于放热而一度加速升温)。而前者由于试样的热量变化随时可得到补偿,试样与参比物的温度始终相等,避免了参比物与试样之间的热传递,故仪器的反应灵敏,分辨率高,重现性好。尽管差示扫描量热分析可以较准确地进行定量计算,但由于仪器制造技术方面的原因,目前最高只能测定到750℃左右,高于此温度就只能采用差热分析方法了。

图6功率补偿式差示扫描量热仪工作原理示意图

1.温差热电偶;2.补偿电热丝;3.坩埚;4.电炉;5.控温热电偶

桂林市典型危岩体稳定性及危险性评价2讲解

桂林喀斯特危岩体发育特征及稳定性分析 刘宝臣1 ,郑金1 (1.桂林理工大学土建学院,桂林541004) 摘要:危岩体是由多组的结构面组合而形成,在地表风化作用、卸荷作用、重力、地震、降雨等诱发因素作用下处于不稳定、欠稳定或极限平衡状态的岩体。笔者对桂林市15座山的326块危岩体发育情况进行实地调查,测绘等手段得到几组重要数据,根据危岩体的结构特征和状态特征,将桂林市的危岩体类型分为悬挂式式、倾倒式、贴坡式、孤立式三种基本类型,本文以屏风山1号危岩体为对象进行研究,并采用极限平衡法对该危岩体稳定性进行定量验算,综合分析评价桂林市危岩体的发育特征及稳定性。 关键词:危岩;极限平衡状态;稳定性;定量验算 Stability analysis and risk assessment for three typical rocks in the Guilin city liuBao-chen1 Zheng-jin1 (1.Guilin University of Technology,Guilin 541004) Abstract:Dangerous rock is combined to form groups of the structure surface ,In the Unstable, less stable or equilibrium state of the rock and the factors of Surface weathering, unloading, gravity, earthquake, rainfall and so on. Through the investigation and mapping on the 326 dangerous rocks of fifteen mountains of the Guilin city,the writer get some important data ,According to the structure and State features of dangerous rocks ,Guilin dangerous rocks are divided into Hanging-type , dumping-type、posted slope -type and Isolated style. using the three typical rocks as the research object and checking the stability of the dangerous rocks by Limit equilibrium method, analyze the stability of the dangerous rocks. Key word:dangerous rock;Limit equilibrium;Stability;Quantitative Checking 0前言 危岩崩塌灾害是我国三大地质灾害之一,已成为我国山地开发和建设的重要制约因素。由于危岩崩塌灾害分布零散, 通常规模有限, 爆发随机性强,难以有一个准确的灾害统计数据,但是其危害程度并不亚于泥石流、滑坡等灾害。我区石灰岩出露面积广大,这些地区岩溶山峰和地下洞穴非常发育,形成了独特的喀斯特旅游风景名胜区。举世瞩目的桂林景区以其独特秀丽的风景吸引了广大的国内外游客参观,其中岩溶山峰和洞穴景观占景区主要部分。但其独特的喀斯特区山体岩石突露、奇峰林立,在特殊的地质条件下风化剥蚀已形成大量危岩,严 重威胁山体附近居民及游人的人身和财产安全,严重影响喀斯特景区特色旅游业的稳定快速发展。而国内外对此种危岩的研究甚少。为此,研究岩溶地区岩质边坡和洞穴危岩发生发展的机理、致灾因素,显得非常必要。本文通过地质灾害勘查、物探、室内模拟试验与计算机模拟等,确定危岩失稳破坏的过程与临界条件,提出桂林市危岩体的类型,确定危岩的稳定性判别指标,并对区内典型的危岩体作出稳定性评价,为后期区内危岩体的治理防控技术体系的研究创造条件。 1.1危岩体发育特征分析

物质热稳定性的热分析试验方法

物质热稳定性的热分析 试验方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

物质热稳定性的热分析试验方法 1 主题内容与适用范围 本标准规定了用差热分析仪和(或)差示扫描量热计评价物质热稳定性的热 分析方法所用的试样和参比物、试验步骤和安全事项等一般要求。 本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变 的固体、液体和浆状物质热稳定性的评价。 2 术语 物质热稳定性 在规定的环境下,物质受热(氧化)分解而引起的放热或着火的敏感程度。 焓变 物质在受热情况下发生吸热或放热的任何变化。 焓变温度 物质焓变过程中的温度。 3 方法原理 本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度(包括起始温度、外推起始温度和峰温)并以此来评价物质的热稳定性。 4 仪器和材料 仪器 差热分析仪(DTA)或差示扫描量热计(DSC):程序升温速率在2~30℃/min 范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95% 的满刻度偏离。 样品容器

坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。气源 空气、氮气等,纯度应达到工业用气体纯度。 冷却装置 冷却装置的冷却温度应能达到-50℃。 参比物 在试验温度范围内不发生焓变。典型的参比物有煅烧的氧化铝、玻璃珠、硅 油或空容器等。在干燥器中储存。 5 试样 取样 对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分 法取样。 试样量 试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温 速率等因素来决定,一般为1~5mg,最大用量不超过50mg。如果试样有突然释放大量潜能的可能性,应适当减少试样量。 6 试验步骤 仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内。 将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的 热接触(对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触。

热稳定性分析方法

版 本 号:0.1 页 码:1/3 发布日期:2009-12-09 实验室程序 编 写: 批 准: 签 发: 文件编号:SHLX\LAB\L2-008 题 目:热稳定性测量方法 1.0 目的 提供了产品热稳定性的测量方法。 2.0 概述 (1)原理 Na 2SO 3 方 法 : 用 1N 的 Na 2SO 3 溶 液 吸 收 样 品 粒 子 中 释 放 的 甲 醛 , 生 成HOCH 2SO 3Na 和 NaOH 。 CH 2O +Na 2SO 3+H 2O →HOCH 2SO 3Na +NaOH (2)本测量方法是利用聚甲醛树脂在高温熔融,产生甲醛气体,随氮气带出,被亚 硫酸钠溶液吸收,由滴定反应生成的氢氧化钠,得出甲醛含量。 3.0 仪器和试剂 【仪器】 (1) 油浴(容量约为 130L ,并配有样品熔融管) (2) 加热器 (3) 过热保护装置 (4) 搅拌器 (5) 自动滴定装置 (6) 数据处理计算机 【试剂】 (1) 0.005mol/l 硫酸 (2) 福尔马林(36.0~38.0%) (3) 亚硫酸钠(Na 2SO 3) (4) 缓冲液(pH 6.86) (5) 缓冲液(pH 9.18) (6) 0.1mol/l NaOH 4.0 定义 甲醛含量通过以下方式表示: (1)K 0 :表示从 2 分钟到 10 分钟之间,聚合物中溶解的甲醛,不稳定端基和聚合 物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (2)K 1 :表示从 10 分钟到 30 分钟之间,聚合物中剩余的溶解甲醛,不稳定端基

文件编号:SHLX\LAB\L2-008 和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (3)K2:表示从50 分钟到90 分钟之间,聚合物不稳定端基和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 5.0安全注意事项 (1)搁置和取出样品过程中,要穿戴安全手套,以防被烫伤。 (2)电极容易损坏,使用时防止碰撞。 (3)作业时,穿戴安全眼镜和防护手套。 (4)实验过程中使用氮气作为载气,所以要控制好氮气流量,并确保良好的通风。6.0步骤 6.1准备 (1) 确认油浴温度223±2℃,硫酸溶液的量。 (2) 打开参比液添加孔,检查电极内饱和KCL 的量,确保液位超过甘汞位置。 (3) 打开自动电位滴定仪、打印机及电脑电源。 (4) 打开电脑桌面上AT-WIN,输入密码并确认与自动电位滴定仪联机。 (5) 调整氮气流量到60 l/h。 (6) 分别用pH 为6.86(25℃)、9.18(25℃)的缓冲液,对电极进行校正(根据 电脑提示进行),若显示“OK”,则校正通过,否则进行检查并重复校正步 骤。 (7) 对自动电位滴定仪进行排气,确保滴定管路中无气泡。 (8) 用250ml 的烧杯,取150ml 吸收液(1mol/L 亚硫酸钠溶液,它的配制方法: 将250g 的Na 2SO3溶于2000ml 的水中,充分搅拌。),放入磁性搅拌子、加 盖、并将电极、N2管、喷嘴插入溶液中,启动搅拌按钮。 (9) 用硫酸溶液(0.1N)将溶液pH 调节至9.10,待稳定后,用0.1mol/l 甲醛溶 液(配制方法:将81g 的福尔马林放入1L 的容量瓶中,然后加水到刻度线, 配成约0.1mol/l 福尔马林),调节pH 至9.21~9.22,并稳定10 分钟以上。 (10) 电极浸泡液的配制方法:PH=4 的缓冲试剂250ml 一包溶于250ml 水中, 再加入56gKCL,适当加热,搅拌至完全溶解。 6.2步骤 (1) 用铝皿取3.000±0.003g,将其放到小金属底部,然后用钩子,将准备好的 样品放入油浴的熔融管中。 (2) 盖紧硅胶塞,快速按下START,开始试验,试验过程控制pH 值为9.20。 (3) 当实验进行到设定的时间后,自动结束。(按“RESET”键,可手动停止实 验。)测定结束,打印机自动打印结果。 (4) 取出金属筒冷却,取出电极,并将电极放入浸泡液中。

危岩体稳定性分析

附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。 图3-1 滑移式危岩示意图 危岩体 危岩前缘 扬压力U 静水压力V 地下水位 后缘裂隙 危岩后缘 软弱结 构面 W c o s θ W W s i n θh w θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:

(cos sin sin )sin cos cos W Q V V tg c l K W Q V θθθφθθθ---+?= ++ 2 21w w h V γ= 式中:V ——裂隙水压力(kN/m),; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数七 级烈度地区 e ξ取0.075; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通 段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m3)。 3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°) 灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29

崩塌山体变形破坏模式及稳定性分析

崩塌山体变形破坏模式及稳定性分析 1. 崩塌灾害 崩塌是指陡峻的山坡上的岩块、土体在重力作用下,发生突然的急剧的倾落运动,这里所说的崩塌灾害是指由于崩塌的发生已经或者可能对人民的生命财产安全造成危害的地质灾害,否则就是一种普通到地质现象。 崩塌多发生在大于60-70度得斜坡上。崩塌的物质称为崩塌体。崩塌体与坡体的分离面称为崩塌面,崩塌面往往就是倾角很大或者裂隙很深的界面,如节理、片理、劈理、层面、破碎带等。 崩塌的分类:1、崩积物崩塌:山坡上已有崩塌岩屑和沙土等物质组成的堆积,由于它们的质地很松散,当有雨水侵湿或受地震震动时,可再一次形成崩塌。此类崩塌常发生在水易渗透和汇集的地点。其性质是有其母岩的性质决定的,由花岗岩、变质岩、凝灰岩、泥岩

形成的崩积土最易崩塌。 2、表层风化物崩塌:是在基岩表层生产的风化物的崩塌,是崖崩中常见的类型。这是因为在表层有风化层,它与基岩之间的渗透系数不同。在水流汇集或者地下水沿风化层下部的基岩面流动时,可引起风化层沿基岩面崩塌。崩落的土层较浅,是一种小规模的滑动,但发生的次数最多。大多发生在从缓变陡的斜坡变化点的地方。 3、沉积物崩塌:有些由厚层的冰积物、冲积物或火山碎屑物组成的陡坡,结构松散,按沉积时的状态形成性质不同的沉积土层,透水性和土的强度有差异,在积水的地方引起崩塌。 4、基岩崩塌:一般在坚硬的岩石的斜坡上,由于节理、层理面、断层面等方面的原因也有可能产生崩塌,在这种裂隙是沿容易崩塌的方向伸展时和在夹有粘土、泥岩等成分时容易发生崩塌。落石属于小规模的岩石崩塌。 2. 崩塌山体变形破坏模式分析 危岩体失稳方式,受多方面因素的影响。通常失稳方式有三种,即坠落式、倾倒式和滑塌式。根据对工作区内崩塌危岩总体形态、发育规模、基底和底界层特征和空间分布特征分析,区内危岩的失稳破坏方式以坠落、倾倒-滚落和滑移-倾倒-滚落方式居多。

三种热分析方法综合介绍.

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

危岩稳定性计算(2020年整理).pdf

4.2危岩体稳定性计算及评价 4.2.1计算模型 目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-XXXX)中(30)~(50)计算公式。 勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。 图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图 1、滑移式危岩体计算 (1)计算模型 图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)

图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) (2) 计算公式 ① 后缘无陡倾裂隙(滑面较缓)时按下式计算 (cos sin )sin cos W Q U tg cl K W Q θθ?θθ ??+= + (4.2.1) 式中:V ——裂隙水压力(kN/m),2 2 1w w h V γ=; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数e ξ取 0.05; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未 贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。 ② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cos sin sin )sin cos cos W Q V U tg c l K W Q V θθθφθθθ ???+?= ++ (4.2.2)

危岩稳定性计算教学内容

危岩稳定性计算

4.2危岩体稳定性计算及评价 4.2.1计算模型 目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩 3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-2003)中(30)~(50)计算公式。 勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。 图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图 1、滑移式危岩体计算 (1)计算模型

图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙) 图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) (2) 计算公式 ① 后缘无陡倾裂隙(滑面较缓)时按下式计算 (cos sin )sin cos W Q U tg cl K W Q θθ?θθ --+=+ (4.2.1) 式中:V ——裂隙水压力(kN/m),22 1w w h V γ=; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数 e ξ取0.05; K ——危岩稳定性系数;

c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未 贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和 未 贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内 摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。 ② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cos sin sin )sin cos cos W Q V U tg c l K W Q V θθθφθθθ ---+?=++ (4.2.2) 式中符号同前。 2、 倾倒式危岩计算 (1) 计算模型 图4.2-5a 倾到式危岩稳定性计算示意图(后缘岩体抗拉强度控制)

物料热稳定性分析方法及常见问题答疑

物料热稳定性分析方法及常见问题答疑 《关于加强精细化工反应安全风险评估工作的指导意见》(安监总管三〔2017〕1号)中公布的《精细化工反应安全风险评估导则(试行)》(以下简称导则)给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南。评估方法、流程和标准均基于对工艺本身风险的测试和分析,因此,通过测试设备和数据分析手段精准还原生产过程中的工艺实际风险成为整个评估的关键。 根据导则,评估方法主要有物料热稳定性风险评估、目标反应安全风险发生可能性和导致的严重程度评估、目标反应工艺危险度评估3种。这3种方法主要涉及到目标反应量热,以及反应原料、中间体、反应后料液热稳定性分析。本文将介绍物料热稳定性分析方法,并解答分析过程中的常见问题。 物料热稳定性分析 物料热稳定性风险评估需获取的主要数据包括:物料热分解起始分解温度、分解热和TD24。通常采取筛选与绝热表征结合的方式进行,以达到经济高效的目的。 通常采用差示扫描量热仪DSC、快速筛选量热仪Carius tube、C80等量热工具对所需评估的物料进行热风险初步筛查。此类筛选工具通常所用样品量不多,一般在毫克、克级别。

DSC是一款快捷方便且功能强大的筛选工具,如图1所示为梅特勒DSC系列。 图 1:梅特勒D SC 3系列 DSC一般采用理想热流(ideal heat flow)原理,即产热完全散失到环境中,如公式1所示。 测试过程中需配备参比样,对于物料热稳定性筛选一般采用动态线性扫描模式。测试过程中炉腔、参比、样品的温度变化曲线如图2。

图 2:D SC动态升温过程中三个温度变化 (Tc为D SC炉腔温度,Tr为参比温度,Ts为样品温度)众多精细化工企业选用DSC初衷是研究晶型、测比热容等物性数据。 那么采用DSC进行热稳定性筛选会遇到哪些问题? 常见问题答疑 Q: 热稳定性筛选测试可选用开口型坩埚(如:铝坩埚)吗? A: 热稳定性筛选应选用耐压密闭坩埚。因为物料高温分解会产生小分子,造成体系气相压力显著上升,因而必须选用密闭耐高压坩埚。这类坩埚有以下优点: ? 避免由于挥发物挥发或形成气体而导致吸热效应,这类假象可能掩盖同温度段的放热行为,从而导致错误判断(图 3); ? ? 避免物料测试过程中损失,以保证完整辨识物料热行为(测试温度区间内); ? ? 避免因压力效应导致坩埚破裂飞溅,造成设备损坏和人员受伤。 ?

物质热稳定性的热分析试验方法

物质热稳定性的热分析试验方法 1 主题内容与适用范围 本标准规定了用差热分析仪和(或)差示扫描量热计评价物质热稳定性的热 分析方法所用的试样和参比物、试验步骤和安全事项等一般要求。 本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变 的固体、液体和浆状物质热稳定性的评价。 2 术语 2.1 物质热稳定性 在规定的环境下,物质受热(氧化)分解而引起的放热或着火的敏感程度。2.2 焓变 物质在受热情况下发生吸热或放热的任何变化。 2.3 焓变温度 物质焓变过程中的温度。 3 方法原理 本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度(包括起始温度、外推起始温度和峰温)并以此来评价物质的热稳定性。 4 仪器和材料 4.1 仪器 差热分析仪(DTA)或差示扫描量热计(DSC):程序升温速率在2~30℃/min 范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95% 的满刻度偏离。 4.2 样品容器 坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。 4.3 气源 空气、氮气等,纯度应达到工业用气体纯度。 4.4 冷却装置 冷却装置的冷却温度应能达到-50℃。 4.5 参比物 在试验温度范围内不发生焓变。典型的参比物有煅烧的氧化铝、玻璃珠、硅 油或空容器等。在干燥器中储存。 5 试样 5.1 取样 对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分 法取样。 5.2 试样量 试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温 速率等因素来决定,一般为1~5mg,最大用量不超过50mg。如果试样有突然释放大量潜能的可能性,应适当减少试样量。 6 试验步骤 6.1 仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内。 6.2 将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的热接触(对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件

FAST台址区危岩稳定性分析

FAST台址区危岩稳定性分析 李卫民,耿宏汉 (贵州省建筑工程勘察院,贵阳,550003) 摘要:FAST台址存在大量危岩体,对工程安全造成较大影响,勘察期间对危岩体的分布、形态、特征、成因等开展了工程地质测绘工作。通过现场统计,场地存在滑移式危岩和倾倒式危岩,考虑为危岩体主结构面贯通率,将作用在危岩体上的荷载按三种组合(工况)进行计算分析,对危岩体稳定性进行评价,并提出处理措施。关键词:危岩;滑移;倾倒;结构面;贯通率;工况 0 工程概况 FAST台址区的东部陡坡及石崖壁上广泛分布由多组岩体结构面组合而构成在重力、地震、水体等诱发因素作用下处于不稳定、欠稳定或极限平衡状态的结构体(危岩体),存在于高陡边坡及陡崖上由于失稳、运动而形成崩塌,陡峻的地形是危岩发育的地貌特征,其危岩破坏主要模式为滑移式危岩和倾倒式危岩(见图1)。 滑移式危岩倾倒式危岩 图1 危岩类型示意图 FAST台址危岩主要分布在东南侧的陡岩区,岩性为T2l3、T2l1白云质灰岩(A1单元)和(T2l2)含泥质灰岩(B1单元);由多组岩体结构面相互组合构成稳定性较差,在重力、地震、水体等诱发因素作用下处于不稳定、欠稳定或极限平衡状态。据外业调查FAST台址主要有十个危岩体易发区,危岩体存在于高陡边坡及陡崖上,被节理和裂隙分割,随时发生失稳,是FAST台址常见的地质灾害。FAST台址发育的陡峻的地形是危岩发育的地貌特征,6组岩体结构面是形成危岩的主要地质构造特征(见表1),由此形成的卸荷裂缝宽张裂隙是危岩发育的结构组合特点,暴雨及地震等是诱发危岩形成地质灾害的动力因子。

主要结构面产状表1 结构面编号产状备注 (1)NWW 30°~50°/∠7°-12° 岩层层面产状 (2)NWW 290°~320°/∠18°-30° 岩层层面产状 (3)NWW 30°~65°/∠60°-89° 节理产状 (4)NWW 120°~155°/∠62°-88° 节理产状 (5)NWW 188°~210°/∠75°-88° 节理产状 (6) NWW 260°~295°/∠72°-89° 节理产状根据危岩外业调查结果,按危岩失稳的力学机理,FAST台址危岩失稳模式主要为倾倒式。场地危岩体多为近水平岩层面与近垂直结构面切割形成,没有形成大规模滑移式危岩,局部存在少量坠落式危岩。 危石失稳破坏具有以下特点:(1)突然性;(2)岩块运动速度快;(3)岩块在运动过程中有翻倒、跳跃、滚动、滑动、坠落、相互撞击等运动形式;(4)垂直位移大于水平位移。将产生洞穿反射面、撞击主反射面圈梁支撑柱和馈源支撑塔的地质灾害。 因此,崩塌与落石与FAST工程结构体的关系和危岩体量及形态特征、大小和崩落发展方向是解决崩塌与落石对FAST工程影响的技术关键,崩塌与落石与FAST工程结构体的关系见表2。 危岩的岩土工程条件一览表表2 危岩编号危岩方位及 危岩高度 规模、范围、危岩、危岩类型 崩落方 向 与FAST工程结构体的 关系 规模大小 破坏后果 W1 位于大窝凼 南部的陡坡 有两处危岩: 长21m、宽4m、高19.5m、体积1239 m3,倾倒式。 长21m、宽7.6m、高22.8m、体积2898m3,倾倒式。 向北方 崩落 可能对FAST主动反射 面及其基础造成危胁 严重 W2 位于大窝凼 南部的陡坡 有两处危岩: 长20m、宽3.5m、高15.1m、体积800m3,倾倒式。 长20m、宽5.3m、高17.6m、体积1380m3,倾倒式。 向北方 崩落 可能对FAST主动反射 面及其基础造成危胁 严重 W3 位于大窝凼 南南东部的 悬崖 有一处危岩: 长20m、宽2.7m、高10.5m、体积500m3,倾倒式。 向北方 崩落 可能对FAST主动反射 面及其基础造成危胁 严重 W4 位于大窝凼 南南东部的 悬崖 有两处危岩: 长30m、宽4.4m、高7.1m、体积930m3,倾倒式。 长30m、宽5.1m、高11.3m、体积1749m3,倾倒式。 向北方 向崩落 可能对FAST 5h馈源支 撑塔、主动反射面及其基 础造成危胁 严重 W5 位于大窝凼 南东部的悬 崖 有六处危岩: 长80m、宽4m、高14.7m、体积3904m3,倾倒式。 长20m、宽9m、高28.9m、体积4480m3,倾倒式。 长20m、宽14.5m、高32.3m、体积7740m3,倾倒式。 长100m、宽9.0m、高42.1m、体积36100m3,倾倒式。 长100m、宽6.7m、高17.6m、体积11500m3,倾倒式。 长100m、宽11m、高19.2m、体积19500m3,倾倒式。 向北东 方向崩 落 可能对FAST 5h馈源支 撑塔、主动反射面及其基 础造成危胁 严重 W6 位于大窝凼 南东部的悬 崖 有四处危岩: 长65m、宽13m、高22.7m、体积20085m3,倾倒式。 长65m、宽17m、高22.4m、体积26715m3,倾倒式。 长90m、宽11m、高42.6m、体积37080m3,倾倒式。 长48m、宽31m、高11m、体积1708.8m3,倾倒式。 向南西 方崩落 可能对FAST主动反射 面及其基础造成危胁 严重 W7 位于大窝凼 南东部的悬 崖 有一处危岩: 长91m、宽5.5m、高15.5m、体积7735m3,倾倒式。 向西方 崩落 可能对FAST主动反射 面及其基础造成危胁 严重 W8 位于大窝凼 东部3h处的 山体 有三处危岩: 长20m、宽4m、高15.4m、体积1160m3,倾倒式。 长190m、宽12m、高43m、体积85500m3,倾倒式。 长190m、宽7m、高22.8m、体积20710m3,倾倒式。 向西方 崩落 可能对FAST主动反射 面及其基础造成危胁 严重

精细化工安全:物料热稳定性分析方法及常见问题解析

精细化工安全 物料热稳定性分析方法及常见问题解析 精细化工反应安全风险评估方法、流程和标准均基于对工艺本身风险的测试和分析,因此,通过测试设备和数据分析手段精准还原生产过程中的工艺实际风险成为整个评估的关键。 评估方法主要有物料热稳定性风险评估、目标反应安全风险发生可能性和导致的严重程度评估、目标反应工艺危险度评估3种。 这3种方法主要涉及到目标反应量热,以及反应原料、中间体、反应后料液热稳定性分析。 物料热稳定性分析 物料热稳定性风险评估需获取的主要数据包括: 物料热分解起始分解温度、分解热和TD24。通常采取筛选与绝热表征结合的方式进行,以达到经济高效的目的。 通常采用差示扫描量热仪DSC、快速筛选量热仪、C80等量热工具对所需评估的物料进行热风险初步筛查。此类筛选工具通常所用样品量不多,一般在毫克、克级别。 DSC是一款快捷方便且功能强大的筛选工具,如图1所示为DSC系列。

图1:DSC 3系列 DSC一般采用理想热流原理,即产热完全散失到环境中,如公式1所示。 测试过程中需配备参比样,对于物料热稳定性筛选一般采用动态线性扫描模式。测试过程中炉腔、参比、样品的温度变化曲线如图2。 图2:DSC动态升温过程中三个温度变化(Tc为DSC炉腔温度,Tr为参比温度,Ts为样品温度)。

精细化工企业选用DSC初衷是研究晶型、测比热容等物性数据。采用DSC进行热稳定性筛选会遇到哪些问题? 常见问题答疑 1、热稳定性筛选测试可选用开口型坩埚(如:铝坩埚)吗? 热稳定性筛选应选用耐压密闭坩埚。因为物料高温分解会产生小分子,造成体系气相压力显著上升,因而必须选用密闭耐高压坩埚。这类坩埚有以下优点: ?避免由于挥发物挥发或形成气体而导致吸热效应,这类假象可能掩盖同温度段的放热行为,从而导致错误判断(图3); ?避免物料测试过程中损失,以保证完整辨识物料热行为(测试温度区间内); ?避免因压力效应导致坩埚破裂飞溅,造成设备损坏和人员受伤。

热分析法在高分子材料中的应用

热分析法在高分子材料中的应用 一、前言 热分析法是指在程序控制温度的条件下, 测量物质的性质与温度关系的一种技术[1]。在加热或冷却的过程中, 随着物质的结构、相态、化学性质的变化,质量、温度、热熔变化、尺寸及声光电磁及机械特征性都会随之相应改变。因此,热分析法在定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛地应用。 随着高分子工业的迅速发展,为了研制新型的高分子材料,控制高分子材料的质量和性能,测定高分子材料的熔融温度、玻璃化转变温度、混合物的组成、热稳定性等是必不可少的。在这些参数的测定中,热分析是主要的分析工具。 热分析技术主要包括:热重分析法(TG)、差热分析法(DTA)、差示扫描量热法(DSC)、热机械分析法(TMA)、动态热机械分析法(DMA)等。本文简要介绍了这些热分析技术的原理、仪器及其在高分子材料研究领域的应用。 二、热重分析法(TG)及其在高分子材料方面的应用 热重法是在程序控温下,测量物质的质量与温度的关系。通常热重法分为非等温热重法和等温热重法。它具有操作简便、准确度高、灵敏快速以及试样微量化等优点。 热重分析主要研究在惰性气体中、空气中、氧气中材料的热的稳定性、热分解作用和氧化降解等化学变化;还广泛用于研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣,吸附、吸收和解吸,气化速度和气化热,升华速度和升华热;有填料的聚合物或共混物的组成等[2]。 用来进行热重分析的仪器一般称为热天平。它的测量原理是,在给被测物加温过程中,由于物质的物理或化学特性改变,引起质量的变化,通过记录质量变化时程序所走出的曲线,分析引起物质特性改变的温度点,以及被测物在物理特性改变过程中吸收或者放出的能量,从而来研究物质的热特性。

热分析方法的多种联用

热分析方法的多种联用 热分析是表征材料的基本方法之一,多年以来一直广泛应用于科研和工业中。近年来在各个领域,都有了长足发展。根据DIN EN ISO 9000 标准,热分析仪器已经成为QA/QC、工业实验室和研究开发中不可缺少的设备。 热分析是测量物质的物理或化学参数对温度的依赖关系的一种分析方法。热分析可应用于成分分析(如无机物、有机物、药物和高聚物的鉴别和分析以及它们的相图研究),稳定性测定(如物质的热稳定性、抗氧化性能的测定等),化学反应的研究(如固-气反应研究、催化性能测定、反应动力学研究、反应热测定、相变和结晶过程研究),材料质量测定(如纯度测定、物质的玻璃化转变和居里点、材料的使用寿命测定)以及环境监测(研究蒸汽压、沸点、易燃性等)。热分析方法的种类是多种多样的,根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,在这些热分析技术中,热重法、差热分析、差示扫描量热法和热机械分析应用得最为广泛。差热分析、热重分析、差示扫描量热分析、热机械分析可用于研究物质的晶型转变、融化、升华、吸附等物理现象以及脱水、分解、氧化、还原等化学现象。快速提供被研究物质的热稳定性、热分解产物、热变化过程的焓变、各种类型的相变点、玻璃化温度、软化点、比热、纯度、爆破温度和高聚物的表征及结构性能等。 目前,热分析仪器发展的一个趋势是将不同仪器的特长和功能相结合,实现联用分析,扩大分析范围。一般来说,每种热分析技术只能了解物质性质及其变化的某些方面,而一种热分析手段与别的热分析段或其它分析手段联合使用,都会收到互相补充,互相验证的效果,从而获得更全面更可靠的信息。如DTA-TG、DSC-TG、DSC-TG-DTG、DTA-TMA、DTA-TG-TMA等的综合以及TG与气相色谱(GC)、质谱(MS)、红外光谱(IR)等仪器的联用分析,热分析联用种类有很多,下面举几例加以简单说明。 热重分析法(Thermogravimetric Analysis.简称TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析法通常可分为两大类:静态法和动态法。静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。动态法是在程序升温的情况下,测量物质质量的变化对时间的函数关系。热重法实验得到的曲线称为热重曲线(TG曲线) 如图1曲线a所示。TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。

试论公路危岩稳定性评价体系

试论公路危岩稳定性评价体系 本文通过分析影响公路危岩稳定性的指标,从而找出了几类对危岩稳定性影响很大的因素,在对公路危岩的稳定性进行评价时,采用了模糊层次的分析方法来进行。这种方法在实体工程中运用得到的结果和在实际经验中得到的状况是基本一致的,这在一定程度上证明了这种方法在进行危岩稳定性评价时是非常可靠的,也是值得运用的一种方法。 标签:公路危岩稳定性评价体系 1引言 对于危岩稳定性评价方法来说,它一般都分为很多种类,具体包括地质分析法、数值模拟法、可靠度法、比较识别法、静力解析法和模型试验法等。影响危岩稳定性的因素也有很多,内部因素主要包括重力侵蚀和地质构造等,外部因素主要包括气候问题和人类活动等[1]。本文就是通过对这些方法的一些适用条件进行分析,对这些方法的数据进行获取和比较,从而将层次模糊综合评价方法当作本次研究的主要数学模型。 2选取公路危岩评价指标体系 通过对公路危岩的一些特点进行分析,从而了解了对危岩稳定性产生影响的几个重要因素。 (1)岩组类型。对于大多数的结构类型来说,它对危岩的稳定性有着非常重要的控制作用。而岩组类型就是一种由边坡坡面、岩层状况和公路走向这三个方面所决定的一种边坡形态,但是也有些边坡是不存在危岩结构这个理念的,例如均质坡和土坡等。 (2)坡度。坡度不同,就说明危岩对构造物的破坏程度是不同的。这是因为坡度的变化会使得很多因素发生变化,例如供应力分布等。而地形坡度则非常显著的控制着危岩的稳定性。一般来说,最容易发生崩塌的坡度在35度到50度之间。 (3)坡高。要想评价边坡的稳定性,那么颇高是必须考虑的一个因素。即使边坡的高度对等值线的图像不会产生任何作用,但是它的数值却是随着坡高的加大而增大的。 (4)自然灾害。自然灾害主要是指滑坡和崩塌等地质灾害。在对边坡的稳定性进行评价时,地质灾害是一定要考虑到的,不管是已经发生的还是将会发生的,都需要预测到,这是因为地质灾害具有群发性的特点。 (5)风化作用。岩石风化会使得岩石破碎,并且使得岩石的裂缝扩大。使

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

相关文档
最新文档