高等代数线性变换的运算

浅谈高中数学线性变换的解题技巧

浅谈高中数学线性变换的解题技巧 在新课改之后,要求高中生不仅要学会灵活运用学科基础知识解决问题,还要利用课余时间学习自身兴趣的知识点,使得每个人都能得到全面发展和锻炼。高中线性变换虽然作为选修章节,但是其所蕴含的内容是衔接高中与大学的关键点,掌握线性变换的基础知识也就是提前了解和学习了大学所要接触的高等数学知识模块,即矩阵问题。因此,笔者立足于高中选修的重要知识点——线性变换,先阐述其概念及性质,然后来探究如何巧妙解决高中数学中线性变换的难题,从而为初等数学过渡到高等数学做提前的准备。 标签:数学线性变换解题技巧 一、高中数学线性变换的概述 1.线性变换的概念 线性变换一般是指,在构建的xOy坐标系内,存在至少一个点或多个点的集合A与另一个相对应的至少一个或多个点的集合B两者之间按照一定规则可以相互变换,且不同的点与所转变后的点不相同,即在平面直角坐标系中,把形如进行几何变换,这就叫做线性变换。 2.线性变换的基本性质 线性变换具有三个基本性质,第一个性质是任何向量乘于零都为零,数学表达式为:T(0)=0;第二个性质是任何向量乘于任何一个负向量等于两个向量相乘的负数,数学表达式为:T(-a)=-T(a);第三个性质是线性变换满足乘法交换律、结合律,即,其中A是一般矩阵,是平面直角坐标系内任意的两个向量,是任意实数。 二、高中数学线性变换的解题技巧 1.数形结合 例1:在平面直角坐标系xOy中,已知平面区域A={(x,y)|x + y≤1,且x≥0,y≥0},求平面区域B={(x + y,x - y)|(x,y)∈A}的面積。 解析:本题考察的是线性变换结合不等式的应用难点,解决该问题首先要分析题干信息,根据题目给出的信息列出平面区域A的不等式条件。由于本题平面区域B存在与平面区域A相重合的未知数,因此要假设两个新的未知数替代B的条件,再将新的未知数条件代入A中就能很快确定B的向量表示,最后快速建立平面直角坐标系画出平面区域B的图形就能的出其面积的大小。 设:未知数u=x+y,v=x-y

数学运算解题常用六大公式.

数学运算解题常用六大公式 行测数学运算解题常用六大公式之往返运动问题公式 往返运动问题公式=2v1v2 / (v1+v2) (其中v1和v2分别代表往、返的速度) 【例1】(国家1999-39)有一货车分别以时速40km和60km往返于两个城市,往返这两个城市一次的平均时速为多少?() A. 55km B. 50km C. 48km D. 45km [答案]C [解析]设甲、乙两地间的距离为S,从甲地到乙地的速度为v1,从乙地到甲地的速度为v2, 则往返平均速度为v=2S/(t1+t2)=2S/ (S/v1+ S/v2)=2v1v2 /(v1+v2)=2×40×60 / (40+60)=4800/100=48。 [注释]往返运动问题核心公式:v=2v1v2 / (v1+v2)(其中v1和v2分别代表往、返的速度) 【例2】一辆汽车以10千米/时的速度从A地开往B地,它又以15千米/时的速度从B地返回A地,则汽车行驶的平均速度为多少千米/小时?() A. 11 B. 12 C. 13 D. 14 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2 / (v1+v2)=2×10

×15/(10+15)=300/25=12。 【例3】(广东2004上-8)一辆汽车驶过一座拱桥,拱桥的上、下坡路程是一样的。汽车行驶拱桥上坡时的时速为6公里;下坡时的时速为12公里。则它经过该桥的平均速度是多少公里/小时?() A. 7 B. 8 C. 9 D. 10 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2 /(v1+v2)=2×6×12/(6+12)=8。 【例4】(江苏2007B类-78) 在村村通公路的社会主义新农村建设中,有两个山村之间的公路都是上坡和下坡,没有平坦路。农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?() A. 45 B. 48 C. 50 D. 24 [答案]B [解析]根据往返运动问题核心公式:v=2v1v2/(v1+v2)=2×20×30/(20+30)=24(千米/小时); 2S=v×4=24×4 S=48千米。 【例5】一人骑车从M地到N地速度为每小时12千米,到达N地后,立刻接到通知返回M地。为了使其往返于两地之间的平均速度为

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

浅谈线性变换对角化问题

目录 摘要 (1) Abstract (2) 引言 (3) 1 线性变换 (4) 1.1 线性变换的定义 (4) 1.1.1 线性变换的概念 (4) 1.1.2 线性变换的矩阵及矩阵表示 (4) 1.2 矩阵的相似对角化问题 (5) 1.2.1 相似对角化问题 (5) 1.2.2 矩阵的特征值与特征向量 (5) 2 线性变换的对角化 (7) 2.1 线性变换的对角化 (7) 2.1.1 线性对角化的提出 (7) 2.1.2 线性对角化的定义 (7) 2.2 线性变换的特征值与特征向量 (7) 2.2.1 线性变换的特征值与特征向量的概念 (7) 2.2.2 线性变换的特征多项式 (7) 2.3 线性变换对角化与矩阵对角化之间的联系 (8) 2.3.1 特征值与特征向量的联系 (8) 2.3.2 线性变换对角化与矩阵相似对角化之间的关系 (9) 2.3.3 线性变换可对角化的充要条件及推论 (9) 2.3.4 求线性变换对角化的方法和步骤 (10) 3 线性对角化问题的相关题目 (14) 总结 (16) 参考文献 (17) 致谢 (18)

摘要 线性变换是贯穿高等代数的重要内容之一,其研究价值不言而喻。本文尝试通过探讨矩阵对角化的知识点类比线性变换对角化的知识点,再通过矩阵的特征值与特征向量,以线性对角化问题为主要线索,着手研究线性变换特征值与特征向量的求解步骤以及线性对角化的基本条件,并且总结说明线性变换的对角化与矩阵对角化的联系,更进一步的,加深了解矩阵对角化与线性对角化的内容及要点。 关键词:线性变换的对角化问题;矩阵;特征值;特征向量

Linear transformation is an important part of higher algebra through its research value is self-evident. This paper attempts to explore the matrix diagonalization by knowledge points of analog linear transformation diagonalization knowledge, and through the eigenvalues and eigenvectors of the matrix, linear diagonalization problem as the main clue, started studying linear transformations eigenvalues and eigenvectors steps to solve the basic conditions and linear keratosis, and summary description of the linear transformation matrix diagonalization diagonalization with links to further deepen understanding of linear matrix diagonalization diagonalization content and points. Keywords: Changing existing diagonalization;Matrix;Eigenvalues;Eigenvectors

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

小学数学所有图形计算公式

小学数学图形计算公式 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积C周长∏ d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏ 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

高数上册归纳公式篇(完整)

公式篇 目录 一、函数与极限 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、微分中值定理与导数的应用 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开 4.曲率 四、定积分 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、不定积分 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、定积分的应用 1.平面图形面积 2.体积 3.弧微分公式 七、微分方程 1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选)

一、函数与极限 1.常用双曲函数( sh(x).ch(x).th(x) ) 2.常用等价无穷小(x →0时) 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n 阶导数公式 特别地,若n =λ

3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 函数的0阶导数可视为函数本身 4.参数方程求导公式 5.微分近似计算(x 很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆)

三、微分中值定理与导数的应用 1.一阶中值定理 ()(x f 在],[b a 连续,),(b a 可导 ) 罗尔定理 ( 端点值相等)()(b f a f = ) 拉格朗日中值定理 柯西中值定理 (0)('≠x g ≠0 ) 2.高阶中值定理 ()(x f 在),(b a 上有直到)1(+n 阶导数 ) 泰勒中值定理 n R 为余项 (ξ在x 和0x 之间) 令00=x ,得到麦克劳林公式 3.部分函数使用麦克劳林公式展开(皮亚诺型余项)

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x ++=+-==+= -= ----1ln(:2 :2:22) 双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

浅谈矩阵的特征值与特征向量的应用(终稿)复习课程

浅谈矩阵的特征值与特征向量的应用(终稿)

浅谈矩阵的特征值与特征向量的应用 摘要 特征值与特征向量在现代科学中有重要的应用。本文介绍了特征值与特征向量的定义以及性质,并且给出了在线性空间中线性变换的特征值、特征向量与矩阵中的特征值、特征向量之间的关系。然后介绍了几种特征值与特征向量的求解方法。最后介绍了特征值与特征向量在实际中的应用,如在数学领域中、物理中以及经济发展与环境污染增长模型中的应用等等。 关键字:特征值;特征向量;应用;矩阵;初等变换 Abstract Eigenvalues and eigenvectors have important applications in modern science. This paper introduces the definition and nature of the eigenvalues and eigenvectors, eigenvalues and gives linear space of linear transformations, eigenvectors and eigenvalues of the relationship matrix, feature vectors. Then introduces several eigenvalues and eigenvectors of solving methods. Finally, the eigenvalues and

eigenvectors in practical application, such as in the fields of mathematics, physics, economic development and environmental pollution growth model and the application, and so on. Keys words:eigenvalue;eigenvector;application;matrix;elementary; 目录 浅谈矩阵的特征值与特征向量的应用 (2) 摘要 (2) Abstract (2) 第1章引言 (4) 1.1 研究背景 (4) 1.2 研究现状 (5) 1.3 本文研究目的及意义 (6) 第2章特征值与特征向量的一般理论 (6) 2.1 特征值与特征向量的定义和性质 (6) 2.1.1 特征值与特征向量的定义 (7) 2.1.2 特征值与特征向量的性质 (7) 2.2 特征值与特征向量的一般求解方法 (8) 2.2.1 一般数字矩阵的简单求解 (8)

高等数学一常用公式表

常用公式表(一) 1。乘法公式 ()()22212a b a ab b +=++ ()()2 2222a b a ab b -=-+ ()()()223a b a b a b -=+- ()()()33224a b a b a ab b +=+-+ ()()()33225a b a b a ab b -=-++ 2、指数公式: ()()0 110a a =≠ ()12p p a a -= ()3m n a = ()4m n m n a a a += ()5m m n m n n a a a a a -÷= = ()() 6n m m n a a = ()() 7n n n ab a b = ()8n n n a a b b ?? = ??? ()2 9a = (10a = () 1 111a a -= (1 2 12a = 3、指数与对数关系: (1)若N a b =,则 N b a log = (2)若N b =10 ,则N b lg = (3)若N e b =,则N b ln = 4、对数公式: (1) b a b a =log , ln b e b = (2)log 10,ln 10a == (3)N a aN =log ,ln N e N = ()ln 4log ln a N N a = (5)a b b e a ln = (6)N M MN ln ln ln += ()7ln ln ln M M N N =- (8) M n M n ln ln = ()1 9ln ln M n = 5、三角恒等式: (1)22sin cos 1α α+= (2)2 2 1tan sec αα += (3)221cot csc αα+= () sin 4tan cos αα α = () cos 5cot sin αα α = ()1 6cot tan α α = ()17csc sin α α = ()18sec cos αα = 6.倍角公式: (1)α ααcos sin 22sin = ()2 2tan 2tan 21tan αα α = - (3)α αααα2 2 2 2 sin 211cos 2sin cos 2cos -=-=-= 7.半角公式(降幂公式): ()2 1cos 1sin 22 α α -= ()2 1cos 2cos 2 2 α α += ()1cos sin 3tan 2 sin 1cos α ααα α -= = +

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

线性变换

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:+是V的线性变换. 二. 数乘运算 定义2(P311) 显然k也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握 与 ()关于同一个基的坐 标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. 与 ()关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

浅谈线性代数在生活中的应用

浅谈线性代数在生活中的应用 线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 下面简要谈一下线性代数的具体应用。线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。 另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊! 总之,线性代数历经如此长的时间而生命力旺盛,可见它的应用之广! 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意, 而且写了成千篇关于这两个课题的文章。向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度, 散度, 旋度就更有说服力。同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x 的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,意思是“ 解行列式问题的方法” ,书里对行列式的概念和它的展开已经有了清楚的叙述。Vandermonde 是第一个对行列式理论进行系统的阐述( 即把行列' 式理论与线性方程组求解相分离) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。Laplace 在1772 年的论文《对积分和世界体系的探讨》中, 证明了Vandermonde 的一些规则, 并推广了他的展开行列式的方法, 用r 行中所含的子式和它们的余子式的集合来展 开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比(Jacobi )

高数上册归纳公式篇 完整

公式篇 目录 一、 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开 4.曲率 四、 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、 1.平面图形面积 2.体积 3.弧微分公式 七、 1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选) 一、函数与极限 1.常用双曲函数( sh(x).ch(x).th(x) ) 2.常用等价无穷小(x→0时)

3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n阶导数公式 特别地,若n λ = 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 函数的0阶导数可视为函数本身 4.参数方程求导公式 5.微分近似计算(x?很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆) 三、微分中值定理与导数的应用 1.一阶中值定理 () a连续,) a可导 ) (b , [b f在] (x , 罗尔定理 ( 端点值相等) a f f= ) ( (b ) 拉格朗日中值定理 柯西中值定理 (0 ) x g≠0 ) ('≠ 2.高阶中值定理 () (+ a上有直到)1 n阶导数 ) (x f在) , (b

常见数学图形计算公式大全

常见数学图形计算公式大全 1 、长方形的周长 = (长 + 宽) × 2 C= ( a + b ) × 2 2 、长方形的面积 = 长 × 宽 S=a × b 3 、正方形的周长 = 边长 × 4 C=a × 4 4 、正方形的面积 = 边长 × 边长 S=a × a 5 、三角形的面积 = 底 × 高 ÷ 2 S=a × h ÷ 2 6 、平行四边形的面积 = 底 × 高 S=a × h 7 、梯形的面积 = ( 上底 + 下底 ) × 高 ÷ 2 S= ( a + b ) × h ÷ 2 8 、圆的周长 = 圆周率 × 直径 C= π × d 9 、圆的面积 = 圆周率 × 半径 × 半径 S= πr 10 、长方体的表面积 = (长×宽 + 长×高 + 高×宽)× 2 S 表 = ( a × b + a × h + h × b )× 2 11 、长方体的体积公式 = 长 × 宽 × 高v =a × b × h 12 、正方体的表面积 = 棱长 × 棱长 × 6 S 表 = a × a × 6 13 、正方体的体积 = 棱长 × 棱长 × 棱长 V=a × a × a 14 、圆柱的侧面积 = 底面周长 × 高 S 侧 =C 底 × h 15 、圆柱的表面积 = 侧面积 +2 个底面积 S 表 =S 侧 +2 S 底

16 、圆柱的体积 = 底面积 × 高 V= S 底 × h 17 、圆锥的表面积 = 圆锥的侧面积 + 底面圆的面积 S 表 = S 侧 +S 底 18 、圆锥的体积 = 底面积 × 高 ÷ 3 V= S 底 × h ÷ 3 19 、环形的面积 = 外圆的面积 - 内圆的面积 S=S 外圆 - S 内圆 20 、平行四边形的周长 = ( 长边 + 短边) ×2 S= (a+b ) ×2

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

相关文档
最新文档