钢结构的稳定性验算

钢结构的稳定性验算
钢结构的稳定性验算

第七章 稳定性验算

整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。 注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。

局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。 注意:热轧型钢不必验算局部稳定!

第一节 轴心受压构件的整体稳定和局部稳定

一、轴心受压构件的整体稳定

注意:轴心受拉构件不用计算整体稳定和局部稳定!

轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。这种现象就叫做构件的弯曲失稳或弯曲屈曲。不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。

弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力:

2222//λππEA l EI N cr == (7-1)

推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:

/22=+Ny dz y EId

(7-2) 令EI N k

/2

=,则: 0/222=+y k dz y d (7-3)

解得:

kz B kz A y cos sin += (7-4)

边界条件为:z=0和l 处y=0;

则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=,

故 2

2

2

2

//λππEA l EI N cr == (7-5)

其它支承情况时欧拉临界力为:

2

222/)/(λπμπEA l EI N cr ==

(7-6)

欧拉临界应力为:

22/λπσE cr =

(7-7)

实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。此时的极限承载力N u ,

y u Af N /=?叫整体稳定系数。

残余应力的分布:见P104、P157,残余应力的存在使构件受力时过早地进入了弹塑性受力状态,使屈曲时截面抗弯刚度减小,导致稳定承载能力降低,降低了构件的临界应力。 令

k=b e /b;

2

3222/;/y

cr x cr Ek Ek λπσλπσ== (7-8)

所以残余应力对绕弱轴的临界应力的降低影响要比对绕强轴的要大。

初始弯曲、初始偏心使理想轴心受压构件变成偏心受压构件,使稳定从平衡分枝(第一类稳定)问题变成极值点(第二类稳定)问题,均降低了构件的临界应力。

我国规范考虑残余应力、1000/l 的初弯曲、未计入初偏心,采用极限承载力理论进行计算,用计算得到的96条柱子曲线(最后分成3组)表达,同时用表和公式的形式给出?λ-的关系。见P162图5-17。

规范规定:轴心受压构件的整体稳定要验算: f A N ≤=)/(?σ (7-9) 其中:

?-轴心受压构件的整体稳定系数,参见P496开始的附表。注意不同的钢材、不同的截面形式(分

a 、

b 、

c 、

d 四类,见P163表5-4)。

拟合公式为:215.0≤λ时,

2

11λα?-=

(7-10)

当215.0>λ时

2

22322322/]4)()[(λλλλααλλαα?-++-++=

(7-11)

其中E

f y π

λλ=

叫构件的相对长细比。321,,ααα见P164表5-6。

二、轴心受压构件的局部稳定

轴心受压构件的板件屈曲,实际上是薄板在轴心压力作用下的屈曲问题,相连板件互为支承。 四面简支单向均匀受压的弹性矩形薄板(尺寸a ×b ),其弯曲平衡微分方程为:

0)2(224422444=??+??+???+??z u N y u y z u z u D

(7-12)

式中:u-薄板的挠度; N-单位板宽的压力;

)1(122

3

ν-=Et D ,板的柱面刚度; 解得: ∑∑∞=∞

==

11

sin sin

m n mn

b

y n a z m A

u ππ (7-13)

边界条件:z=0,z=a,y=0,y=b 时u=0,弯矩=0 最小临界力: 2222

2)(m

b a m a D

N cr +=

π或222

)(mb a a mb b D N cr

+=π (7-14)

令2)(

mb a a mb +=β,22b

D N cr πβ=, 临界应力:

222)

()1(12/b

t E t N cr cr νβπσ-==

(7-15)

其它支承条件可引入弹性嵌固系数χ;弹塑性屈曲引入系数E E t /,=ηη;

临界应力完整的格式为:

222

2)100(6.18)()1(12b t b

t E cr

ηχβνηχβπσ=-= (7-16) 确定板件宽厚比或高厚比的原则是:局部屈曲临界力大于或等于整体临界应力得等稳定原则,我国规

范规定:

工字形轴心受压构件的板件宽厚比限值: 翼缘: y f t b /235)1.010(/λ+≤' (7-17) 腹板: y w f t h /235)5.025(/0λ+≤ (7-18) 其中:λ-构件的长细比;当30≤λ

时取30=λ;当100≥λ时取100=λ;

T 形轴心受压构件的板件宽厚比限值: 翼缘: y f t b /235)1.010(/λ+≤' (7-19)

腹板: y

w f t h /235)1.010(/0

λ+≤ (7-20)

箱形轴心受压构件的板件宽厚比限值:

y f t b /23540/0≤;y w f t h /23540/0≤ (7-21)

圆管截面轴心受压构件的板件宽厚比限值:

)/235(100/y f t D ≤; (7-22)

注意:热轧型钢不必验算局部稳定!

对工字形截面和箱形截面,如果板件宽厚比不满足要求,可以采用设置纵向加劲肋的办法予以加强。也可以让腹板中间部分屈曲,在计算构件的强度和稳定时,仅考虑腹板计算高度边缘范围内两侧宽度各为

y w f t /23520的部分作为有效截面,在计算整体稳定系数?时应用全截面计算。P173

第二节 梁的整体稳定和局部稳定

一、钢梁的整体稳定

一般梁的侧向刚度较小,在临界状态时,有一个很小的侧向干扰力,结构在侧向刚度方向的变形即迅速增大,结构中出现很大的侧向弯矩,截面应力增加很多,最终使结构丧失承载能力。钢梁侧向失稳的特点在于:截面中有一半是弯曲拉应力,会把截面受拉部分拉直而不是压屈。由于受拉翼缘对受压翼缘侧向变形的牵制,梁整体失稳总是表现为受压翼缘发生较大侧向变形而受拉翼缘发生较小侧向变形的弯扭屈曲。

钢梁发生整体失稳失的临界弯矩为M cr ,临界应力为cr σ;令:y cr b

f /σ?=,b ?叫梁的整体稳定

系数。

双轴对称截面弹性简支梁, 两端受纯弯作用,临界状态时平衡微分方程为:

dz

Mdu M dz d EI dz d GI M

M dz u d EI M M dz v d EI w t y x /////332222==-=-=-==-ζηξ???

(7-23)

边界条件:在z=0和z=l 处,0,0=''=??

解得: )1(222

2w

t

t w y

cr EI GI l I I l EI M ππ+=

(7-24) x cr cr W M /=σ (7-25)

)/(/y x cr y cr b f W M f ==σ? (7-26)

单轴对称截面、不同支承情况、不同荷载情况分别引入321,,βββ,简化后有不同的整体稳定系数的算法。对弹塑性整体失稳,应将弹性稳定系数b ?换算成弹塑性稳定系数'b ?。

规范规定:梁的整体稳定要验算:

f

W M x b x ≤=)/(?σ (7-27)

或: f W M W M y y y x b x ≤+=)/()/(γ?σ (7-28) 其中:钢梁整体稳定系数b ?的计算:

i.

工字形简支梁

y

b y x y b

b f h t W Ah 235

])4.4(1[4320212

ηλλβ?++= (7-29) 其中:b β为钢梁整体稳定的等效弯矩系数,是所考虑的不同荷载梁的临界弯矩和临界应力与受纯弯梁的临界弯矩和临界应力的比值。见P232

b η是截面不对称系数;双轴对称截面、加强受压翼缘和加强受拉翼缘的单轴对称截面

分别为:)21(),12(8.0,0b b b b b

αηαηη--=-==;)/(211I I I b +=α;I 1为受压

翼缘对y 轴的抗弯刚度,I 2为受拉翼缘对y 轴的抗弯刚度。

ii. 热轧普通工字钢简支梁

见P233

iii.

热轧槽钢简支梁

y

b f h l bt 2355701=

? (7-30)

iv.

双轴对称工字形悬臂梁

y y x

y b

b f h t W Ah 235)4.4(14320212

λλβ?+= (7-31) b β见P234

v.

y

y f /235120≤λ构件受纯弯曲的'

b ?近似公式

1. 工字形

双轴对称时: 235

4400007.12f

y

b λ?-

='

,取1≤'b ? (7-32)

单轴对称时: 235

)1.02(1400007.112y x b y

b f Ah W +-='

αλ?,取 1≤'b ? (7-33)

2. T 形

弯矩使翼缘受压时,双角钢T 形截面 235/0017.01y y b f λ?-='

(7-34)

两板组合T

形截面 235/0022.01y y

b f λ?-='

(7-35)

弯矩使翼缘受拉时, 0.1='b ? (7-36)

注意:当6.0>b ?时,换算成'b ?:

5

.1/1269.0/4646.01.1b

b b ???+-=';取

1≤'b ?

(7-37)

规范还规定如果符合下列情况之一的可不计算钢梁的整体稳定:

※有面板密铺在梁的受压翼缘上并与其牢固相连,能阻止梁受压翼缘的侧向位移时。 ※工字形截面简支梁受压翼缘的自由长度l 1与其宽度b 1的比值不超过下列数值 跨中无侧向支承点,荷载作用在上翼缘:y f /23513; 跨中无侧向支承点,荷载作用在下翼缘:y f /23520; 跨中有侧向支承点:y f /23516

※箱形截面简支梁的截面高宽比6/0

≤b h 且)/235(95/01y f b l ≤

二、钢梁的局部稳定

热轧型钢梁一般都有较大的板件厚度,可不必验算局部稳定!

组合截面梁受压翼缘的局部稳定应限制其宽厚比,腹板一般考虑设置加劲肋。 1.梁受压翼缘的宽厚比限值

工字形、T 形等, 弹塑性设计时y f t

b /23513/≤';弹性设计时y f t b /23515/≤'

箱形:y f t b /23540/0≤ 2.梁腹板的局部稳定计算

(1) 当腹板仅用横向加劲肋加强时的局部稳定计算 ※ 无局部压应力梁横向加劲肋间距的简化公式: 当

12000

≤ητw

t h 时, a 按构造取; 当150012000≤<

ητw t h 时,

100015000

-≤ητw

t h h a ; (7-38) 当

15000>ητw t h 时, 5010000

0-≤ητw

t h h a ;

其中:η 为考虑σ影响的剪应力τ增大系数,可查P259或按下式计算:

220])100(715[

1/1--=w

t h

σ

η

(7-39)

,,1w

w x t h V

I My ==

τσ单位以N/mm 2计算,计算剪应力时剪力取所计算区格内的最大剪力,计算正应力时弯矩取同一截面的相应弯矩。

※ 简支等截面吊车梁横向加劲肋间距的简化公式:

?????????--=4

00

3200

1min k t h h k k t

h h k a w

w

στ

(7-40)

其中:k 1、k 2、k 3、k 4为参数,按τσ/c 或σσ/c 由P262查得,当计算得到的a<0时,按构造设置加劲肋。 ※ 按几种应力共同作用时的稳定相关公式:

2

01,203202122,)/100(,)/100(,)/100()

/(),/(,/1)()(

h t C h t C h t C l t F t h V I My w cr c w cr w cr z w c w w x cr

cr c c cr ======≤++στσστσττ

σσσσ

(7-41) 其中:计算

σ、τ

时弯矩M 和剪力V 取所计算区格内的平均值;

223//93123mm N C μ+=,0/h a =μ或查表

当0=c σ而μ为任意值,或0≠c σ而8.0≤μ

时,取C 2=715N/mm 2,C 1查表P252;

当0≠c σ而8.0>μ时,若≥σσ/c P252表界限值,C 1、C 2按该表查; 若<σσ/c P252表界限值,取C 2=715N/mm 2

,C 1按

μ/2代替μ查表P252;

当局部压应力位于梁的受拉翼缘时,按0=c σ和0=σ

各计算一次,均应满足。

(2) 同时设横向加劲肋和纵向加劲肋时的局部稳定计算

纵向加劲肋应设在离受压边缘h 1=(1/4~1/5)h 0处。 区格Ⅰ的计算:

※ 按几种应力共同作用的稳定相关公式

1)(21

1,1≤++cr cr c c cr ττσσσσ

(7-42)

)

/(),/(,/1z w c w w x l t F t h V I My ===στσ

(7-43) 当0=c σ而1/h a =ζ

为任意值,或0≠c σ而1≤ζ时,

2

21

011/)100(/1100mm N h t h h w cr -=

σ

(7-44)

22

1

221

11,/)100(

)1

1)(1025(mm N h t w cr c ζ

ζσ+

+=

(7-45) 当0≠c

σ而11>ζ时,

2

21

211011/)100()1

(/125mm N h t h h w cr ζζσ+-=

(7-46)

22

1

22

1

11,/)100()1

1)(1025(mm N h t w cr c ζζσ+

+=

以及: 221

011/)100(/1100

mm N h t h h w cr -=

σ (7-44)

22

1

22

1

11,/)100()11)(1025(mm N h t w cr c ζζσ+

+=

(7-47)

而1ζ用0.51ζ代替。 ※ 按简化公式

4.0≤σσc

时, c w t h σσ+≤/11201 (7-48) 当4.0>σ

σ

c 时, c w t h σσ3/14001+≤ (7-49) 区格Ⅱ的计算:

※ 按几种应力共同作用的稳定相关公式

1)()(

22

22,222≤++cr cr c c cr ττσσσσ

(7-50)

c

c w w x t h V I My σστσ3.0),/(,/222===

(7-51)

2

/h a =μ

(7-52)

202

012)100()

/21(450

h t h h w cr -=

σ

(7-53)

2

2

32)100(

h t C w cr =τ

(7-54)

2

2

12,)100(

h t C w cr c =σ

(7-55)

※ 按简化公式 对无局部压应力的梁,当

12002

≤τw

t h 时,a 按构造取; 当

150012002

≤<

τw

t h 时

,

100015002

2-≤

τw

t h h a ;

15002

>τw

t h 时,

5010002

2-≤

τw

t h h a ;

(7-57)

简支等截面吊车梁:

22

21k t h h k a w

-=

τ

(7-58)

k 1、k 2、k 3、k 4为参数,按τσ/2c 或σσ/2c 由P262查得,当计算得到的a<0时,按构造设置加劲肋。

横向加劲肋的尺寸:15/,40)30/(0s s s b t mm h b ≥+≥,在腹板一侧布置的横向加劲肋,宽度应取1.2倍。当同时设纵向加劲肋时,横向加劲肋还应满足:3

03w z t h I ≥

纵向加劲肋应满足: 当85.0/0≤=h a μ时, 3

05.1w y t h I ≥ (7-59)

当85.0/0>=h a μ

时, 20302)21.4()45.05.2(w

w y t h t h I -≈-≥μμμ (7-60) 当采用短加劲肋时,宽度可取横向加劲肋的0.7~1倍,厚度应大于等于横向加劲肋宽度的1/15。

第三节 偏心受压构件的整体稳定和局部稳定

一、偏心受压构件的整体稳定

压弯构件的承载力往往由整体稳定性确定,而且可能有平面内整体稳定性和平面外整体稳定性两种情况。在N 和M 同时作用下,开始构件在弯矩作用平面内发生弯曲变形,超过极限后,要维持内外平衡,就只能减小N 和M 。这种现象就叫做弯矩平面内的整体失稳。侧向刚度较小时,当超过临界状态时,构件突然发生平面外的弯曲变形,以及扭转变形,这种现象叫做弯矩作用平面外的整体失稳。 弯矩平面内的整体稳定验算公式为:

f N N W M A N Ex x x x mx x ≤-+)/8.01(1γβ? (7-61)

对单轴对称截面压弯构件,当弯矩作用在对称轴平面内而且是较大翼缘受压时,有可能在较小翼缘一侧产生较大的拉应力并在其边缘屈服,轴压力N 引起的压应力可能抵消对弯矩产生的拉应力,此时构件尚应验算:

f N N W M A N

Ex x x x mx ≤--)

/25.11(2γβ (7-62)

其中:mx β为等效弯矩系数;规范规定:

弯矩作用平面内有侧移的框架柱和悬臂构件,mx β=1; 对无侧移框架柱和两端支承的构件:

※ 无横向荷载作用时,mx β=0.65+0.35M 2/M 1,取≥0.4,M 1和M 2为端弯矩,取值时考虑弯矩的正负号,且:

21M M ≥

※ 有端弯矩和横向荷载同时作用,构件全长为同号弯矩时,mx β=1;有正负弯矩时,mx β=0.85; ※ 无端弯矩但有横向荷载作用时,当跨度中点有一个横向集中荷载时,mx β=1-0.2N/N Ex ;其他荷载情况

时,mx β=1.0

弯矩平面外的整体稳定验算公式为:

f W M A N x

b x tx y ≤+?β? (7-63) 其中:tx β为等效弯矩系数;规范规定:

弯矩作用平面外有支承的构件,应根据两相邻支承间构件段内的荷载和内力情况确定:

※ 所考虑构件段内无横向荷载作用时, tx β=0.65+0.35M 2/M 1,取≥0.4,M 1和M 2为所考虑构件段内的端弯

矩,取值时考虑弯矩的正负号,且:21M M ≥

※ 所考虑构件段内有端弯矩和横向荷载同时作用,构件段内为同号弯矩时,tx β=1;有正负弯矩时,

tx β=0.85;

※ 所考虑构件段内无端弯矩但有横向荷载作用时,tx β=1.0 悬臂构件,tx β=1

实腹式双向压弯构件的整体稳定验算公式为:

f W M N N W M A N

f W M N N W M A N

x

bx x tx Ey y y y

my y y by y ty Ex x x x mx x ≤+-+≤+-+1111)/8.01()/8.01(?βγβ??βγβ?

(7-64)

其中:y x ??,为绕x 轴和绕y 轴的轴心受压构件的整体稳定系数;

by bx ??, 为绕x 轴和绕y 轴的受弯构件整体稳定系数;对工字形截面,x 轴一般为强轴,认为M y

一般不会引起绕强轴的侧箱弯扭失稳,故by ?=1.0;对箱形截面,取4.1==by bx ??。

二、压弯构件的局部稳定

1、压弯构件翼缘的宽厚比限值

工字形、T 形等,

弹塑性设计时y f t b /23513/≤';弹性设计时y f t b /23515/≤' 箱形:y f t b /23540/0≤ 2、压弯构件腹板的高厚比限值

工字形时 当

6.100≤≤α时

y x w f t h /235)255.016(/00++≤λα

(7-65)

当0

.26.10≤<α时

y x w f t h /235)2.265.048(/00-+≤λα

(7-66)

其中:max min max 0/)(σσσα-=,为腹板压应力不均匀分布的梯度。当min σ为拉应力时取负值。当x λ<30时,取30;当x λ>100时,取100;

T 形时,

当0.10≤α时, y w f t h /23515/0≤ (7-67) 当0.10>α时, y w f t h /23518/0≤ (7-68) 箱形:当6.100≤≤α时, y x w f t h /235)255.016(8.0/00++≤λα (7-69) 当0.26.10≤<α时, y x w f t h /235)2.265.048(8.0/00-+≤λα

(7-70)

取y f /23540≥ 第四节 梁的整体稳定和局部稳定验算算例

一、例题一

有一个跨度为9m 的工作平台简支梁,承受均布永久荷载q 1=42kN/m ,各可变荷载共q 2=50kN/m 。采用Q235钢,安全等级为二级,梁高不受限制。已知梁的截面尺寸为1000×8×320×12,梁总高1024mm 。 试计算梁的局部稳定。

解:h 0=1000mm ,t w =8mm ,W x =5143cm 3

因为1701258/1000/800<==

所以应根据计算设置横向加劲肋。取加劲肋间距a =1.5m<2h=2m 1、 按相关公式进行计算 验算靠支座第一区段和跨中区段

第一区段的内力:M 1=501×0.8-111.4×0.8×0.4=365kN ·m V 1=501-111.4×0.8=412kN

跨中区段的内力:M 1=501×3.75-111.4×3.75×1.875=1095.5kN ·m V 1=501-111.4×3.75=83.3kN 验算第一区段: 验算跨中区段:

所以加劲肋间距满足要求。 2、 按简化公式计算 第一区段:m kN M ?=??-?='

5005.01.04.1111.05011 横向加劲肋间距按构造取a =2h=2m

跨中区段:m kN M ?=??-?='

108475.15.34.1115.35012

横向加劲肋间距按构造取a =2h=2m

为了保证梁的整体稳定,需在梁的跨中设一道侧向支撑,因此,横向加劲肋的布置只能取a=1.5m 。

建筑钢结构整体稳定性分析

建筑钢结构整体稳定性分析 0 引言 建筑钢结构的应用越来越广泛,其稳定性和重量轻的特点为建筑整体的稳定性起到了促进作用,避免建筑物的倒塌等事故的发生,但是就现状来看,建筑钢结构的整体稳定性还存在着一定的问题,因此加强对钢结构的稳定性研究具有重要的现实意义。 1 建筑钢结构的概述 (1)建筑钢结构的优势。其一,抗震性高。在建筑工程中,选用钢结构是因为其自身的优势所在,由于钢材料的强度较高,另外还具有相对较强的可塑性和柔韧度,能够满足建筑工程的需要。再加上建筑钢结构的延展性比较好,对地震的抗御能力较高,当地震灾害发生时,钢结构具有一定的缓冲能力,其抗震性增加了建筑物的安全性;其二,钢结构的精确度较高。为了增强建筑物的稳定性,应选用精确度较高的材料,钢结构就具备这样的优势,因为它相对传统的钢筋混凝土结构具有较强的精确度。另外,钢结构还具有一定的可塑性和韧性,可以适用于大跨度的建筑。如果想要达到增强建筑物稳定性的目的,就应优先选用钢结构,它的应力幅度具有很强的弹性,而且这种钢建筑在受力的情况下,与工程建筑的力学计算方式相符合,被广

泛的应用;其三,建筑钢结构的施工过程较简单。建筑钢结构主要是由钢板、冷加工的薄型钢板或者是热轧型钢为材料制作而成的,不论是制作过程还是制作方法都相对较简单,这样就有力的缩短了建筑施工的周期和建筑施工所用的成本;(2)建筑钢结构的劣势。建筑钢结构在拥有一定优势的情况下,同时也存在着一定的不足,主要体现在钢结构的耐腐蚀性和抗火性相对较差,这些都隐藏着一定的危险,容易引发事故。除此之外,在建筑施工的过程中,通常选取强度较低的构件,这样就对建筑的整体稳定性造成了一定的限制。因为施工单位一味的注重稳定性,却忽视了强度的重要性,这样就造成了建筑材料的浪费,同时也造成了对建筑工程质量的不良影响。 2 建筑钢结构稳定性的概念 建筑钢结构的强度不够,或是失稳现象出现,都会对建筑结构造成一定的影响。建筑钢结构的稳定性与强度不同,由于建筑构件受到外部的重荷以及建筑结构内部的抵抗能力,在这期间存在着不稳定性,在施工的过程中,最重要的任务就是找到一个平衡的状态,从而减少钢结构损坏的现象出现。在建筑施工过程中,钢材的强度较高,在受到压力的情况下,为了在强度与稳定性之间找到平衡,取得最优的效果,往往都是选择了稳定性方面的要求,这样就导致了建筑钢结构的强度得不到很好的发挥。由此可见,在建筑钢结构的设计过程中,要注重对钢结构强度与稳定的界定,充分的了解对建筑物造成破坏的

最新钢结构设计原理题库及答案(2)

1.下列情况中,属于正常使用极限状态的情况是 【 D 】 A 强度破坏 B 丧失稳定 C 连接破坏 D 动荷载作用下过大的振动 2.钢材作为设计依据的强度指标是 【 C 】 A 比例极限f p B 弹性极限f e C 屈服强度f y D 极限强度f u 3.需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数 n 大于或等于 【 A 】 A 5×104 B 2×104 C 5×105 D 5×106 4.焊接部位的应力幅计算公式为 【 B 】 A max min 0.7σσσ?=- B max min σσσ?=- C max min 0.7σσσ?=- D max min σσσ?=+ 5.应力循环特征值(应力比)ρ=σmin /σmax 将影响钢材的疲劳强度。在其它条件完全相同 情况下,下列疲劳强度最低的是 【 A 】 A 对称循环ρ=-1 B 应力循环特征值ρ=+1 C 脉冲循环ρ=0 D 以压为主的应力循环 6.与侧焊缝相比,端焊缝的 【 B 】 A 疲劳强度更高 B 静力强度更高 C 塑性更好 D 韧性更好 7.钢材的屈强比是指 【 C 】 A 比例极限与极限强度的比值 B 弹性极限与极限强度的比值 C 屈服强度与极限强度的比值 D 极限强度与比例极限的比值. 8.钢材因反复荷载作用而发生的破坏称为 【 B 】 A 塑性破坏 B 疲劳破坏 C 脆性断裂 D 反复破坏. 9.规范规定:侧焊缝的计算长度不超过60 h f ,这是因为侧焊缝过长 【 C 】 A 不经济 B 弧坑处应力集中相互影响大 C 计算结果不可靠 D 不便于施工 10.下列施焊方位中,操作最困难、焊缝质量最不容易保证的施焊方位是 【 D 】 A 平焊 B 立焊 C 横焊 D 仰焊 11.有一由两不等肢角钢短肢连接组成的T 形截面轴心受力构件,与节点板焊接连接,则肢 背、肢尖内力分配系数1k 、2k 为 【 A 】 A 25.0,75.021==k k B 30.0,70.021==k k C 35.0,65.021==k k D 35.0,75.021==k k 12.轴心受力构件用侧焊缝连接,侧焊缝有效截面上的剪应力沿焊缝长度方向的分布是 【 A 】 A.两头大中间小 B. 两头小中间大 C.均匀分布 D.直线分布 . 13.焊接残余应力不影响钢构件的 【 B 】

《钢结构基本原理》作业解答

《钢结构基本原理》作业 判断题 2、钢结构在扎制时使金属晶粒变细,也能使气泡、裂纹压合。薄板辊扎次数多,其 性能优于厚板。 正确错误 答案:正确 、目前钢结构设计所采用的设计方法,只考虑结构的一个部件,一个截面或者一个1 .局部区域的可靠度,还没有考虑整个结构体系的可靠度 正确答案: 、柱脚锚栓不宜用以承受柱脚底部的水平反力,此水平反力应由底板与砼基础间的20 摩擦力或设置抗剪键承受。 答案:正确 计算的剪力两者中的较、计算格构式压弯构件的缀件时,应取构件的剪力和按式19 大值进行计算。 答案:正确 、加大梁受压翼缘宽度,且减少侧向计算长度,不能有效的增加梁的整体稳定性。18 答案:错误 、当梁上翼缘受有沿腹板平面作用的集中荷载,且该处又未设置支承加劲肋时,则17 应验算腹板计算高度上边缘的局部承压强度。 答案:正确 、在格构式柱中,缀条可能受拉,也可能受压,所以缀条应按拉杆来进行设计。16 答案:错误 .愈大,连接的承载力就愈高15、在焊接连接中,角焊缝的焊脚尺寸 答案:错误 、具有中等和较大侧向无支承长度的钢结构组合梁,截面选用是由抗弯强度控制设14 计,而不是整体稳定控制设计。 答案:错误 、在主平面内受弯的实腹构件,其抗弯强度计算是以截面弹性核心几乎完全消失,13 出现塑性铰时来建立的计算公式。

答案:错误 1. 12、格构式轴心受压构件绕虚轴稳定临界力比长细比相同的实腹式轴心受压构件低。 原因是剪切变形大,剪力造成的附加绕曲影响不能忽略。 答案:正确 11、轴心受力构件的柱子曲线是指轴心受压杆失稳时的临界应力与压杆长细比之间 的关系曲线。 答案:正确 10、由于稳定问题是构件整体的问题,截面局部削弱对它的影响较小,所以稳定计算 中均采用净截面几何特征。 答案:错误 9、无对称轴截面的轴心受压构件,失稳形式是弯扭失稳。 答案:正确 8、高强度螺栓在潮湿或淋雨状态下进行拼装,不会影响连接的承载力,故不必采取 防潮和避雨措施。 答案:错误 7、在焊接结构中,对焊缝质量等级为3级、2级焊缝必须在结构设计图纸上注明,1 级可以不在结构设计图纸中注明。 答案:错误 6、冷加工硬化,使钢材强度提高,塑性和韧性下降,所以普通钢结构中常用冷加工 硬化来提高钢材强度。() 答案:错误 5、合理的结构设计应使可靠和经济获得最优平衡,使失效概率小到人们可以接受程 度。() 答案:正确 4、钢结构设计除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项 系数设计表达式进行计算。() 答案:正确 3、钢材缺口韧性值受温度影响,当温度低于某值时缺口韧性值将急剧升高。()答案:错误 一、名词解释

钢结构稳定设计指南

钢结构稳定设计指南 钢结构失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。 关键字:钢结构稳定,轴心压杆,计算长度,受弯构件,框架稳定 一.钢结构稳定问题的待点 失稳形式存在多样性外,还应了解下列四个方面的特点:(1)稳定问题要考虑构件及结构的整体作用;(2)稳定计算要按二阶分析进行;(3)考虑初始缺陷的极值稳定计算正在取代完善构件的分岔点稳定计算;(4)稳定性不仅通过计算来保证,还需要从结构方案布置和构造设计来配合。 二.轴心压杆的稳定计算 (1)影响轴心压杆稳定承载力的最主要因素是残余应力,它是把稳定系数分成a、b、c三类的依据,残余压应力越大,位置距形心轴越远,值越低。 (2)轴心压杆不仅会发生弯曲失稳,也可能发生扭转失稳。在采用单轴对称截面时.需要特别注意扭转的不利作用。 (3)设计格构柱时,需要了解几何缺陷的不利影响和柱肢压缩对缀条的影响。 三.轴心压杆的计算长度 关于压杆计算长度的确定,需要明确以下几点: (1)确定杆系结构中的杆件计算长度时,应把它和对它起约束作用的构件一起作稳定分析。这是稳定性整体计算的一种简化方法。压杆一般不能依靠其他压杆对它的约束作用,除非两者的压力相差悬殊。 (2)节点连接的构造方式会影响杆件的稳定性能。因此,杆件计算长度和构造设计有密切联系。比如杆件在交叉点的拼接会影响它的出平面弯曲刚度并使计算长度增大。又如起减小计算长度作用的撑杆的连接有偏心,会降低它的有效性。 (3)塔架杆件的计算长度有不同于平面桁架(屋架)的特点.主杆和腹杆都各有其特殊之处。此外、塔架中单角钢杆件预期绕平行轴失稳时,需要考虑扭转的不利影响。 (4)桁架体系的支撑构件和塔架中的横隔构件都对杆件的计算长度有直接影响。确定桁架杆件出平面计算长度时,需要特别注意杆系的相互关系 四. 受弯构件的整体稳定

钢结构的-稳定性验算

第七章 稳定性验算 整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。 注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。 局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。 注意:热轧型钢不必验算局部稳定! 第一节 轴心受压构件的整体稳定和局部稳定 一、轴心受压构件的整体稳定 注意:轴心受拉构件不用计算整体稳定和局部稳定! 轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。这种现象就叫做构件的弯曲失稳或弯曲屈曲。不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。 弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力: 2222//λππEA l EI N cr == (7-1) 推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为:

0/22=+Ny dz y EId (7-2) 令EI N k /2 =,则: 0/222=+y k dz y d (7-3) 解得: kz B kz A y cos sin += (7-4) 边界条件为:z=0和l 处y=0; 则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=, 故 2222//λππEA l EI N cr == (7-5) 其它支承情况时欧拉临界力为: 2222/)/(λπμπEA l EI N cr == (7-6) 欧拉临界应力为: 22/λπσE cr = (7-7) 实际上轴心受压杆件存在着各种缺陷:残余应力、初始弯曲、初始偏心等。此时的极限承载力N u , y u Af N /=?叫整体稳定系数。 残余应力的分布:见P104、P157,残余应力的存在使构件受力时过早地进入了弹塑性受力状态,使屈曲时截面抗弯刚度减小,导致稳定承载能力降低,降低了构件的临界应力。 令k=b e /b; 则 2 3222/;/y cr x cr Ek Ek λπσλπσ== (7-8) 所以残余应力对绕弱轴的临界应力的降低影响要比对绕强轴的要大。 初始弯曲、初始偏心使理想轴心受压构件变成偏心受压构件,使稳定从平衡分枝(第一类稳定)问题变成极值点(第二类稳定)问题,均降低了构件的临界应力。 我国规范考虑残余应力、1000/l 的初弯曲、未计入初偏心,采用极限承载力理论进行计算,用计算得到的96条柱子曲线(最后分成3组)表达,同时用表和公式的形式给出?λ-的关系。见P162图5-17。

钢结构 复习题

钢结构复习题 一、填空题: 1.钢结构计算的两种极限状态是和。 2.提高钢梁整体稳定性的有效途径是和。 3.高强度螺栓预拉力设计值与和有关。 4.钢材的破坏形式有和。 5.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则常采用的方法来解决。 6.高强度螺栓预拉力设计值与和有关。 7角焊缝的计算长度不得小于,也不得小于;侧面角焊缝承受静载时,其计算长度不宜大于。 8.轴心受压构件的稳定系数φ与、和有关。 9.钢结构的连接方法有、和。 10.影响钢材疲劳的主要因素有、和。 11.从形状看,纯弯曲的弯矩图为,均布荷载的弯矩图为,跨中央一个集中荷载的弯矩图为。 12.轴心压杆可能的屈曲形式有、和。 13.钢结构设计的基本原则、、和。 14.按焊缝和截面形式不同,直角焊缝可分为、、和 等。 15.对于轴心受力构件,型钢截面可分为和;组合截面可分为和。 16.影响钢梁整体稳定的主要因素有、、、 和。 二、问答题: 1.高强度螺栓的8.8级和10.9级代表什么含义? 2.焊缝可能存在哪些缺陷? 3.简述钢梁在最大刚度平面内受荷载作用而丧失整体稳定的现象及影响钢梁整体稳定的主要因素。

4.建筑钢材有哪些主要机械性能指标?分别由什么试验确定? 5.什么是钢材的疲劳? 6.选用钢材通常应考虑哪些因素? 7.考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响? 8.焊缝的质量级别有几级?各有哪些具体检验要求? 9.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同? 10.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比? 11.轴心压杆有哪些屈曲形式? 12.压弯构件的局部稳定计算与轴心受压构件有何不同? 13.在抗剪连接中,普通螺栓连接和摩擦型高强度螺栓连接的传力方式和破坏形式有何不同? 14.钢结构有哪些连接方法?各有什么优缺点? 15.对接焊缝的构造有哪些要求? 16.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影响?减少焊接残余应力和焊接残余变形的方法有哪些? 17.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施是什么? 三、计算题: 1.一简支梁跨长为5.5m,在梁上翼缘承受均布静力荷载作用,恒载标准值为10.2kN/m(不包括梁自重),活载标准值为25kN/m,假定梁的受压翼缘有可靠侧向支撑。梁的截面选用I36a 轧制型钢,其几何性质为:Wx=875cm3,tw=10mm,I / S=30.7cm,自重为59.9kg/m,截面塑性发展系数 x=1.05。钢材为Q235,抗弯强度设计值为215N/mm2,抗剪强度设计值为125 N/mm2。试对此梁进行强度验算并指明计算位置。(恒载分项系数G=1.2,活载分项系数Q=1.4) 2.已知一两端铰支轴心受压缀板式格构柱,长10.0m,截面由2I32a组成,两肢件之间的距离300cm,如图所示,尺寸单位mm。试求该柱最大长细比。 注:一个I32a的截面面积A = 67cm2,惯性矩Iy =11080cm4,Ix1 = 460cm4

钢结构承载计算用表

钢结构承载计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77

钢结构强度稳定性计算书

钢结构强度稳定性计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、构件受力类别: 轴心受压构件。 二、强度验算: 1、轴心受压构件的强度,可按下式计算: σ = N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; 轴心受压构件的强度σ= N / A n = 10×103 / 298 = 33.557 N/mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; 由于轴心受压构件强度σ= 33.557 N/mm2≤承载力设计值f=205 N/mm2,故满足要求! 2、摩擦型高强螺栓连接处的强度,按下面两式计算,取最大值: σ = (1-0.5n1/n)N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; n──在节点或拼接处,构件一端连接的高强螺栓数目,取n = 4; n1──所计算截面(最外列螺栓处)上高强螺栓数目;取n1 = 2; σ= (1-0.5×n1/n)×N/A n=(1-0.5×2/4)×10×103/298=25.168 N/mm2; σ = N/A ≤ f 式中N──轴心压力,取N= 10 kN; A──构件的毛截面面积,取A= 354 mm2; σ=N/A=10×103/354=28.249 N/mm2; 由于计算的最大强度σmax = 28.249 N/mm2≤承载力设计值=205 N/mm2,故满足要求! 3、轴心受压构件的稳定性按下式计算: N/φA n≤ f

钢结构 答案

第四章 4.10验算图示焊接工字形截面轴心受压构件的稳定性。钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。已知构件承受的轴心压力为N=1500kN。 解:由支承条件可知 0x 12m l=, 0y 4m l= x 21.8cm i=== , y 5.6cm i=== 0x x x 1200 55 21.8 l i λ===,0y y y 400 71.4 5.6 l i λ===, 翼缘为火焰切割边的焊接工字钢对两个主轴均为b类截面,故按 y λ查表得=0.747 ? 整体稳定验算: 3 150010 200.8MPa215MPa 0.74710000 N f A ? ? ==<= ? ,稳定性满足要求。 4.13图示一轴心受压缀条柱,两端铰接,柱高为7m。承受轴心力设计荷载值N=1300kN,钢材为Q235。已知截面采用2[28a,单个槽钢的几何性质:A=40cm2,i y=10.9cm,i x1=2.33cm, x

I x1=218cm 4,y 0=2.1cm ,缀条采用∟45×5,每个角钢的截面积:A 1=4.29cm 2。试验算该柱的 整体稳定性是否满足? 解:柱为两端铰接,因此柱绕x 、y 轴的计算长度为:0x 0y 7m l l == 格构柱截面对两轴均为b 类截面,按长细比较大者验算整体稳定既可。 由0x 65.1λ=,b 类截面,查附表得0.779?=, 整体稳定验算: 3 2 130010208.6MPa 215MPa 0.77924010N f A ??==<=??? 所以该轴心受压的格构柱整体稳定性满足要求。 4.15某压弯格构式缀条柱如图所示,两端铰接,柱高为8m 。承受压力设计荷载值N =600kN ,弯矩100kN m M =?,缀条采用∟45×5,倾角为45°,钢材为Q235,试验算该柱的整体稳定性是否满足? 已知:I22a A=42cm 2,I x =3400cm 4,I y1=225cm 4; [22a A=31.8cm 2,I x =2394cm 4,I y2=158cm 4; ∟45×5 A 1=4.29cm 2。 解:①求截面特征参数 截面形心位置: 该压弯柱两端铰接因此柱绕x 、y 轴的计算长度为:0x 0y 8m l l == x x 57948.86cm 73.8I i A = ==,y y 12616.952 13.08cm 73.8 I i A === 0x x x 80090.38.86l i λ===,0y y y 800 61.213.08 l i λ=== ②弯矩作用平面内稳定验算(弯矩绕虚轴作用) 由0y 63.1λ=,b 类截面,查附表得0.791?= 说明分肢1受压,分肢2受拉, 由图知,M 2=0,1100kN m M =?,等效弯矩系数my 210.650.350.65M M β=+= 因此柱在弯矩作用平面内的稳定性满足要求。 ③弯矩作用平面外的稳定性验算 弯矩绕虚轴作用外平面的稳定性验算通过单肢稳定来保证,因此对单肢稳定性进行验算: y x y 1 260 x y 2 x 1 x 2 45°

钢结构工程量计算

钢结构工程量计算、报价要点 第一部分图纸 一、图纸:根据图纸目录,清理核对图纸数量,检查是否有遗漏。

二、建筑施工图 1. 设计总说明 1.1 建筑面积、结构形式、柱距、跨度、结构布置情况;1.2 工程量计算的范围:关于结构、屋面、墙面、门窗等,清楚投标报价的范围; 1.3 材料的选用及规格型号、技术要求; 1.4 钢结构的油漆或涂装要求、防火等级。 2. 平面布置图、立面图、剖面图: 可统计门窗、室内外钢梯、屋面彩板、采光板、墙面彩板、屋顶通风器、雨棚、落水管、收边泛水件、天沟等的工程量。统计时,均应注明每种材料的材质、规格型号。 三、结构施工图 1. 结构设计总说明 1.1 材料:各部位(钢柱、梁、檩条、支撑等)构件对应的材质,如Q235、Q345,高强螺栓的强度等级要求等; 1.2 焊接质量要求:焊缝质量等级,无损探伤要求,如拼接焊缝质量等级应达到一级,要求100%探伤,二级焊缝20%探伤,涉及到无损检测费用的计算。 1.3 除锈要求:手工和动力工具除锈(St)、喷射或抛射除锈(Sa)。不同的除锈等级,除锈费用不同。 1.4 油漆(涂装)要求:油漆种类、涂刷遍数、漆膜厚度,防火等级,各部位的耐火极限。

2. 平面布置图、立面图、剖面图、节点详图: 2.1 可依次计算如下工程量: 2.1.1 预埋铁件:包括预埋定位板、预埋螺栓、螺母; 2.1.2 钢柱、抗风柱、钢梁、吊车梁; 2.1.3 屋面支撑、系杆、柱间支撑、雨棚骨架; 2.1.4 屋面檩条、墙面檩条、屋面及墙面檩条的隅撑、拉杆; 2.1.5计算过程中,注意计算吊车梁与柱的连接件、垫板,屋面及墙面檩托板,隅撑与钢柱、梁的连接板,斜拉杆的钢套管等的工程量,注意统计高强螺栓的数量。 2.2 图纸列有材料表的,可根据材料表所列零件编号依次核对表中零件尺寸、规格、数量是否准确,是否有少算、漏算、错算之处。 2.3 注意是否有设计变更和修改、补充说明、答疑等。 四、计算过程中应注意的事项 1. 关于工程量计算的格式 1.1 钢结构的重量单位为kg,面积的单位为m2,长度单位为m,计算结果均保留一位小数。 1.2 计算构件重量时,可对构件的零件进行从下到上、从左到右编号,并按此顺序进行计算。 1.3 计算式的格式: 1.3.1板材:规格×长度×宽度×数量 如-6×500×300×5,表示该零件板厚δ=6mm,板长度为

钢结构整体稳定性

在钢结构的可能破坏形式中,属于失稳破坏的形式包括:结构和构件的整体失稳;结构和构件的局部失稳。钢结构和构件的整体稳定,因结构形式的不同、截面形式的不同和受力状态的不同,可以有各种形式。轴心受压构件是工程结构中的基本构件之一。其形式分为实腹式轴心受压构件和格式轴心受压构件。在工程结构中,整体稳定通常控制着轴心受压构件的承载力,因为构件丧失整体稳定性常常是突发性的,易造成严重后果,所以应加以特别重视。对于钢构件轴心压杆承载力的极限状态是丧失稳定。轴心压杆整体失稳可能是弯曲屈曲、扭转屈曲、也可能是弯扭屈曲。 1、轴心压杆整体失稳形式 一根完全弹性的材料和无缺陷的轴心压杆,达到承载力的极限状态时,究竟呈弯曲屈曲、扭转屈曲、还是弯扭屈曲,要看它的材料和截面抗弯刚度EI、杆约束扭转刚度、杆自由扭转刚度GJ以及长度L的大小。 1.1弯曲失稳 对于截面没有削弱的双轴对称工字形等截面轴心受压构件,在承受较小压力Ⅳ时,构件可保持顺直。若遇到干扰力使其产生微小变形,在干扰力去掉后,构件将恢复其直线状态。当Ⅳ增加到一定大小后,该平衡状态则会转为不稳定平衡,亦即此时若有干扰力使其发生微变,则干扰力去掉后,构件任保持微弯状态。这时如果压力Ⅳ再稍加,则弯曲变形就会迅速增大而使构件丧失承载能力。这种现象称为构件的弯曲失稳或弯曲屈曲。 1.2扭转失稳 某些抗扭刚度较弱的十字截面和z形截面等轴心受压构件,当Ⅳ达到某一临界值时,构件将发生微扭变形。同样,若N再稍微增加,则扭转变形迅速增大而使构件丧失承载能力。这种现象称为扭转屈曲或扭转失稳。 1.3弯扭失稳 当构件的截面为单轴对称时,可能会发生绕非对称轴弯曲屈曲,也可能会发生绕对称轴弯曲变形并同时伴随有扭转变形的屈曲,这称为弯曲扭转屈曲或弯曲扭转失稳,简称弯扭屈曲或弯扭失稳。 2、考虑各种缺陷时的临界应力 实际工程中钢轴心压杆是弹塑性材料,但理想的轴心压杆并不存在,钢构件

钢结构习题答案

第3章 连接 1、试计算题1图所示角焊缝连接的焊脚尺寸。已知:连接承受静力荷载设计值300P kN =, 240N kN =,钢材为Q235BF ,焊条为E43型,2 160w f f N mm =,设计算焊缝长度为实际焊缝 长度减去10m m 。 2、计算如2题图所示角焊缝连接能承受的最大静力设计荷载P 。已知:钢材为Q235BF ,焊条为E43型,2 /160mm N f w f =,考虑到起灭弧缺陷,每条角焊缝计算长度取为mm 290。 2 解:120 P 5 3M ,P 5 3V ,P 54N ?= == p 33.0290 67.0210 p 54 A N 3 e N =????= = σ p 25.0290 67.0210 p 53A N 3 e N =????= = τ p 61.0290 67.06 1210 120p 53 W M 2 3 f M =???? ??== σ 题2图 题1图 1

2 w f 2 22 V 2M N mm /N 160f ) P 25.0()22 .1P 61.0P 33.0( ) ()22 .1( =≤++=τ+σ +σ kN 5.197P ≤ 3、图示角焊缝连接,承受外力kN N 500=的静载,mm h f 8=,2 160mm N f w f =,没有 采用引弧板,验算该连接的承载力。 3 解:400, 300x y N kN N kN == 2 3 65.90) 82410(87.0210 400mm N l h N w e x f =?-????= = ∑σ 2 3 98.67)82410(87.0210 300mm N l h N w e y f =?-????= = ∑ τ w f f f f f mm N ≤=+=+2 2 222 7.10098 .67)22 .165.90()( τβ σ 4、计算图示角焊缝连接中的f h 。已知承受动荷载,钢材为Q235-BF ,焊条为E43型,2 160mm N f w f =,偏离焊缝形心的两个力kN F 1801=,kN F 2402=,图中尺寸单位:mm ,有 引弧板。 4解:将外力1F ,2F 移向焊缝形心O ,得: 题3图

钢结构的稳定性

钢结构的稳定可分为结构整体的稳定和构件本身的稳定两种情况。 结构整体的稳定,在结构的纵向,主要依靠结构的支撑系统来保证,如钢柱的柱间支撑,钢屋架的上、下弦水平支撑和垂直支撑等。计算时主要考虑支撑系统能可靠地传递结构纵向的水平荷载(风荷载、地震荷载、厂房吊车荷载等)。在结构的横向,主要依靠结构自身(框架或排架)的刚度来保证,计算时主要要考虑结构自身能可靠地传递结构横向的水平荷载。 构件本身的稳定主要由构件组成部份的自身刚度来保证。计算时要保证构件本身及其组成部份(杆件或板件)在荷载作用下不发生屈曲而丧失稳定(这种情况主要发生在受压或压弯构件上)。在实际计算中,一般是用稳定系数来限制钢材的设计强度。使构件中的最大应力不大于钢材的设计强度乘以稳定系数后的值。这样的公式在钢结构的受压和受弯的计算公式中均可见到。 稳定系数是个主要与构件的长细比(杆件)或高厚比(板件)有关的系数,控制了长细

比和高厚比也就等于控制了构件的稳定。 所以说,构件本身的稳定因素主要是构件的计算长度和截面特性,包括平面内和平面外的两个方向。当然,还应该包括材料的强度和应力的大小。 对钢管的强度和稳定性(整体稳定性)都有影响,当钢管受拉时,其破坏是强度破坏,它能承受的轴向拉力设计值为:N=A*f,其中:A是钢管的截面面积,f是钢材的强度设计值,由于钢管壁厚的减小,必然导致钢管截面面积的减小,从而导致钢管承受的轴向拉力值的减小。当钢管受压时,其破坏是稳定性破坏,它能承受的压力设计值为:N=φ*f*A,其中:φ是钢管的整体稳定系数,可以根据它的长细比由钢结构设计规范的附表查到,长细比的计算公式是:λ=l/i,l 是它的计算长度,i是截面的回转半径,由于钢管壁厚的减小,必然导致i的减小,因为i=sqrt(I/A),这里的I是钢管的截面惯性矩,A为截面面积,所以由于壁厚的减小,导致了长细比的增大,从而导致了稳定系数φ的减小,最终导致了稳定承载力设计值的

第二课 钢结构稳定及简支梁计算

第二课钢结构稳定及简支梁设计 门刚整体失稳 檩条失稳

屋面梁失稳 脚手架失稳

1、钢结构的稳定问题 与强度问题有何区别? 强度问题针对结构或构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度。本质上是应力问题。稳定问题主要是找出外荷载与构件或结构内部抵抗力间的不稳定平衡状态。属于结构或构件的整体刚度问题。 总结:强度针对构件截面而言,稳定针对整个杆件或整个结构。 钢结构稳定问题有哪些特点? A:失稳形式多样性。凡是结构的受压部位,在设计时必须认真考虑其稳定性。比如轴心受压杆件一般存在三种失稳形式,对各种截面的失稳特性了然于心才能合理用材。 B:结构整体性,构件之间往往存在唇亡齿寒关系。因此不能单独地考究某根杆件,而应综合考察其他杆件对它的约束作用。这种约束作用要从结构的整体分析来分析,这就是稳定问题的整体性。例如:

C:相关性。 各种失稳模式的耦合、局部与整体稳定相关。 钢结构稳定计算需要注意的事项? A:从结构整体着眼,注意一些稳定近似处理方法的适用范围 B:叠加原理不再适用。 叠加原理适用条件 a:材料服从胡克定律,应力与应变成正比。 b:结构变形很小,可以用一阶分析计算。 外延:目前主流软件弹性阶段怎么计算? 结构设计工作中怎么把控? 设计时应考虑三个维度:结构整体、构件稳定、板件局部稳定。 结构整体之稳定性 目前中国规范处理方法 一些大跨度空间结构需要通过几何非线性甚至双非线性计算来保证,几何非线性可采用midas gen和sap2000等实现,双非线性推荐采用ANSYS。

构件稳定性 可通过规范相关条文计算实现,重要构件建议采用有限元进行稳定性分析。 局部稳定 通过构造保证。 结构稳定设计中需要注意哪些事宜? A:实用计算方法所依据的简图和适用性。 如:框架柱稳定计算所采用的计算长度系数是针对横梁不承受轴力的情况得出的,若横梁轴力大则需对原数据进行修正。 B:结构稳定性计算和结构布置方案相符合。 例如桁架、塔架等的构件出平面稳定性计算需注意此问题,正确确定平面外计算长度。 C:构造稳定计算和构造设计一致性。 会有不同于强度计算的一些要求。 梁的稳定问题

钢结构计算题(焊接、螺栓连接、稳定性)

Q235 用。由于翼缘处的剪应力很小,假定剪力全部由腹板的竖向焊缝均匀承受,而弯矩由整个T 形焊缝截面承受。分别计算a 点与b 点的弯矩应力、腹板焊缝的剪应力及b 点的折算应力,按照各自应满足的强度条件,可以得到相应情况下焊缝能承受的力F i ,最后,取其最小的F 值即为所求。 1.确定对接焊缝计算截面的几何特性 (1)确定中和轴的位置 ()()()()80 10 102401020160)10115(1010240510201601≈?-+?-+??-+??-= y mm 160802402=-=y mm (2)焊缝计算截面的几何特性 ()6232 31068.22)160115(230101014012 151602301014023010121mm I x ?=-??+??++-??+??= 腹板焊缝计算截面的面积: 230010230=?=w A mm 2 2.确定焊缝所能承受的最大荷载设计值F 。 将力F 向焊缝截面形心简化得: F Fe M 160==(KN·mm) F V =(KN )

查表得:215=w c f N/mm 2,185=w t f N/mm 2,125=w v f N/mm 2 点a 的拉应力M a σ,且要求M a σ≤w t f 18552.010 226880101604 31===???==w t x M a f F F I My σ N/mm 2 解得:278≈F KN 点b 的压应力M b σ,且要求M b σ≤w c f 215129.110 2268160101604 32===???==w c x M b f F F I My σ N/mm 2 解得:5.190≈F KN 由F V =产生的剪应力V τ,且要求V τ≤w V f 125435.010 23102 3===??=w V V f F F τ N/mm 2 解得:7.290≈F KN 点b 的折算应力,且要求起步大于1.1w t f () ()()w t V M b f F F 1.1435.03129.132 22 2=?+= +τσ 解得:168≈F KN

如何计算钢结构的工程量

教你学钢结构算量 钢结构是未来发展的方向,土建算量的不会钢结构算量的大有人在,但日后如果再不会,就要谈谈自己的工资是涨不上去了。钢结构一直以来是与土建分开的,后来的劲钢结构及钢组合结构在施工的过程中,都是先有钢结构公司安装再有总包施工砼,如此以来接合也会慢慢的相近,有时候基本上融合在一起,我只能说我会做钢结构的算量,报价谈不上,因为我的经验不足。 1。算量最基本的就是看图纸,土建的人都烦钢构图纸的太乱,其实我也有这种看法,因为平法并没有用在其上面,图样还保留了一前土建制图的原则,所以做为老人看比较习惯(101图集出之前的人),后来像我这样人看钢结构图纸真的看不习惯,不过没有办法,还是要习惯的,我们知道麻烦,但任何事情都有规律的,钢结构的详图结点相当的多,但这些变化真的在算的时候影响相当的小,重要是大的方向把握好,钢结构的结点图也是相当科学的,都和科学受力相对应。有许多是重复或对称等。认真的看都会看出来。对于图纸的特点,我会在下面讲 2。算重量,因为钢结构的算量基本上全是按吨计(板按M2)。钢材+钢材就是钢结构。而钢材多指型钢,对于型钢的分类算量的方法,我也会一一列出。并做出讲解。 3。统计汇总,哈哈,此类应该是不难的,以清单为基本,分类汇总而以了。 识图问路 1。我对钢结构的认识,应该比大家深一些,因为我毕业的时候就进了一家钢结构公司,工作不到两个月,经常的工作就是画一个图纸的钢构件,把这个钢构件看明白了,画出来,他们叫钢结构深化设计(细化方案)做加工所用,说白了,一张钢板怎么加工这样的东东的。我讲的图识别,其它就是0 3G102上面的东东,大家有机会可以去下载看一下。闲言碎语不多讲,说说吧,钢结构图应该怎么看不头痛。 把握好看图不难的原则,其实很简单,比建筑的施工简单多了,因为他每个部分都有详图,哪里不明白了,就看此图有没有什么详图符号,有就找,其实我看明白的地方不是详图的地方,拿出来与原图一对就明白了,是什么柱,是什么梁就明白了许多。 一. 钢结构 1 钢结构设计制图分为钢结构设计图和钢结构施工详图两阶段。 2 钢结构设计图应由具有设计资质的设计单位完成,设计图的内容和深度应满足编制钢结构施工详图的要求;钢结构施工详图(即加工制作图)一般应由具有钢结构专项设计资质的加工制作单位完成,也可由具有该项资质的其他单位完成。 注:若设计合同未指明要求设计钢结构施工详图,则钢结构设计内容仅为钢结构设计图。 3 钢结构设计图 1)设计说明:设计依据、荷载资料、项目类别、工程概况、所用钢材牌号和质量等级(必要时提出物理、力学性能和化学成份要求)及连接件的型号、规格、焊缝质量等级、防腐及防火措施; 2)基础平面及详图应表达钢柱与下部混凝土构件的连结构造详图; 3)结构平面(包括各层楼面、屋面)布置图应注明定位关系、标高、构件(可布置单线绘制)的位置及编号、节点详图索引号等;必要时应绘制檩条、墙梁布置图和关键剖面图;空间网架应绘制上、下弦杆和关键剖面图;

谈钢结构设计中整体稳定和局部稳定

谈钢结构设计中整体稳定和局部稳定 发表时间:2019-08-06T15:57:02.530Z 来源:《基层建设》2019年第11期作者:余晓红 [导读] 摘要:建筑行业在发展过程中,规模比较大,所使用的钢结构应用比较广泛,钢结构构件的稳定性直接影响整个建筑结构的安全,所以在建筑设计过程中需要稳定钢结构,实现整体建筑符合施工标准,但是钢结构在使用过程中自身存在不稳定性,容易出现安全事故,所以本文主要研究钢结构在使用过程中,使用一定方式提升整体以及局部的稳定性,提升建筑质量。 哈密建筑勘察设计院有限责任公司新疆哈密 839000 摘要:建筑行业在发展过程中,规模比较大,所使用的钢结构应用比较广泛,钢结构构件的稳定性直接影响整个建筑结构的安全,所以在建筑设计过程中需要稳定钢结构,实现整体建筑符合施工标准,但是钢结构在使用过程中自身存在不稳定性,容易出现安全事故,所以本文主要研究钢结构在使用过程中,使用一定方式提升整体以及局部的稳定性,提升建筑质量。 关键词:钢结构;整体稳定;局部稳定 引言: 建筑工程在施工中需要使用钢结构完成建筑,城市的发展,高层建筑物的兴起,都需要使用稳定的钢结构,保证建设安全,但是因为钢结构自身缺陷,会出现各种安全问题,影响人们的居住环境。工作人员需要使用恰当的技术对钢结构进行处理,提升稳定性,根据实际情况使用合适的加固方法完成建设。 1 钢结构稳定性概述 在建设中强度主要是指构件在平稳状态中出现的应力,是否在材料的强度设计值限制范围中,所以强度可以称之为应力作用,强度的大小与材料有关[1]。针对于稳定性,所呈现的特点与强度不一样,主要是外部荷载与内部结构出现碰撞,出现不稳定现象,产生变形等情况,所以稳定性可以称之为变形作用,比如建筑结构中使用的轴压柱,在不平衡的状态下将会影响轴压柱出现弯曲,破坏建筑的整体结构。 图1钢结构 首先钢结构构件强度计算,同时需要计算构件的整体稳定性和局部稳定性进行分析,构件的稳定性会不会影响整体的结构,需要从建筑的整体研究,同时在计算分析的时候,需要注意钢结构的其他特点,当所计算楼层各柱轴心压力设计值之和乘以按一阶弹性分析求得的所计算楼层的层间侧移的积与产生层间的所计算及以上各层的水平力之和乘以所计算楼层的高度的积的比值大于0.1时,应进行二阶弹性分析,此种分析过程中的作用性比较明显,最关键的是结构的柔性产生的大变形量,对结构内力的影响不能忽视,同时注意使用迭加原理,能够对结构的弹性进行计算。在此过程中需要对失稳以及整体的刚性进行分析,使用轴心压杆的稳定计算法计算临界压力,在计算的过程中将相关概念理解,能够快速解决失稳现象,新型钢结构在市场中不断应用,所起的效果更加明显,提升结构的稳定性。 2 钢结构稳定设计 2.1 对钢结构的整体进行设计 钢结构稳定性直接影响整个建筑结构的安全质量,所以在设计过程中需要将结构中包含的所有组成部分考虑在内,实现整体体系的稳定性,达到规范要求,目前我国很多钢结构在设计的时候主要使用平面体系,比如在设计门式钢架结构的时候使用此种体系[2]。为了防止失稳现象的出现,需要将整体结构考虑在内,设计支撑构件,有针对性的完成设计,保证平面结构中所使用的构件结构布置在计算过程中实现一致。针对于塔架的设计,需要使用平面桁架,同时设置横隔装置与杆件,注意两者之间的稳定性,保证塔架满足规范要求。 2.2 实用计算 在设计中所使用的计算简图应该与结构中所受力状态一致,能够保证结构在稳定计算和强度计算过程中的准确性,如在设计单层或者多层及框架结构的时候,需要计算框架柱的稳定性,此种计算过程中需要从需要计算柱长度系数,分析框架整体稳定性。但是因为不同建筑的设计要求不一样,在计算过程中需要考虑的因素不一样,简化涉及对象,设置必要的典型条件,同时根据相关规范规定计算长度限值,设计者需要判定钢结构的构件,是否符合现行规范规定的条件范围及相关的构造要求,计算使用的方法都应该与对象以及设定前提相一致。 2.3 构件的稳定计算与相关构造 在设计钢结构的时候需要保证构造设计以及计算结果与规范和图集相一致,对于部分连接节点,应该根据实际情况判定实际的受力状态,再通过简化计算和相关的构造来满足,保证结构的正常承载力和正常使用的要求,刚度以及柔度适合结构 [3]。设计人员需要注意,在设计桁架节点的时候,需要减少杆架的偏心,处理好构建的局部问题,保证稳定性,针对于局部钢结构的稳定性,需要根据具体的情况完成判定,局部构件的要求不同,所使用的稳定结构也不同,设计人员应该着重注意,结构的计算和构造都得满足现行规范,图集的相关要求。 3 钢结构稳定分析方法 3.1 应力能量法 钢结构在建设过程中承受着整个建筑结构带来的作用力,很容易出现变形现象,钢结构的应力以及外力两种作用力共同出现,使用能

相关文档
最新文档