超低频可调正弦信号发生器

超低频可调正弦信号发生器
超低频可调正弦信号发生器

辽宁工业大学电子技术基础课程设计(论文)

题目:超低频可调正弦信号发生器

院(系):电气工程学院

专业班级:电气095

学号: 090303138

学生姓名:朱建中

指导教师:

教师职称:

起止时间:

课程设计(论文)任务及评语

目录

第1章超低频可调正弦信号发生器设计方案论证 (1)

1.1函数信号发生器的发展 (1)

1.2超低频可调正弦信号发生器的应用意义 (1)

1.3超低频可调正弦信号发生器的设计要求与技术指标 (1)

1.4总体设计方案框图及分析 (1)

第2章超低频可调正弦信号发生器各单元电路设计 (3)

2.1正弦波放大器工作原理 (3)

2.2衰减器的作用 (3)

2.3.1正弦波最大输出电压检验 (3)

第3章频率特性与失真检验 (5)

3.1正弦波的频率特性检验 (2)

3.2正弦波非线性失真检验 (5)

3.3整机电路性能分析 (5)

第4章设计总结 (5)

参考文献 (6)

附录 (7)

第一章超低频可调正弦信号发生器设计方案论证

1.1函数信号发生器的发展

现代电子计算机和信号处理器等技术的发展,极大的促进了数字化技术在电子测量中的应用,函数发生器蓬勃发展起来。它的工作方式有两种:地址计数器方式和直接数字合成方式。

普通的函数发生器能够提供正弦波、余弦波、方波、等几种常用的的标准波形,产生其他波形时,需要较复杂的电路和机电结合的方法。80年代的信号发生器采用的是模拟电子技术,由分立组件成模拟集成电路构成,其电路结构复杂且仅能产生正弦波、方波等等几种简单波形,输出的波形具有良好的相位噪声、较低的寄生分量以及较快的开关速度等,但是模拟电路的漂移较大,使输出波形的幅度稳定性差而且模拟器件构成的电路存在着尺寸大,价格贵、功耗大的缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。同时,主要表现为两个突出问题,一是通过电位器来实现输出频率的调节,因而很难将频率调到一定值,二是脉冲的占空比难以定量。

1.2超低频可调正弦信号发生器的应用意义

超低频正弦波信号发生器在生物医学、地球物理和控制仪表系统中有广泛的应用。而且在电子技术模拟电路实验及所需低频信号源的场合,都要用到正弦信号发生器。对于单个运放,改变一个电阻的阻值就能调频的正弦波振荡器人们已经做了大量的研究并提出了多种振荡电路。而在传统振荡电路中,为得到稳定的震荡输出,其环路增益的调控是依靠器件的非线性来实现的,因此这类器件很难产生谐波失真很小的纯正弦波。一次我设计出了一种用运算放大器组成的调频效果比较理想的单电阻调频的超低频正弦信号发生器。这种信号发生器基本上是以运算放大器为核心,由双桥式振荡器组成。从而可产生震荡很小的正弦波,同时它还具有频率可调,集成电路运用元件少的特点。

1.3超低频可调正弦信号发生器的设计要求与技术指标

1.3.1 技术指标

1设计并制作一台超低频可调正弦信号发生器。

2线性失真度不大于0.5%

3最低频率1HZ。

1.3.2设计要求

用所学的知识和相关资料设计出一种具有超低频率而且能够调节的正弦信号发生器。

1.4总体设计方案框图及分析

此低频信号发生器采用晶体管开关电路,使电容器自动地充电和放电而产生低频振荡。图47-2为仪器的方框图。仪器主要由三角波正弦波转换电路、正弦波放大器、衰减器及直流稳压电源等部分组成。图47-3为仪器的电原理图。

图47-2

网络截图

第二章超低频可调正弦信号发生器各单元电路设计

2.1正弦波放大器工作原理

正弦波放大器共三级,第一级为电压放大,第二级为功放激励级,最后一级为互补推挽电路(又称OCL电路)的功率放大级。电压放大级采用BG16、BG17管组成的对称输入单端输出差动放大电压,BG18为恒流源。BG16基极输入放大信号,BG17基极输入功放级输出端送来的负反馈信号。这样使整个放大器工作稳定。BG19管组成激励级。互补推挽功放级由不同PN结组合的两只晶体三极管组成,BG20是NPN型三极管,BG21是PNP型

三极管。当输入信号正半周时,BG21管截止,BG20管导通,当输入信号负半周时,BG20管截止,BG21管导通,于是信号的正负半周都得到放大,在负载W3上形成完整的波形,为了对信号正负半周放大一致,BG20、BG21管电流放大系数应选择相同。为了消除小信号时的交越失真,必须给BG20、BG21加适当偏压,二极管D2、D3就起这个作用.电

阻R37、R38起电流负反馈作用。

2.2衰减器的作用

衰减器分0、20、40分贝三档,采用电阻分压的办法,由电阻R40~R44组成。第一档不经衰减,第二档衰减20分贝,输出电压减小到1/10,第三档衰减40分贝,输出电压减小到1/100。在各个衰减档内,输出电压还可用电位器W3连续调节,以满足测试时对正弦波不同幅度的要求。

2.2.1正弦波输出衰减器检验

被检仪器频率先调到第一频段20赫,正弦波输出端接上300欧电阻,再接到DA-16型超高频电压表输入端,正弦波幅度电位器顺时针转到底,测出正弦波衰减开关在“0db”档时输出电压,再将衰减开关放到“20db”“40db”档,输出电压应分别减小到1/10、1/100,误差<±16%为合格。用同样办法测试1千赫、200干赫、550千赫等频率。

2.3正弦波输出

表47-3

仪器输出的正弦波,可作为测试基准信号。使用时将频率粗调开关放到需要的频段,调频率细调旋钮,使“HZ”表上指针指到需要的频率刻度。频率细调电位器为多圈线绕电位器,可连续转十圈。将标有“∞”的接线柱用导线接到测试线路。标有“┸”的接线

柱用导线接到测试线路接地点,两根接线应尽量短一些。慢慢地顺时针转动正弦波幅度旋钮,正弦波信号就能正常输出。如输出信号电压不够,可以将正弦波衰减开关档级减小。表47-3给出衰减开关在不同档级时,正弦波输出电压值。需要改变输出正弦波频率时,可转动频率细调钮及频率粗调开关,HZ表上指针所指的刻度值,乘上频率粗开关所指的。

倍数,即为输出信号的频率。

2.3.1正弦波最大输出电压检验

被检仪器正弦波衰减开关扳到“0db”档,正弦波幅度电位器顺时针方向转到底,正弦波输出端接上300欧电阻,再接到DA-16型超高频电压表测试输入端,记录五个频段20赫-550千赫范围内输出电压,均应大于3.8伏为合格。

第三章频率特性与失真检验

3.1正弦波的频率特性检验

被检仪器频率调到第三频段的1千赫,正弦波输出端接上300欧电阻,再接到DA-16型超高频电压表输入端。将正弦波输出幅度调到超高频电压表指示为3.5伏,以此为基准,检查五个频段20赫-550千赫范围内输出幅度应在3.5伏±0.56内为合格。

3.2正弦波非线性失真检验

被检仪器正弦波衰减开关扳到“0db”档,正弦波幅度电位器顺时针转到底,正弦波输出端接上300欧电阻,再接到J2458型教学示波器Y输入端,Y轴衰减放到“100”档,观察每一个频段最高与最低频率正弦波输出波形,应无明显失真为合格。

3.3整机电路性能分析

用此型教学示波器检查正弦波输出失真较严重,则故障主要发生在三角波正弦波转换电路。可先调电位器W6及W7看能否改善失真。调W6可使输入的三角波幅度达到最佳限幅状态,调W7可使波形正负限幅相等。如调W6、W7仍不能改善,则应检查BG12、BG13管是否对称,各工作点电压是否正常,元件是否有损坏。有时正弦波放大器工作不正常,也会产生失真,可按要求电压值检查各晶体管工作状态是否正常,以

确定故障产生的部位,然后进行修理。

第4章设计总结

此超低频可调正弦信号发生器。线性失真度不大于0.5%。最低频率1HZ。适用于教学、农业、工业、生物医学、教学、广播电视系统、航天科学等领域,用此种函数发生器来测试发出的低频正弦波形。

参考文献

[1]《中学物理实验仪器的使用》第三版.哈尔滨:黑龙江人民出版社,

1988: 38-134

[2] 米契尔·卡特,罗德尼·马多克.合理预期理论.余永定译.北京:

中国金融出版社,1988:43-85

[3] 张文中.论石油价格与石油工业发展.世界石油经济,1990

(2):14-21

[4] 《中学物理实验仪器的维修》第四版,关于

的维修专题>

[5] 黄君.大庆地区经济发展战略研究.哈尔滨工业大学硕士学位论文.1994。2

附录:器件清单

电源.各类电阻、电容、开关以及若干导线

低频函数信号发生器的设计

低频信号发生器的方案 概述:采用A T89C51单片机和DAC0832芯片,直接连接键盘和显示。该种方案主要对A T89C51单片机的各个I/O口充分利用. P1口是连接键盘以及接显示电路,P2口连接DAC0832输出波形.这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本.也对按照系统便携式低频信号发生器的要求所完成.占用空间小,使用芯片少,低功耗。 模块结构划分 本次设计所研究的就是对所需要的某种波形输出对应的数字信号,在通过D/A转换器和单片机部分的转换输出一组连续变化的0~5V的电压脉冲值。在设计时分块来做,按波形设定、D/A转换、51单片机连接、键盘控制四个模块的设计。最后通过联调仿真,完成相应功能。 具体设计模块如图 模块介绍: 1.波形设定:对任意波形的手动设定 2.D/A转换:主要选用DAC0832来把数字信号转换为模拟信号,

在送入单片机进行处理。 3.单片机部分:最小系统 4.键盘:用按键来控制输出波形的种类和数值的输入 硬件电路的设计 基本原理 低频信号发生器系统主要由CPU 、D/A 转换电路、电流 / 电压转换电路、按键和显示电路、电源等电路组成。其工作原理为当按下第一个按键就会分别出现方波、三角波、正弦波。 D/A 转换电路的设计 DAC0832是CMOS 工艺制造的8位D/A 转换器,属于8位电流输出型D/A 转换器,转换时间为1us ,片内带输入数字锁存器。DAC0832

与单片机接成数据直接写入方式,当单片机把一个数据写入DAC寄存器时,DAC0832的输出模拟电压信号随之对应变化。利用D/A转换器可以产生各种波形,如方波、三角波、正弦波、锯齿波等以及它们组合产生的复合波形和不规则波形。 1.DAC0832主要性能: ◆输入的数字量为8位; ◆采用CMOS工艺,所有引脚的逻辑电平与TTL兼容; ◆数据输入可以采用双缓冲、单缓冲和直通方式; ◆转换时间:1us; ◆精度:1LSB; ◆分辨率:8位; ◆单一电源:5—15V,功耗20mw; ◆参考电压:-10—+10V; DAC0832内部结构资料:芯片内有两级输入寄存器,使DAC0832具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。D/A转换结果采用电流形式输出。要是需要相应的模拟信号,可通过一个高输入阻抗的线性运算放大器实现这个供功能。运放的反馈电阻可通过RFB端引用片内固有电阻,还可以外接。 该片逻辑输入满足TTL电压电平范围,可直接与TTL电路或微机电路相接,下面是芯片电路原理图3-20

低频正弦信号发生器

低频正弦信号发生器 摘要 正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,电路的组成主要包括选频网络,反馈网络,以及放大部分。所以,从结构上看,正弦信号发生器就是一个没有输入信号的带选频网络的正反馈放大电路。分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。很多应用中都要用到范围可调的LC 振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。电路必须提供足够的增益才能使低阻抗的LC 电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。 但是,在一般的情况下,RC选频电路用于输出中频信号,LC选频电路用于输出高频信号,当需要这种模拟信号发生器用于输出低频率信号往往需要的RC值很大(LC 输出高频,更难以满足要求),这样不但参数准确度难以保证,而且体积大和功耗都很大,低频性能难以满足要求。而由数字电路构成的低频信号发生器,多是由一些芯片组成,其低频性能比模拟信号发生器好得多,并且体积较小,输出的信号谐波较少,频率和振幅相对比较稳定。本文借助555定时器和74LS161产生方波经MF10滤波电路产生正弦信号,这种电路运算速度较高,系统集成度强,且实现更加简便。电压的数字显示主要由555定时器构成的放大整形电路,时基电路和控制电路构成,最终由十六进制加法器74LS160,锁存器74LS373,译码器74LS48使数码管显示电压。

正弦波-方波-三角波信号发生器设计要点

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

低频函数信号发生器设计实验报告 精品

实验报告 课程名称:电子系统综合设计指导老师:周箭成绩:实验名称:低频函数信号发生器(预习报告)实验类型:同组学生姓名: 一、课题名称 低频函数信号发生器设计 二、性能指标 (1)同时输出三种波形:方波,三角波,正弦波; (2)频率范围:10Hz~10KHz; (3)频率稳定性:; (4)频率控制方式: ①改变RC时间常数; ②改变控制电压V 1实现压控频率,常用于自控方式,即F=f(V 1 ),(V 1 =1~10V); ③分为10Hz~100Hz,100Hz~1KHz,1KHz~10KHz三段控制。 (5)波形精度:方波上升下降沿均小于2μs,三角波线性度δ/V om <1%,正弦波失真度

; (6)输出方式: a)做电压源输出时 输出电压幅度连续可调,最大输出电压不小于20V 负载R L =100Ω~1KΩ时,输出电压相对变化率ΔV O /V O <1% b)做电流源输出时 输出电流幅度连续可调,最大输出电流不小于200mA 负载R L =0Ω~90Ω时,输出电流相对变化率ΔI O /I O <1% c)做功率源输出时 最大输出功率大于1W(R L =50Ω,V O >7V有效值) 具有输出过载保护功能 三、方案设计 根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。 数字电路的实现方案 一般可事先在存储器里存储好函数信号波形,再用D/A转换器进行逐点恢复。这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。其信号频率的高低,是通过改变D/A转换器输入数字量的速率来实现的。 数字电路的实现方案在信号频率较低时,具有较好的波形质量。随着信号频率的提高,需要提高数字量输入的速率,或减少波形点数。波形点数的减少,将直接影响函数信号波形的质量,而数字量输入速率的提高也是有限的。因此,该方案比较适合低频信号,而较难产生高频(如>1MHz)

低频信号发生器设计开题报告

1 研究的目的及其意义 随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。 便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。平时常用信号源产生正弦波,方波,三角波等常见波形作为待测系统的输入,测试系统的性能。单在某些场合,我们需要特殊波形对系统进行测试,这是传统的模拟信号发生器和数字信号发生器很难胜任的。利用单片机,设计合适的人机交互界面,使用户能够通过手动的设定,设置所需波形。该设计课题的研究和制作全面说明对低频信号发生系统要有一个全面的了解、对低频信号的发生原理要理解掌握,以及低频信号发生器工作流程:波形的设定,D/A 转换,显示和各模块的连接通信等各个部分要熟练联接调试,能够正确的了解常规芯片的使用方法、掌握简单信号发生器应用系统软硬件的设计方法,进一步锻炼了我们在信号处理方面的实际工作能力。 2 国内外研究现状 在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信

正弦信号发生器的设计

XXXX大学现代科技学院DSP硬件电路设计基础课程设计 设计名称正弦信号发生器的设计 专业班级 学号 姓名DENG 指导教师XXXX

课程设计任务书 注: 上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 日期:2014-12-10

专业班级 XXXXXXX 学号 姓名 DENG 成绩 设计题目 正弦波信号发生器 设计目的 学会使用CCS(Code Composer Studio)集成开发环境软件,在此集成开发环境下完成工程项目创建,程序编写,编译,链接,调试以及数据的分析。同时完成一个正弦波信号发生器的程序的编写,并在集成开发环境下进行模拟运行,观察结果。 设计内容 编写一个产生正弦波信号的程序,在CCS 软件下进行模拟运行,观察输出结果。 设计原理 正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。本次课程设计只要使用泰勒级数展开法来实现正弦波信号。 1. 产生正弦波的算法 在高等数学中,正弦函数和余弦函数可以展开成泰勒级数,其表达式为 若要计算一个角度x 的正弦和余弦值,可取泰勒级数的前5项进行近似计算。 ……………………………………装………………………………………订…………………………………………线………………………………………

由上述两个式子可以推导出递推公式,即 sin(nx)=2cos(x)sin[(n-1)x]-sin[(n-2)x] cos(nx)=2cos(x)sin[(n-1)x]-cos[(n-2)x] 由递推公式可以看出,在计算正弦和余弦值时,不仅需要已知cos(x),而且还需要sin[(n-1)x]、sin[(n-2)x]和cos[(n-2)x]。 2. 正弦波的实现 ⑴计算一个角度的正弦值 利用泰勒级数的展开式,可计算一个角度x的正弦值,并采用子程序的调用方式。在调用前先在数据存储器d_xs单元中存放x的弧度值,计算结果存放在d_sinx单元中。 ⑵计算一个角度的余弦值 利用余弦函数展开的泰勒级数的前五项计算一个角度的余弦值,可采用子程序的调用方式来实现。调用前先将x弧度值放在数据存储器d_xc单元中,计算结果存放在d_cosx单元中。 ⑶正弦波的实现 利用计算一个角度的正弦值和余弦值程序可实现正弦波。其实现步骤如下:第一步:利用sin_start和cos_start 子程序,计算 45°~0°(间隔为 0.5°)的正弦和余弦值; 第二步:利用sin(2x)=2sin(x)cos(x)公式,计算 90°~0°的正弦值(间隔为1°);第三步:通过复制,获得359°~0°的正弦值; 第四步:将359°~0°的正弦值重复从PA口输出,便可得到正弦波。 在实际应用中,正弦波是通过D/A口输出的。选择每个正弦周期中的样点数、改变每个样点之间的延迟,就能够产生不同频率的波形,也可以利用软件改变波形的幅度以及起始相位。 总体方案设计 1. 总体实现方案 我们知道一个角度为x的正弦和余弦函数,都可以展开为泰勒级数,且其前五项可以看为:

正弦信号发生器2

正弦信号发生器[2005年电子大赛一等奖] 文章来源:凌阳科技教育推广中心 作者:华中科技大学(华中科技大学曹震陈国英孟芳宇)发布时间:2006-4-21 17:33:13 本系统基于直接数字频率合成技术;以凌阳SPCE061A单片机为控制核心;采用宽带运放AD811和AGC技术使得50Ω负载上峰值达到6V±1V;由模拟乘法器AD835产生调幅信号;由数控电位器程控调制度;通过单片机改变频率字实现调频信号,最大频偏可控;通过模拟开关产生ASK、PSK信号。系统的频率范围在100Hz~12MHz,稳定度优于10-5,最小步进为10Hz。 一、方案论证 根据题目要求和本系统的设计思想,系统主要包括图1.1所示的模块。 图1.1 系统模块框图

1、单片机选型 方案一:采用现在比较通用的51系列单片机。51系列单片机的发展已经有比较长的时间,应用比较广泛,各种技术都比较成熟,但此系列单片机是8位机,处理速度不是很快,资源不够充足,而且其最小系统的外围电路都要自己设计和制作,使用起来不是很方便,故不采用。 方案二:选用凌阳公司的SPCE061A单片机。SPCE061A单片机是16位的处理器,主频可以达到49MHz,速度很快,再加上其方便的ADC接口,非常适合对高频信号进行数字调频,如果对音频信号进行A/D采样,经过数字调频并发射,完全可以达到调频广播的效果。 结合题目的要求及SPCE061A单片机的特点,本系统选用凌阳公司的此款单片机。 2、频率合成模块 方案一:锁相环频率合成。如图1.2,锁相环主要由压控LC振荡器,环路滤波器,鉴相器,可编程分频器,晶振构成。且频率稳定度与晶振的稳定度相同,达10-5,集成度高,稳定性好;但是锁相环锁定频率较慢,且有稳态相位误差,故不采用。 图1.2 锁相环的基本原理 方案二: 直接数字频率合成。直接数字频率合成DDFS(Direct Digital Frequency Synthesizer)基于Nyquist定理,将模拟信号采集,量化后存入存储器中,通过寻址查表输出波形数据,再经D/A转

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

低频信号发生器的使用说明

附录一低频信号发生器的使用说明 一.概述 AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。 面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。 中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。电路中还加入输出保护、TTL输出、方波占空比可调电路等。 二.技术特性 1.频率范围:2Hz~2MHz,共分五个频段 第一频段:2Hz~30Hz 第二频段:30Hz~450Hz 第三频段:450Hz~7kHz 第四频段:7kHz~100kHz 第五频段:100kHz~2MHz 2.正弦波输出特性 (1)输出电压幅度(有效值):0.5mV~5V (2)幅频率特性:≤±0.3dB (3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB 3.方波输出特性 ⑴最大输出电压(空截,中心电平为0):14Vp-p ⑵占空比(连续可调):20%~80% ⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns 4.输出电抗:600Ω 5.频率显示准确度:1×10-4±1个字 6.正常工作条件 ⑴环境温度:0~40℃ ⑵相对湿度:<90%(40℃) ⑶大气压:86~106kpa ⑷电源电压:220±22V,50±2.5Hz 7.消耗功率:<10W 三.面板及操作说明 1.整机电源开关(POWER) 按下此键,接通电源,同时面板上指示灯亮。 2.频段选择手动按钮

正弦信号发生器(2012)(DOC)

正弦信号发生器 摘要:本系统以MSP430和DDS为控制核心,由正弦信号发生模块、功率放大模块、频率调制(FM)、幅度调制(AM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生1kHz~10MHz正弦信号;经滤波、放大和功放模块达到正弦信号输出电压幅度 =6V±1V 并具有一定的驱动能力的功能;产生载波信号可设定的AM、FM信号;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK 信号且二进制基带序列码速率固定为10kbps,二进制基带序列信号可自行产生。 关键词:DDS;宽频放大;模拟调频;模拟调幅。 一、方案比较与论证 1.方案论证与选择 (1)正弦信号产生部分 方案一:使用集成函数发生器芯片ICL8038。 ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。它是电压控制频率的集成芯片,失真度很低。可输入不同的外部电压来实现不同的频率输出。为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。 方案二:锁相环频率合成器(PLL) 锁相环频率合成器(PLL)是常用的频率合成方法。锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。通过鉴相器获得输出的信号FO与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi 由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。一般来说PLL的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。 方案三:直接数字频率合成(DDS) DDS是一种纯数字化方法。它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如图1所示:

数控高精度低频正弦信号发生器

高精度数控低频正弦信号发生器 任务书 一、任务 设计一款基于AT89C51单片机和锁相技术的高精度数控低频正弦信号发生器。 二、设计要求 1、基本要求 ⑴采用DDFS(直接数字频率合成)和锁相技术, 实现1Hz~1KHz 变化的正弦信号。 ⑵通过面板键盘控制输出频率,频率最小步进1Hz。 ⑶输出双极性。 ⑷用LED数码管实时显示波形的相关参数。 ⑸写出详细的设计报告,给出全部电路和源程序。 2、发挥部分 ⑴不改变硬件设计,将上限频率扩展到10KHz。 ⑵不改变硬件设计,扩展实现三角波和方波信号。 ⑶可通过PC机上的“虚拟键盘”,实现频率等参数的控制。 ⑷实现对幅度的控制。

高精度数控低频正弦信号发生器 函数信号发生器作为一种常用的信号源,广泛应用于电子电路、自动控制和科学研究等领域[7]。它是一种为电子测量和计量工作提供符合严格技术要求的电信号设备,因此是电子测试系统的重要部件,是决定电子测试系统性能的关键设备。它与示波器、电压表、频率计等仪器一样是最普通、最基本的,也是得到最广泛应用的电子仪器之一。 1总体方案论证与设计 数字式函数信号发生器的实现方案很多,主要有如下几种: 方案一:采用微处理器和数模转换器直接合成的数字式函数信号发生器。这种信号发生器具有价格低,在低频X围内可靠性好,体积小,功耗低,使用方便等特点,它输出的频率是由微处理器向数模转换输出数据的频率和信号在一个周期内的采样点数(N)来决定的,因此受单片机的时钟频率的限制很大,如果单片机的晶振取12MHz,则单片机的工作频率为1MHz,若在一个周期内输出360个数据,则输出信号的频率理论上最高只能达到2777Hz。实际上单片机完成一次数据访问并输出到D/A电路,至少要5个机器周期,因此实际输出信号的频率只有500Hz 左右。即使增大晶振频率,减小一个周期内输出数据个数,在稍高的频率下输出的波形频率误差也是很大的,而且计算烦琐,软件编程麻烦,控制不方便。 方案二:利用单片机与精密函数发生器构成的程控信号发生器。这种信号发生器能够克服常规信号发生器的缺陷,保证在某个信号的频带内正弦波的失真度小于0.5%。它的输出信号频率调整和幅值调整都由单片机完成。但是,由于数模转换器的非线性误差和函数发生器本身的非线性误差,这种信号发生器输出信号的频率与理论值会有一定的偏差。 方案三:利用DSP处理器,根据幅值,频率参数,计算产生高精度的信号所需数据表,经数模转换后输出,形成需要的信号波形。这种信号发生器可实现程控调幅,调频。但这种信号发生器输出频率不能连续可调,计算烦琐,控制也不便。 方案四:基于单片机,锁相环,可编程分频、相位累加、存储器波形存储以及D/A转换器等组成的数字式函数信号发生器。输出的频率的大小由锁相环和可编程计数器来控制,最终由地址发生器对存储器中的波形数据硬件扫描,单片机提供要输出的波形数据给存储器。这种方案电路简洁,不受单片机的时钟频率的限制,输出信号精度高,频率“连续”,稳定性好,可靠性高,功耗低,调频,调幅都很方便,而且可简化软件设计,实现模块化设计的要求。 综合考虑,方案四各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。其系统组成原理框图如图1所示。

低频正弦信号发生器

任务书 一、毕业设计(论文)题目:低频正弦信号发生器 二、毕业设计(论文)工作规定进行的日期:年月日起至年月日止 三、毕业设计(论文)进行地点: 11栋506 四、任务书的内容: 目的: 任务:低频正弦信号发生器 工作日程安排: 设计(论文)要求: 1、基本要求 (1)实现1Hz-1KHz变化的正弦信号。 (2)通过面板键盘控制输出频率,频率最小步进1Hz。 (3)输出双极性。 (4)用LED数码管实时显示波形的相关参数。 2、发挥部分 (1)不改变硬件设计,将上限频率扩展到10KHz。 (2)不改变硬件设计,扩展实现三角波和方波信号。 (3)可通过PC机上的“虚拟键盘”,实现频率等参数的控制。 (4)实现对幅度的控制。

主要参考文献: 1、周雪模拟电子技术(修订版)西安电子科技大学出版 2、杨志中数字电子技术(第二版)高等教育出版社 3、张澄高频电子电路人民邮电出版社 4、张志良单片机原理与控制技术(第二版)机械工业出版社 5、张大明单片微机控制应用技术西安电子科技大学出版社 学生开始执行任务书日期 200 年月日指导教师签名: 年月日学生送交毕业设计(论文)日期: 200 年月日教研室主任签名: 年月日 学生签名: 年月日

目录 1方案论证.................................................. 错误!未定义书签。 1.1信号发生.......................................................................................... 错误!未定义书签。 1.1.1方案一.......................................................................................... 错误!未定义书签。 1.1.2方案二.......................................................................................... 错误!未定义书签。 1.2模拟频率调制.................................................................................. 错误!未定义书签。 1.2.1方案一.......................................................................................... 错误!未定义书签。 1.2.2方案二.......................................................................................... 错误!未定义书签。2系统模块硬件电路分析. (4) 2.1 CPU控制模块 (4) 2.1.1 CPU选择 (4) 2.1.2简单的小系统控制板介绍 (5) 2.2 16*2字符型带背光液晶显示模块 (8) 2.3 驱动电路的模块............................................................................. 错误!未定义书签。 2.3.1行驱动管74HC4953..................................................................... 错误!未定义书签。 2.3.2译码器.......................................................................................... 错误!未定义书签。 2.3.3列驱动.......................................................................................... 错误!未定义书签。 2.3.4总线驱动器.................................................................................. 错误!未定义书签。3本系统LED显示屏信号的了解................................ 错误!未定义书签。 3.1 CLK时钟信号.................................................................................. 错误!未定义书签。 3.2 STB锁存信号.................................................................................. 错误!未定义书签。 3.3 EN使能信号.................................................................................... 错误!未定义书签。 3.4数据信号.......................................................................................... 错误!未定义书签。 3.5 ABCD行信号.................................................................................... 错误!未定义书签。4电路与程序设计............................................ 错误!未定义书签。 4.1硬件电路的设计.............................................................................. 错误!未定义书签。 4.1.1系统总体框图(图7)............................................................... 错误!未定义书签。 4.2程序设计思路框图(图8)........................................................... 错误!未定义书签。5调试过程 (13) 6 设计总结 (14) 附件1 电路图 (15) 附件1.1主控板:AT89S52单片机原理图(图9) (15) 附件1.2主控板:AT89S52单片机PCB图(图10) (15) 附件1.3点阵显示屏原理图................................................................. 错误!未定义书签。 附件1.4 4x4键盘原理图(图12) (15) 附件1.5 4x4键盘PCB图(图13) (17) 附件2 源程序............................................... 错误!未定义书签。 附件2.1主程序.......................................... 错误!未定义书签。 附件2.2点阵显示程序.................................... 错误!未定义书签。 附件2.3按钮扫描程序.................................... 错误!未定义书签。

正弦信号发生器方案设计

正弦信号发生器设计方案 一、方案比较论证 所有方案可按模拟式和数字式分为两大类 模拟式: ①利用电阻、电容、运放等传统器件搭建LC或RC正弦信号发生器。通过改变电路中的 元件的参数值来调节输出频率。这种方式成本低廉,但由于采用大量分立器件,受其工作原理的限制频率稳定度较低(只有10-3量级)。另外实现扩展功能中的各种调制等也比较麻烦,电路复杂,调试困难,精度差。 ②采用专用信号发生芯片MAX038来实现正弦信号波形的输出。是美信公司的低失真单片 信号发生集成电路,内部电路完善,使用该器件能够产生精确的高频三角、锯齿、正弦及方波。使用该芯片设计简单,但扩展功能电路部分实现起来和采用分立器件同样复杂,而且频率精度和稳度均难以达到要求。 ③采用基于锁相环(PLL)技术或者非线性器件频率变换技术的频率合成器。由晶体振荡 器和锁相环组成的系统中,前者保证工作频率稳定度,后者完成输出频率的调整,但是这时输出频率只能是晶体谐振频率的整数倍。故虽然频率稳定能达到要求却很难做到频率输出范围1KHZ—10MHZ和100HZ步进的要求。 数字式: ①采用AD公司专用的DDS芯片AD9851合成FM和AM的载波,采用传统的模拟调制 方式来实现AM调制和FM调制。但该方案需要额外的模拟调制FM和AM的调制电路,且制作和调制电路都比较麻烦,还难免引入一定的干扰,而且此方案中的PSK调制也不容易实现。 ②采用AD公司的AD9856作为调制芯片,是内含DDS的正交调制芯片,可以实现多进 制的数字幅度调制,多进制的数字相位调制和多进制的数字幅度相位联合调制。故AM 调制,PSK调、ASK调制都可以通过它实现但是AD9856不便于调频且控制复杂。 ③利用微处理器和DAC实现DDS信号产生器。微处理器能够实现DDS的电路结构,即 实现相位累加器、波形的数据表、同时实现数字/模拟转换器的控制时序。利用微处理器完成加法运算需要读取的数据进行运算,再把运算结果送到目标单元。由于微处理器工作的顺序性,这时的相位累加频率将比微处理器的时钟频率低得多。同时微处理器还要完成人机交互的相关任务,故这种方案输出频率受到很大限制。 ④利用微处理器和可编程逻辑器件实现DDS信号产生器。微处理器程序执行的顺序性限 制了它的工作速度,可编程逻辑器件的并行运行能力使它适用于高速工作的场合。同时FM、AM、PSK、ASK调制均由FPGA在数字域内完成,大大简化了电路,同时具有良好的精度和可控性。微处理器完成键盘输入,液晶显示等人机交换任务。 综上所述:数字类的第四方案为最优选择。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

基于单片机的低频信号发生器设计

龙源期刊网 https://www.360docs.net/doc/b715044539.html, 基于单片机的低频信号发生器设计 作者:任小青王晓娟田芳 来源:《现代电子技术》2014年第16期 摘要:主要介绍以AT89C51单片机为核心部件的低频信号发生器的设计方法及工作原理。系统采用单片机扩展外部存储器和DAC接口技术,简化了仪器硬件设计。通过波形选择电路读取波形信号经离散化处理之后的波代码,并通过D/ A 转换,还原成所需要的波形。通过改变存储器输出波代码的速度来调节输出信号的频率,改变放大器的放大倍数来调节输出信号的幅值。此外还讨论了波形离散化处理方法及数据采样点数与存储容量的关系,并给出了 系统结构图和软件框图。 关键词:低频信号;数据离散化;幅值;典型信号 中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)16?0014?04 Design on low?frequency signal generator based on SCM REN Xiao?qing1, WANG Xiao?juan1, TAN Fang2 (1. School of Mechanical Engineering, Qinghai University, Xining 810016, China; 2. Modern Education Technology Center, Qinghai University, Xining 810016, China) Abstract: The design approach and working principle of a low?frequency signal generator based on AT89C51 are introduced. The hardware design was simplified by using external memory extended with SCM and DAC interface technology. The wave code after discretization processing of waveform signal is read out though a waveform selection circuit, and reverted to the needed waveform by the D/A converter. The output signal frequency is adjusted by changing the wave code output speed of the memory. The amplitude is adjusted by changing the magnification of the amplifier. The waveform discretization processing method, and the relation between data sampling number and storage capacity are discussed. The system structure chart and software flow chart are given. Keywords: low?frequency signal; data discretization; amplitude; typical signal 0 引言 在工业测量控制系统的开发过程中,常需要采用信号发生器为控制系统提供输入信号来 模拟实际输入,并根据输出的频率响应特性来对系统进行调校。该系统不但能提供多种波形信号,而且信号的频率和幅值的大小也很容易控制。用它来模拟多种工况下的真实输入信号, 以达到降低开发成本、提高项目开发效率的目的。本文介绍了以AT89C51单片机为控制核心

相关文档
最新文档