有限元考试试题

有限元考试试题
有限元考试试题

有限元基础(期末考试题)

《有限元基础》期末测试 一、结构线性静力分析 如图所示的托架,其顶面承受2 lbf in的均匀分布载荷。托架通过有孔的表面 50/ ν=,托架尺固定在墙上,托架是钢制的,弹性模量6 =?,泊松比0.3 E psi 2910 寸如图,单位为英寸。试通过ANSYS求其变形图及von Mises应力分布图。 对题目分析。进行建模,网格划分 托架网格图

施加约束后,就可以对实体进行加载求解, 托架变形图 托架变形图输出的是原型托架和施加载荷后托架变形图的对比,

虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。 节点位移图

托架von Mises 应力分布图

上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。 二、动力分析 如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。梁板材料相关参数为弹性模量112210/E N m =?,泊松比0.3ν=,密度 337.810/kg m ρ=?。板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。梁长1000h mm =,截面面积为42210A m -=?,惯性矩为 84210J m -=?,现在板的表面施加均匀压力载荷如图2。试研究该梁板结构的瞬 态动力响应。 图 1 图2

有限元分析及应用大课后复习

有限元分析及应用作业报告

目录 有限元分析及应用作业报告....................................... I 目录 ........................................................ II 试题1 . (1) 一、问题描述 (1) 二、几何建模与分析 (2) 三、第1问的有限元建模及计算结果 (2) 四、第2问的有限元建模及计算结果 (7) 五、第3问的有限元建模及计算结果 (13) 六、总结和建议 (16) 试题5 (17) 一、问题的描述 (17) 二、几何建模与分析 (18) 三、有限元建模及计算结果分析 (18) 四、总结和建议 (26) 试题6 (27) 一、问题的描述 (27) 二、几何建模与分析 (27) 三、有限元建模及计算结果分析 (27) 五、总结和建议 (35)

试题1 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 图1-1模型示意图及划分方案

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数:按以上假设大坝材料为钢,设定:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 4)生成几何模型: a. 生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→依次输入三个点的坐标:

基于有限元的电磁场仿真与数值计算介绍

鼠笼异步电动机磁场的有限元分析 摘要 鼠笼异步电动机具有结构简单、价格低廉、运行可靠、效率较高、维修方便等一系列的优点,在国民经济中得到广泛的应用。工业、农业、交通运输、国防工程以及日常生活中都大量使用鼠笼异步电动机。随着大功率电子技术的发展,异步电动机变频调速得到越来越广泛的应用,使得鼠笼异步电动机在一些高性能传动领域也得到使用。 鼠笼异步电动机可靠性高,但由于种种原因,其故障仍时有发生。由于电动机结构设计不合理,制造时存在缺陷,是造成故障的原因之一。对电机内部的电磁场进行正确的磁路分析,是电机设计不可或缺的步骤。利用有限元法对电机内部磁场进行数值分析,可以保证磁路分析的准确性。本文利用Ansys Maxwell软件,建立了鼠笼式异步电机的物理模型,并结合数学模型和边界条件,完成了对鼠笼式异步电动机的磁场仿真,得到了物理模型剖分图,磁力线和磁通分布图,为电机的进一步设计研究提供了依据。 关键词:Ansys Maxwell;鼠笼式异步电机;有限元分析

一、前言 当电机运行时,在它的内部空间,包括铜与铁所占的空间区域,存在着电磁场,这个电磁场是由定、转子电流所产生的。电机中电磁场在不同媒介中的分布、变化及与电流的交链情况,决定了电机的运行状态与性能。因此,研究电机中的电磁场对分析和设计电机具有重要的意义。 在对应用于交流传动的异步电机进行电磁场的分析计算时,传统的计算方法因建立在磁场简化和实验修正的经验参数的基础之上,其计算精度就往往不能满足要求。如果从电磁场的理论着手,研究场的分布,再根据课题的要求进行计算,就有可能得到满意的结果。电机电磁场的计算方法大致可以分为解析法、图解法、模拟法和数值计算法。数值解法是将所求电磁场的区域剖分成有限多的网格或单元,通过数学上的处理,建立以网格或单元上各节点的求解函数值为未知量的代数方程组。由于电子计算机的应用日益普遍,所以电机电磁场的数值解法得到了很大发展,它的适用范围超过了所有其它的解法,并能达到足够的精度。对于电机电磁场问题,常用的数值解法有差分法和有限元法两种。用有限元法时单元的剖分灵活性大,适用性强,解的精度高。因此我们采用有限元法对电机电磁场进行数值计算。 Maxwell2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件。在这里,我们利用Ansys的Maxwell2D 有限元分析工具对一个三相四极电机进行有限元分析,构建鼠笼式异步电机电动机的物理模型,并结合电机的数学模型、边界条件进行磁场分析。

北京科技大学有限元考试试题

一.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。()(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。()(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。()(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。()(5)有限元位移法求得的应力结果通常比应变结果精度低。()(6)等参单元中Jacobi行列式的值不能等于零。()(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。()(8)四边形单元的Jacobi行列式是常数。()(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。()(10)一维变带宽存储通常比二维等带宽存储更节省存储量。() 二.单项选择题(共20分,每小题2分) 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ________________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。 (A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与___________相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是______完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进 行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到______阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 2、简述有限元法中选取单元位移函数(多项式)的一般原则。 3、简述有限单元法的收敛性准则。

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

有限元法试题

《汽车有限元基础》2009-2010二学期考试试卷

《汽车有限元基础》2009-2010第二学期考试试卷 一、填空题 1. 有限元法的基本思想是用个单元的集合来代替原来具有个自由 度的连续体。 2. 单元刚度矩阵K中元素K ij的物理意义:当单元第j个自由度产生而其它自由度固定时,在第i个自由度产生的。 3.按照各杆轴线及外力作用线在空间的位置,杆系结构可分为: 和。4.平面刚架中各单元发生轴向拉压变形及面内的弯曲变形,而且这两种变形相互独立,因此刚架单元可以看成是由单元和单元叠加而成。因此,平面刚架单元的节点位移应包含个平动分量和个转动分量。 5.工程中常用的薄板单元有:单元和单元。6.有限元分析的主要步骤先后为:(1) 网格划分, (2) , (3) 。 7. 单元特性分析的主要内容先后为:(1) 、(2) 、(3) 应力或内力、(4) 、(5) 单元节点载荷。 8.对于弹性变形体,承受的外载荷共有三种:集中载荷、和。在有限元法中,对于没有作用在节点上的这些外载荷,是按照的原则将其移置到节点上。 9.工程中任一平板,若其厚度为t,板面宽度为b,当t/b小于时可以认为是薄板。常用的薄板单元有:单元和单元。10.薄壳单元中的应力可看成平面应力问题和问题中两种应力的叠加。 11.求解结构系统的动力响应时,常用的两种求解方法为:和 12.在有限元分析中,为了描述几何模型和有限元模型,需要用到几种坐标系: (1) (2) (3) 和(4)

《汽车有限元基础》2009-2010第二学期考试试卷 二、 问答题 1.某一薄板矩形单元的节点编号按照逆时针依次为i 、j 、m 和p 。假设该单元每个节点的位移表示为{}{}T yi xi i i w θθδ=, (i, j, m, p );该单元每个节点的载荷表示为{}{}T iy ix i i T T Z F θθ=,(i, j, m, p )。请写出该单元的单元节点位移列阵和单元 节点载荷列阵。 2.请写出使用有限元分析软件时,进行数据前处理的主要工作内容。 3.右下图为一典型三节点三角形平面单元,节点按照逆时针依次编号为i 、j 和m ,节点的坐标依次为(x i ,y i ),(x j ,y j )、(x m ,y m )。假设单元内任意一点的两个位移分量分别表示u 和v 。请写出该单元位移模式的多项式形式,并简述待定常数个数的确定理由。 4. 请简述针对动力问题的有限元分析的基本步骤。

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

有限元分析在结构分析和计算机仿真中的应用

第20卷增刊重庆交通学院学报2001年11月VoI.20Sup.JOURNAL OF CHONGOING JIAOTONG UNIVERSITY NoV., ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2001文章编号:1001-716 (2001)S0-0124-03 有限元分析在结构分析和计算机仿真中的应用" 韩西,钟厉,李博 (重庆交通学院结构工程部级重点实验室,重庆400074) 摘要:简要论述了有限元分析方法在结构分析和计算机仿真的发展趋势和应用情况. 关键词:有限元分析;结构分析;计算机仿真 中图分类号:TU311.41文献标识码:B 自1943年数学家Courant第一次尝试应用定义在三角形区域上的分片连续函数的最小位能原理求解St.Venant扭转问题以来,许多数学家、物理学家和工程师由于各种原因都涉及过有限单元的概念.但由于即使一个小规模的工程问题,用有限元分析都将产生较大的计算工作量.直到1960年后,随着计算机技术的发展,有限元分析这门特别依赖数值计算的学科才真正进入了飞速发展阶段.到目前为止,有限元法已成为最强有力的数值分析方法之一,在固体力学、流体力学、机械工程、土木工程、电气工程等领域得到了广泛的应用.由于其所涉及问题和算法基本上全部来源于工程实际、应用于工程中,其解决工程实际问题的能力愈来愈强.由于计算机技术作为有限元分析的计算平台和应用支撑工具,故有限元分析成为CAE(Computer Aided Engineering,计算机辅助工程)这一学科类的主要研究内容.与此同时,由于有限元分析所建模型具有和实际结构相对应的几何、材料、力学特性,对实际结构具有“真实”的模拟特性,和单纯的几何仿真有着本质的区别,所以可以称之为“真实的仿真”(ReaIity SimuIation),可以想象,其模型和计算的数据量将比单纯的几何仿真要大得多,当前,计算机并行多处理器技术正迅猛发展,如SGI OONU-MA体系使计算能力达到工程应用水平,极大地促进了有限元分析计算的发展[2]. 1现状与发展趋势 1.1现状 1956年,Tuner,CIough等人将刚架位移法推广应用于弹性力学平面问题,并用于分析飞机结构,这是现代有限元法第一次成功的尝试.他们第一次给出了用三角形单元求解平面应力问题的正确解答,其研究工作打开了利用计算机求解复杂平面问题的新局面.1963~1964年,BesseIing、MeIosh 和Jones等证明有限单元法是基于变分原理的Ritz 法的另一种形式,从而使Ritz分析的所有理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法. 几十年来,有限元法的应用已由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定问题、动力问题和波动问题;分析的对象从弹性材料扩展到塑性、粘塑性和复合材料等;从固体力学扩展到流体力学、传热学等连续介质力学领域.在工程分析中的作用已从分析比较扩展到优化设计并和CAD(计算机辅助设计)结合越来越紧密. 有限元分析理论的逐步成熟主要经历了60年代的探索发展时期,70~80年代的独立发展专家应用时期和90年代与CAD相辅相成的共同发展、推广使用时期. 有限元分析作为一种强有力的数值分析方法,在结构分析和仿真计算中有着极大的应用价值.目前,结构仿真中的静力分析、动力分析、稳定性计 "收稿日期:2001-03-19 作者简介:韩西(1964-),男,重庆人,工学博士,副教授,主要从事振动工程、结构损伤识别、结构动力及计算机仿真分析研究.

(完整版)福州大学有限元考试题

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (×)10单元位移函数包括了常应变和刚体位移,则该单元一定是完备协调单元。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

ansys有限元计算

1.1 课程设计的意义、目的 1)ANSYS模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,他们是承受动态载荷的重要参数,也可作为其他动力学分析的起点,是进行谱分析或模态叠加法普响应分析或瞬态动力学分析所必需的前期分析过程。模态分析在动力学分析过程中必不可少的一个步骤,在谱响应分析、瞬态动力学分析的分析过程中均要求先进行模态分析才能进行其他步骤。 2)根据课堂讲授内容,学生做相应的自主练习,消化课堂所讲解的内容;通过调试典型例题或习题积累调试ANSYS程序的经验;通过完成课程设计中中的编程题,逐渐培养学生的编程能力、用ANSYS解决实际问题的能力。 1.2课程设计研究的内容 求解外受两端压力带孔薄板的系统或局部的位移、应变、应力。 ANSYS详细设计步骤 1问题分析 如图所示,E=30e6,两端压力100,中心孔内线压分布力500向外。中心孔直径为5。板厚为1。

基于ANSYS分析的简要步骤 (1)启动ANSYS,进入ANSYS界面。 (2)定义工作文件名 GUI : Utility Menu > File > Change Jobname 单击Utility Menu菜单下File中的Change Jobname按钮,会弹出Change Jobname对话框, 输入有限元分析作为工作文件名,单击Ok。 (3)定义分析标题 GUI:Utility Menu > File > Change Title 在弹出的对话框中,输入cui作为分析标题,单击OK。 (4)重新显示 GUI: Utility Menu>Plot>Replot 单击该按钮后,所命名的分析标题和工作文件名会出现在ANSYS中。 (5)选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,故选择Structural 这一项,单击OK。 (6)定义单元类型 GUI:Main Menu > Preprocessor > Element Type > Add/Edit/Delete 单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选择Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元,然后单击OK。

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限元mems仿真

预应力微镜 介绍 这一种产生如弹簧结构或在镀的结构上诱导曲率的方法,这种方法是给基板电镀一层材料,使得这一层(材料)在镀后存在残余应力。电镀过程能控制这个应力,从而可以压缩或拉伸,甚至对类似的材料产生同样的作用。汽车工业已经对这一现象进行了深入的研究,因为高受压的铬比非受压的铬更有光泽和顺滑。微机电系统(MEMS)设备制造厂商有时使用这个效应来制造弯曲的悬臂梁或弹簧微机械结构,这种结构在用蚀刻剂进行底切时能抬高底层。由静电控制的微镜就是这样一种装置。它非常小,通过这些装置的阵列可以实现一个投射系统。他们充当着光学redirectors和类似的反射装置。本节介绍如何建立和求解预应力电镀装置的基本原理。 模型定义 这个单一物理模型使用3 D结构分析。微镜包括一个僵硬、扁平的反射中心部分,这个部分是由四个悬臂预应力电镀弹簧支撑的。为了使网格体积很小和处理时间合理,这次练习研究有两层镀层的结构。它还假设电镀过程在最高和最底层产生了大小相等、方向相反的(压应力和拉应力)初始应力。这种(假设带来的)便利使得模型(可以)直接建立。你可以把初始应力分布设置为任意想象的复杂,如这个例子所示。根据变形的大小,最好的建议是用有限变形非线性分析的模拟来求解。注意,后者更有可能收敛。因此这个数值模型使用复数线性组合和参数线性规划线兼有的有限变形分析来求解。特别注意的是,有薄层的3 D结构,比如在这个模型里的结构会导致一个非常大的非结构化四面体网格。为了避免这种情况,这个例子首先生成一个2 D的四边形网格进行网格映射,然后挤压成3 D产生一种有立体(砖)元素的网格。这样,你就可以用网格创建一个高长径比的结构性要素。 你想在这类问题中确定的一个关键工艺参数通常是什么样的预应力水平是导致预期发射所必要的。另一个共同关心的问题是应力变化可能对位移的影响有多大。一项参数研究回答了这个问题。 结果和讨论 以下两幅图是对铝和钢板的发射比较。钢比铝更硬,变形更小。

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

西工大有限元试题附答案68872

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别就是多大? 4、下图所示,若单元就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6、设阶梯形杆件由两个等截面杆件\o \a c(○,1)与错误!所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P,求各结点的轴向位移与各杆的轴力。 8、 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为 。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k

9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K ] 。 10. 设上题中的桁架的支承情况与载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

有限元分析及应用例子FEM14

第9章受内外压筒体的有限元建模与应力变形分析(Project 2) 计算分析模型如图9-1 所示, 习题文件名: cylinder。 X (a) σO=100N/mm2 σI =200N/mm2 γ =7.85g/cm3 μ =0.3 E =210000N/mm2 (b) 图9-1 计算分析模型 9.1进入ANSYS 程序→ANSYSED 6.1ed →Interactive →change the working directory into yours→input Initial jobname: cylinder→Run 9.2 设置计算类型 ANSYS Main Menu: Preferences…→select Structural →OK 9.3 选择单元类型 ANSYS Main Menu: Preprocessor → Element Type →Add/Edit/Delete… → Add… →select Solid Quad 4node 42 →Apply →select Solid Brick 8node 45 → OK → Close (the Element

Types window) 9.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Materials Models →Structural→Lineal →Elastic→Isotropic…→input EX:2.1e5, PRXY:0.3→ OK 关闭材料定义窗口 9.5构造筒体模型 ?生成模型截平面 ANSYS Main Menu: Preprocessor →Modeling→Create →Keypoints →In Active CS… →按次序输入横截平面的十个特征点和旋转对称轴上两点坐标(十个特征点:(300,0,0), (480,0,0), (480,100,0), (400,100,0), (400,700,0), (480,700,0), (480,800,0), (300,800,0), (300,650,0), (300,150,0),对称轴上两点:(0,0,0), (0,800,0))(每次输入完毕,用Apply结束,0可以不输入) →Cancel (back to Create window) →-Areas- Arbitrary → Through KPs →依次连接截面边线上的十个特征点(注意在选完第10点后结束,不要再选第1点)→ OK ?对平面进行网格划分 ANSYS Main Menu: Preprocessor →Meshing→Mesh Tool →(Size Controls) Globl: Set →input SIZE (element edge length): 50 →OK (back to MeshTool window)→Mesh → Pick All (in Picking Menu) → Close( the MeshTool window) ?用旋转法生成筒体模型 ANSYS Main Menu: Preprocessor →Modeling→Operate →Extrude→Elem Ext Opts→select TYPE:SOLID 45→Element sizing options for extrusion No. Elem divs: 1→OK (back to Extrude window)→Areas →About Axis →Pick All(in Picking Menu)→OK→Pick the two keypoints (11,12) of the Symmetrical Axis → OK→input ARC: 90; NSEG: 3→ OK 9.6 模型加位移约束 ANSYS Main Menu: Solution→Define Loads →Apply→Structural→Displacement ?两截面分别加Z, X方向的约束 ANSYS Utility Menu: Select → Entities…→Nodes → By Location →select X coordinates →input 0→ OK (back to Displacement window)→On Nodes → Pick All(in Picking Menu) → select Lab2:UX →OK →ANSYS Utility Menu: Select → Everything ANSYS Utility Menu: Select → Entities…→ Nodes → By Location →select Z coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) → select Lab2:UZ →OK →ANSYS Utility Menu: Select →Everything ?底面加Y方向的约束 ANSYS Utility Menu: Select → Entities… → Nodes → By Location →select Y coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) →

相关文档
最新文档