中考冲刺数学专题 与圆有关的计算与证明(含答案)

中考冲刺数学专题 与圆有关的计算与证明(含答案)
中考冲刺数学专题 与圆有关的计算与证明(含答案)

中考冲刺数学专题20 与圆有关的计算与证明

【中考要求及命题趋势】

1、理解圆的基本概念与性质。

2、求线段与角和弧的度数。

3、圆与相似三角形、全等三角形、三角函数的综合题。

4、直线和圆的位置关系。

5、圆的切线的性质和判定。

6、三角形内切圆以及三角形内心的概念。

7、圆和圆的五种位置关系。 8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。

9、掌握弧长、扇形面积计算公式。 10、理解圆柱、圆锥的侧面展开图。

11、掌握圆柱、圆锥的侧面积和全面积计算。

2010年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。

【应试对策】

圆的综合题,除了考切线、弦切角必须的问题。一般圆主要和前面的相似三角形,和前面大的知识点接触。直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,考查对扇形面积公式、圆锥、圆柱的侧面积的公式记忆。圆这一章重要的概念、定理先掌握、后应用,掌握之后,再掌握一些解题思路和解题方法。

第一:有三条常用辅助线,一是圆心距,二是直径圆周角,第三条是切线径。第二:有几个分析思路:弧、常与圆周角互相转换;那么怎么去应用,就根据题目条件而定。

【复习要点】

1、圆的有关概念:

(1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧。

(2)______________________的线段叫做弦,经过圆心的弦叫做直径。

(3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角。

2、圆的对称性:

(1)圆是轴对称图形,其对称轴是_________;(2)圆是中心对称图形,其对称中心是_________。

3、垂径定理及推论

垂径定理:垂直于弦的直径_________弦,并且平分____________________。

推论:平分弦(不是直径)的直径_____这条弦,并且平分__________________ 4、弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,它们所对应的其余各组量也相等。

如图所示:AB,CD是⊙O的两条弦,OE,OF为AB,CD的弦心距,根据圆心角,弧,

弦和弦心距之间的关系定理填空:

(1)如果AB=CD,那么___________, __________, ______________

(2)如果OE=OF,那么___________, ___________, ______________

(3)如果弧AB=弧CD,那么__________, ____________, ___________

5、圆周角定理及推论:

(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的

________,如图,∠ACB=____________

(2)推论:在同圆或等圆中,同弧或等弧所对的圆周角________,直径所对的圆周角是_______,90°的圆周角所对的弦是________,所对的弧是__________.

6、确定圆的条件

三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的.

7、点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,

判定切线的方法有三种:①利用切线的定义:即与圆有惟一公共点的直线是圆的切线。

②到圆心的距离等于半径的直线是圆的切线。③经过半径的外端点

并且垂直于这条半径的直线是圆的切线。切线的五个性质:①切线与圆只有一个公共点;②切线到圆心的距离等于圆的半径;③切线垂直于经过切点的半径;④经过圆心垂直于切线的直线必过切点。⑤经过切点垂直于切线的直线必过圆心。

C

10、切线长定理

经过圆外一点作圆的切线,这点与 切点 之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的 切线长 相等,这一点和圆心的连线平分两条切线的 夹角 . 11、三角形内切圆

和三角形各边都相切的圆叫做三角形的 内切圆 ,三角形内切圆的圆心叫三角形的 内心. 12、圆和圆的位置关系:

位置 外离 外切 相交 内切 内含 公共点个数

_____

______ _____ _____ _____ d 与R 、r 数量关系 _____

_______ ______ ______ _____

性质

连心线必过切点

连心线垂直平分公共弦

连心线必过切点

1、正多边形的定义:、 的多边形叫做正多边形。

2、正n 边形:如果一个正多边形有n 条边,那么这个正多边形叫做。

3、正多边形的中心:是正多边形的中心。

4、正多边形的半径:是正多边形的半径。

5、正多边形的中心角: 正多边形的每一条边所对的叫做正多边形的中心角。

6、正多边形的边心距:到的距离叫做正多边形的边心距。

7、任何一个正多边形都有一个和一个,这两个圆是.

8、正多边形的边心距与相等。 14、弧长和扇形面积

1.圆的周长为,1°的圆心角所对的弧长为,n °的圆心角所对 的弧长为,弧长公式为.

2.圆的面积为,1°的圆心角所在的扇形面积为,n °的圆心角所在的扇形面积为S=2

R π? =

= .

3.圆柱的侧面积公式:S=2rl π.(其中r 为的半径,l 为的高)

4. 圆锥的侧面积公式:S=rl π.(其中r 为的半径,l 为的长)

5.弓形的面积

(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做。

(2)弓形的周长= (3)弓形的面积

当弓形所含的弧是劣弧时,如图1所示,s 弓形= 当弓形所含的弧是优弧时,如图2所示,s 弓形 当弓形所含的弧是半圆时,如图3所示,s 弓形

【备考指导】

1、“垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,在一个圆中,若知圆的半径为R ,弦长为a ,圆心到此弦的距离为d ,?根据垂径定理,有R 2

=d 2

+(

2

a )2

,所以三个量知道两个,就可求出第三个.同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题.

2、证明一条直线是圆的切线的方法有两种:(1)当直线与圆有一个公共点时,把圆心和这个公共点连结起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;(2)当直线和圆的公共点没有明确时,可过圆心作直线的垂线,?再证圆心到直线的距离等于半径,简称“作垂线,证半径.”

3、面积的计算往往是不规则图形,不易直接求出,?所以要将其转化为与其面积相等的规则图形,等积转化的一般方法是:(1)利用平移、?旋转或轴对称等图形变换进行转化;(2)?根据同底(等底)同高(等高)的三角形的面积相等进行转化;(3)利用几个规则图形的面积和或差求不规则图形的面积. 【经典例析】

例1已知:如图,△ABC 是⊙O 的内接三角形,AD⊥BC 于D ,AE 是⊙O 的直径,若S △ABC =S ,⊙O 的半径为R . (1)求证:AB·AC=AD·AE;(2)求证:AB·AC·BC=4RS. 【解析】(1)本题要证明的结论是“等积式”,?通常的思路是把等积式转化成比例式,再找相似三角形.

(2)利用(1)的结论和三角形的面积公式.

例2如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠. (1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长. 【答案】(1)直线BD 和O ⊙相切. 证明:

∵AEC ODB ∠=∠,AEC ABC ∠=∠, ∴ABC ODB ∠=∠.∵OD ⊥BC ,

∴90DBC ODB ∠+∠=°.∴90DBC ABC ∠+∠=°. 即90DBO ∠=°.∴直线BD 和O ⊙相切. (2)连接AC . ∵AB 是直径, ∴90ACB ∠=°.

在Rt ABC △中,108AB BC ==,, ∴22

6AC AB BC =

-=.

∵直径10AB =, ∴5OB =.

由(1),BD 和O ⊙相切,

∴90OBD ∠=°.∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△.∴

AC BC

OB BD

=. ∴

685BD =,解得203

BD =. 【点评】圆的切线有三种判定方法:①和圆只有一个公共点的直线是圆的切线;②到圆心的距离等于半径的直线是圆的切线;③过半径外端且和这条半径垂直的直线是圆的切线.在证明时一定要根据题目已知条件合理选择.

例3如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且AB=13,BC=5. (1)求sin∠BAC 的值;

(2)如果OD⊥AC,垂足为点D ,求AD 的长;

(3)求图中阴影部分的面积.(精确到0.1) 【答案】解:(1)∵AB 是⊙O 的直径, ∴∠ACB=90°. ∴sin∠BAC=

5

13

BC AB =. (2)在Rt△ABC 中,AC= 2222135AB BC -=- =12.

又∵OD⊥AC 于点D , ∴AD=

1

2

AC=6. (3)∵S 半圆=

12π×(2AB )2=12π×1694=1698

π. S △ABC =

12AC×BC=1

2

×12×5=30, ∴S 阴影=S 半圆-S △ABC =

169

8

π-30≈36.3 点评 “直径所对的圆周角为90°”以及“垂径定理”可以将圆的有关知识和三角形有关知识结合起来.因此对这部分知识应加以重视.

例4已知扇形的圆心角为120°,面积为300πcm 2

. (1)求扇形的弧长;

(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?

解析:(1)由S 扇形=2360n R 求出R ,再代入L=180

n R

求得.(2)若将此扇形

卷成一个圆锥,?扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面

是一个以底是直径,?圆锥母线为腰的等腰三角形.解答如下:(1)如图所示:

∵300π=2120360R π; ∴R=30; ∴弧长L=12030

180

π??=20π(cm )(2)如右图

所示:∵20π=20πr ; ∴r=10,R=30。 AD=900100-=202∴S 轴截面=12×BC ×AD=1

2

×2

×10×202=2002(cm 2);因此,扇形的弧长是20πcm 卷成圆锥的轴截面是2002cm 2

反思:圆锥、扇形、圆之间的换算是中考中的热点、常考点,需同学们理清平面与立体之间的变换和实质,熟悉公式并能利用题目中的数据代替公式中的量来解题。 【迎考精炼】 一、选择题:

1.(2009年湖北孝感)如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )

A .15°

B .30°

C .45°

D .60°

2.(2010安徽省中中考)如图,⊙O 过点B 、C 。圆心O 在等腰直角

△ABC 的内部,∠BAC =900

,OA =1,BC =6,则⊙O 的半径为………………()

A )10

B )32

C )23

D )13 3.(2010安徽蚌埠二中)以半圆的一条弦BC (非直径)为对称轴将

弧BC 折叠后与直径AB 交于点D ,若3

2

=DB AD ,且10=AB ,

则CB 的

长为

A .54

B .34

C .24

D .4

4.(2009年山东青岛)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).

A .0.4米

B .0.5米

C .0.8米

D .1米

5.(2009年湖北襄樊)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切

O 于C ,

若25A =∠.则D ∠等于( )

A .40?

B .50?

C .60?

D .70?

6.(2009年浙江台州)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( )

A .外离

B .外切 C.相交 D .内含

7(2010 河北)如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,

那么这条圆弧所在圆的圆心是 A .点P B .点Q C .点R D .点M 8.(2010湖北武汉)如图,的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为() A 、7 B 、72 C 、82 D 、9

9.(2010广西梧州)如图6,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD 。()

A .4个

B .3个

C .2个

D .1个

10.(2010四川攀枝花)如图2,△ABC 内接于⊙O ,若∠OA B=28°,则∠C 的大小是() A .56°B .62°C .28°D .32°

二、填空题:

1.(2010山东青岛)如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.48

2.(2010杭州)如图, 已知△ABC ,6==BC AC ,?=∠90C .O 是AB 的中点,⊙O 与AC ,

BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于

点G . 则CG =. 332+

3.(株洲市2010)两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是.外切

4.(兰州市2010)如图,扇形OAB ,∠AOB=90?,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧

AB 切于点C ,则扇形OAB 的面积与⊙P 的面积比是.

5.(黄冈市2010)将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm. 10. 23π

三、解答题

(第9题) B

C

D E

O A

· O

A B

C 第1题图 · M

R Q 第

7A B C P B

C A

O

第10题

1.(2009年四川内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E 、F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC. 求证:(1)CD ⊥DF ; (2)BC =2CD

证明:(1)设∠DFC =θ,则∠BAD =2θ 在△ABD 中,∵AB =AD , ∴∠ABD =∠ADB ∠ABD =12(180°-∠BAD )=90°-θ 又∠FCD =∠ABD =90°-θ ∴∠FCD+∠DFC =90° ∴CD ⊥DF

(2)过F 作FG ⊥BC 于G

在△FGC 和△FDC 中 ,∠FCG =∠ADB =∠ABD =∠FCD ∠FGC =∠FDC =90°,FC =FC ∴△FGC ≌△FDC

∴GC =CD 且∠GFC =∠DFC 又∠BFC =2∠DFC ∴∠GFB =∠GFC ∴BC =2GC , ∴BC =2CD.

2. (2010年毕节地区)(本题12分)如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径的

⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.

证明:(证法一)连接OE DE ,. 1分 ∵CD 是⊙O 的直径,

∴90AED CED ∠=∠=. 2分 ∵G 是AD 的中点,

∴1

2

EG AD DG ==.4分

∴12∠=∠.6分 ∵34OE OD =∴∠=∠,.8分

∴1324∠+∠=∠+∠.即90OEG ODG ∠=∠=.10分

∴GE 是⊙O 的切线.12分

(证法二)连接OE OG ,. 1分 ∵AG GD CO OD ==,, ∴OG AC ∥.

2分 ∴1234∠=∠∠=∠,. 4分

∵OC=OE . ∴∠2=∠4. ∴∠1=∠3.

6分

又OE OD OG OG ==,,

∴OEG ODG △≌△. 8分 ∴90OEG ODG ∠=∠=. 10分

∴GE 是⊙O 的切线.

12分

3.(2009年湖北仙桃)如图,AB 为⊙O 的直径,D 是⊙O 上的一点,过O 点作AB 的垂线交AD 于点E ,交BD 的延长线于点C ,F 为CE 上一点,且FD =FE . (1)请探究FD 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,BD =3,求BC 的长. 解:(1)FD 与⊙O 相切,理由如下:

连接OD.∵OC ⊥AB ,∴∠AOC =90°,∴∠3+∠A =90°.∵FE =FD , ∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3,又∵OA =OD ,∴∠A =∠4.

∴∠1+∠4=90°,∴FD 与⊙O 相切.

(2)∵⊙O 的半径为2,∴OB =2,AB =4,又∵AB 是⊙O 的直径,

∴∠ADB =90°.∵OC ⊥AB ,∴∠ADB =∠BOC =90°,又∵∠B =∠B ,∴Rt△AB D ∽Rt△CBO ∴

AB CB

BD BO =,即23

CB =,∴833BC =.

4.(2010济宁市)(6分)

如图,AD 为ABC ?外接圆的直径,AD BC ⊥,垂足为点F ,

ABC ∠的平分线交AD 于点E ,连接BD ,CD .

(1) 求证:BD CD =;

(2) 请判断B ,E ,C 三点是否在以D 为圆心, 以DB 为半径的圆上?并说明理由.

A

B

C

E

F

D

(第4题)

(1)证明:∵AD 为直径,AD BC ⊥,

∴BD CD =.∴BD CD =. ················· 3分

(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ······ 4分

理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.

∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =. ················· 6分 由(1)知:BD CD =.∴DB DE DC ==.

∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ······· 7分

5.(宿迁市2010)(本题满分10分)如图,AB 是⊙O 的直径, P 为AB 延长线上任意一点,C

为半圆ACB 的中点,PD 切⊙O 于点D ,连结CD 交AB 于点E . 求证:(1)PD =PE ;

(2)PB PA PE ?=2

证明:(1)连接OC 、OD ………………1分

∴OD ⊥PD ,OC ⊥AB ∴∠PDE=

90—∠ODE , ∠PED=∠CEO= 90—∠C 又∵∠C=∠ODE

∴∠PDE=∠PED …………………………………………4分 ∴PE=PD …………………………………………5分 (2) 连接AD 、BD ………………………………………6分 ∴∠ADB= 90

∵∠BDP= 90—∠ODB ,∠A= 90—∠OBD 又∵∠OBD=∠ODB ∴∠BDP=∠A

∴?PDB ∽?PAD …………………………………………………8分

PD PA PB PD =

∴PB PA PD ?=2

∴PB PA PE ?=2

…………………………………………………10分

6.(株洲市2010)(本题满分8分)如图,AB 是

O 的直径,C

为圆周上一点,30ABC ∠=?,O 过点B 的切线与CO 的延长线交于点D .

求证:(1)CAB BOD ∠=∠;

(2)ABC ?≌ODB ?.

证明:(1)∵AB 是O 的直径,∴90ACB ∠=?,由30ABC ∠=?,∴60CAB ∠=?

又OB OC =,∴30OCB OBC ∠=∠=?∴60BOD ∠=?,∴CAB BOD ∠=∠.…… 4分 (2)在Rt ABC ?中,30ABC ∠=?,得12AC AB =,又1

2

OB AB =,∴AC OB =. 由BD 切

O 于点B ,得90OBD ∠=?.

在ABC ?和ODB ?中,

CAB BOD

ACB OBD AC OB ∠=∠∠=∠?=?

???

∴ABC ?≌ODB ?…… 8分

7.(黄冈市2010)(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2

=AB ·AE ,求证:DE 是⊙O 的切线.

证明:连结DC ,DO 并延长交⊙O 于F ,连结AF.∵AD 2=AB ·AE ,∠BAD =∠DAE ,∴△BAD ∽△DAE ,∴∠ADB =∠E. 又∵∠ADB =∠ACB ,∴∠ACB =∠E ,BC ∥DE ,∴∠CDE =∠BCD =∠BAD =∠DAC ,又∵∠CAF =∠CDF ,∴∠FDE =∠CDE+∠CDF =∠DAC+∠CDF =∠DAF =90°,故DE 是⊙O 的切线

8.(兰州市2010)(本题满分10分)如图,已知AB 是⊙O 的直径,点C

在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证:BC=

2

1

AB ; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值.

解:(1)∵OA=OC,∴∠A=∠ACO

∵∠COB=2∠A ,∠COB=2∠PCB

∴∠A=∠ACO=∠PCB ……………………………………………………1分

∵AB 是⊙O 的直径

∴∠ACO+∠OCB=90°…………………………………………………2分

∴∠PCB+∠OCB=90°,即OC ⊥CP …………………………………………3分

∵OC 是⊙O 的半径

∴PC 是⊙O 的切线 …………………………………………………4分

(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P

∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB

∴∠CBO=∠COB ……………………………………………5分

∴BC=OC

∴BC=

2

1

AB ………………………………………………………6分 D

C

B

O

A

?

P

B

A

E

O

C

D

(3)连接MA,MB ∵点M 是弧AB 的中点

∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ∵∠ACM=∠ABM ∴∠BCM=∠ABM

∵∠BMC=∠BMN

∴△MBN ∽△MCB

BM MN

MC BM = ∴BM 2

=MC ·MN ……………………8分

∵AB 是⊙O 的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM

∵AB=4 ∴BM=22………………………………………………………9分

∴MC ·MN=BM 2

=8 ……………………………………………………10分

参考答案

1.B

2.D

3.A

4.D

5.A

6.A 6.

7.B

8.B

9.A 10.B

【链接中考】

1.(2010广东广州,24,14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB 上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .

(1)求弦AB 的长;

(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由;

(3)记△ABC 的面积为S ,若2

S

DE =3ABC 的周长.

【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =1

2

借助勾股定理可求得AF 的长;

(2)要判断∠ACB 是否为定

值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半;

(3)由题可知ABD ACD BCD S S S S ???=++=

12

DE (AB +AC +BC ),又因为243S DE =以2

1

()243DE AB AC BC DE ++=,所以AB +AC +BC =83DE ,由于DH =DG =DE ,所以在Rt △

CDH 中,CH 33,同理可得CG 3,又由于AG =AE ,BE =BH ,所以AB +AC +BC

=CG +CH +AG +AB +BH =23+33DE =23+3,解得:DE =1

3,代入

AB +AC +BC =83DE 83

. 【答案】解:(1)连接OA ,取OP 与AB 的交点为F ,则有OA =1.

∵弦AB 垂直平分线段OP ,∴OF =12OP =1

,AF =BF .

在Rt△OAF 中,∵AF 22OA OF -2211()2-3

,∴AB =2AF 3

(2)∠ACB 是定值.

理由:由(1)易知,∠AOB =120°,

因为点D 为△ABC 的内心,所以,连结AD 、BD ,则∠CAB =2∠DAE ,∠CBA =2∠DBA ,

因为∠DAE +∠DBA =

1

2

∠AOB =60°,所以∠CAB +∠CBA =120°,所以∠ACB =60°; (3)记△ABC 的周长为l ,取AC ,BC 与⊙D 的切点分别为G ,H ,连接DG ,DC ,DH ,则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC .

∴ABD ACD BCD S S S S ???=++

12AB ?DE +12BC ?DH +12AC ?DG =12(AB +BC +AC ) ?DE =1

2

l ?DE . ∵2

S DE =321

2l DE

DE =3l =3∵CG ,CH 是⊙D 的切线,∴∠GCD =1

2∠ACB =30°,

∴在Rt△CGD 中,CG =tan30DG

=3

3,∴CH =CG 3.

又由切线长定理可知AG =AE ,BH =BE ,

∴l =AB +BC +AC =33=3,解得DE =1

3

∴△ABC 83

【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积

【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题

2. (楚雄州 本小题13分)已知:如图,⊙A 与y 轴交于C 、D 两点,圆心A 的坐标为(1,0),

⊙A 的半径为5,过点C 作⊙A 的切线交x 轴于点B (-4,0).

C P

D O

B A E

F C

P D O B A E H

G

(1)求切线BC 的解析式;

(2)若点P 是第一象限内⊙A 上的一点,过点P 作⊙A 的切线与直线BC 相交于点G ,且∠CGP=120°,求点G 的坐标;

(3)向左移动⊙A (圆心A 始终保持在x 轴上),与直线BC 交于E 、F ,在移动过程中是否存在点A ,使△AEF 是直角三角形?若存在,求出点A 的坐标;若不存在,请说明理由. 解:(1)如图1所示,连接AC ,则AC=5

在Rt △AOC 中,AC=5 ,OA=1 ,则OC=2

∴点C 的坐标为(0,2)

设切线BC 的解析式为b kx y +=,它过点C (0,2),B (?4,0),则有

??

?=+-=042b k b 解之得?????

==

2

21b k ∴22

1

+=x y ………………………………………………4分

(2)如图1所示,设点G 的坐标为(a ,c ),过点G 作GH ⊥x 轴,垂足为H 点,

则OH=a , GH=c =2

1

a + 2

……………………………………………………5分

连接AP, AG

因为AC=AP , AG=AG , 所以Rt △ACG ≌Rt △APG (HL)

所以∠AGC=2

1×1200=600

在Rt △ACG 中 ,∠AGC= 600

,AC=5

∴Sin600

=AG

AC

∴AG =31526分

在Rt △AGH 中, AH=OH -OA=a -1 ,GH=

2

1

a + 2 2AH +2GH =2AG

∴2)1(-a +2

)22

1(+a =2)3152( 解之得:1a =332 ,2a = ?3

3

2(舍去) …………………………………………7分

点G 的坐标为(

332,3

3

+ 2 )…………………………………………………8分 (3) 如图2所示,在移动过程中,存在点A ,使△AEF 为直角三角形. ………………9分

要使△AEF 为直角三角形

AE=AF

∴∠AEF=∠AFE ≠ 900

∴只能是∠EAF=900

当圆心A 在点B 的右侧时,过点A 作 AM ⊥BC,垂足为点M.

在Rt △AEF 中 ,AE=AF=5, 则EF=10, AM=

21EF=2

110

在Rt △OBC 中,OC=2 , OB=4,则BC=25

∠BOC=∠BMA=900 ,∠OBC=∠OBM

∴△BOC ∽△BMA

AM OC =AB BC

∴AB=

22

5

∴OA=OB -AB=4-

22

5

∴点A 的坐标为(-4+

22

5

,0) ………………………………………………11分 当圆心A 在点B 的左侧时,设圆心为A ′,过点A ′作A ′M ′⊥BC 于点M ′,可得 △A ′M ′B ≌△AMB A ′B =AB =

22

5

∴O A ′=OB+ A ′B =4 +

22

5

∴点A ′的坐标为(-4-

22

5

,0) O A C

B

D x

y G

P

H

1

综上所述,点A 的坐标为(-4+

225,0)或(-4-22

5,0) ……………13分 3. (2010年山东省日照市) (本题满分10分)

如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D . 求证:

(1)D 是BC 的中点; (2)△BEC ∽△ADC ;

(3)BC 2

=2AB ·CE .

【解答】

(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90° , 即AD 是底边BC 上的

高. ………………………………………1分 又∵AB =AC ,∴△ABC 是等腰三角形,

∴D 是BC 的中点;………………………………………………………3分 (2) 证明:∵∠CBE 与∠CAD 是同弧所对的圆周角,

∴∠CBE =∠CAD .…………………………………………………5分 又∵∠BCE =∠ACD ,

∴△BEC ∽△ADC ;…………………………………………………6分 (3)证明:由△BEC ∽△ADC ,知

BC

CE

AC CD =

, 即CD ·BC =AC ·CE . …………………………………………………8分 ∵D 是BC 的中点,∴CD=

2

1

BC . 又 ∵AB =AC ,∴CD ·BC =AC ·CE =

2

1

BC ·BC=AB ·CE 即BC 2

=2AB ·CE .……………………………………………………10分

【涉及知识点】圆周角定理:直径所对的圆周角为90°;同弧所对的圆周角相等两个定理的应用。相似三角形的判定和性质定理。

【点评】此题是应用与圆有关的角相等,证明相似从而证明比例式、乘积式的成立。 4. (2010年四川省成都市)(本题满分10分)已知:如图,ABC ?内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q . (1)求证:P 是ACQ ?的外心;

(2)若3

tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2

()FP PQ FP FG +=.

【解答】

(1)证明:∵C 是AD 的中点,∴AC CD =, ∴∠CAD=∠ABC

∵AB 是⊙O 的直径,∴∠ACB=90°。∴∠CAD+∠AQC=90° 又CE ⊥AB ,∴∠ABC+∠PCQ=90°,∴∠AQC=∠PCQ ,∴在△PCQ 中,

PC=PQ ,

∵CE ⊥直径AB ,∴AC AE =,∴AE CD =,∴∠CAD=∠ACE 。

∴在△APC 中,有PA=PC ,∴PA=PC=PQ ,∴P 是△ACQ 的外心。

(2)解:∵CE ⊥直径AB 于F ,

∴在Rt △BCF 中,由tan ∠ABC=

34CF BF =,CF=8,得432

33

BF CF ==。 ∴由勾股定理,得22

403

BC CF BF =+=,∵AB 是⊙O 的直径,

∴在Rt △ACB 中,由tan ∠ABC=34AC BC =,403BC =

,得3

104

AC BC ==。 易知Rt △ACB ∽Rt △QCA ,∴2

AC CQ BC =?,∴2152

AC CQ BC ==。 (3)证明:∵AB 是⊙O 的直径,∴∠ACB=90°

∴∠DAB+∠ABD=90°

又CF ⊥AB ,∴∠ABG+∠G=90°,∴∠DAB=∠G ;∴Rt △AFP ∽Rt △GFB ,

AF FP

FG BF

=

,即AF BF FP FG ?=? 易知Rt △ACF ∽Rt △CBF ,∴2

FG AF BF =?(或由摄影定理得)

∴2

FC PF FG =?,由(1),知PC=PQ ,∴FP+PQ=FP+PC=FC

∴2

()FP PQ FP FG +=。

【涉及知识点】垂径定理、外心的定义,勾股定理

【点评】本题巧妙将垂径定理及其推论有机的结合起来运用。

中考数学-圆的切线证明方法

专题-------圆的切线证明 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M,求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. D ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC,

∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM. ∴DM 是⊙O 的切线 例2 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上. 求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD. ∴DC 是⊙O 的切线. 例3 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. C D

证明:连结OC ∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP , OC OP OD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线. 二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例4 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 证明一:连结DE ,作DF ⊥AC ,F 是垂足.

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

中考专题复习与圆有关的计算与证明

中考专题复习——与圆有关的计算与证明 【中考要求及命题趋势】 1、理解圆的基本概念与性质。 2、求线段与角和弧的度数。 3、圆与相似三角形、全等三角形、三角函数的综合题。 4、直线和圆的位置关系。 5、圆的切线的性质和判定。 6、三角形内切圆以及三角形内心的概念。 7、圆和圆的五种位置关系。 8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。 9、掌握弧长、扇形面积计算公式。 10、理解圆柱、圆锥的侧面展开图。 11、掌握圆柱、圆锥的侧面积和全面积计算。 2010年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。 【应试对策】 圆的综合题,除了考切线、弦切角必须的问题。一般圆主要和前面的相似三角形,和前面大的知识点接触。直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,考查对扇形面积公式、圆锥、圆柱的侧面积的公式记忆。圆这一章重要的概念、定理先掌握、后应用,掌握之后,再掌握一些解题思路和解题方法。 第一:有三条常用辅助线,一是圆心距,二是直径圆周角,第三条是切线径。第二:有几个分析思路:弧、常与圆周角互相转换;那么怎么去应用,就根据题目条件而定。 【复习要点】 1、圆的有关概念: (1)圆上任意两点间的部分叫弧,______的弧叫优弧,________的弧称为劣弧。 (2)______________________的线段叫做弦,经过圆心的弦叫做直径。 (3)_________________的角叫做圆心角;顶点在圆上且两边____________的角叫做圆周角。 2、圆的对称性: (1)圆是轴对称图形,其对称轴是_____ ____;(2)圆是中心对称图形,其对称中心是_________。3、垂径定理及推论 垂径定理:垂直于弦的直径_________弦,并且平分____________________。 推论:平分弦(不是直径)的直径_____这条弦,并且平分__________________ 4、弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,它们所对应的其余各组量也相等。如图所示: AB,CD是⊙O的两条弦,OE,OF为AB,CD的弦心距,根据圆心角,弧,弦和弦心距 C

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考数学几何证明题汇编

N 几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠, 45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点 E ,交∠BCA 的外角平分线于点 F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 图3 A B C D M E A C D E F 第20题图

二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上 的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE =50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH ,求证:AEH ?≌CGF ? 三、证明两直线平行 A B C D F E 图9 A O D B H E C B F C

6.中考数学圆的综合证明题

中考复习——圆的综合证明题 1.如图,在Rt△ABC中, ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O (1)求证:AB是⊙O的切线. (2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=1 2 ,求 AE AC 的值. (3)在(2)的条件下,设⊙O的半径为3,求AB的长. 4.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点. (1)请直接写出∠COD的度数; (2)求AC?BD的值; 5.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求tan∠CFE的值; 6.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.

(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD =15,BE =10,tanA=512 ,求⊙O 的直径. 7.如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与OD 交于点F ,连接DF , DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②∠FDC =∠EDC ; (2)求CD 的长. 8.如图,在Rt ABC 中,∠C =90°,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,与AC ,AB 分别相 交于点E ,F ,连接AD 与EF 相交于点G . (1)求证:AD 平分∠CAB (2)若OH ⊥AD 于点H ,FH 平分∠AFE ,DG =1. ①试判断DF 与DH 的数量关系,并说明理由; ②求⊙O 的半径. 10.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径, OD ⊥AB 于点O ,分别交AC 、CF 于点E 、 D ,且D E =DC . A B C D E F G H O

与圆有关的证明与计算

与圆有关的证明与计算 1.如图,在Rt △ABC 中,∠C =90°,点D 、E 、F 分别在AC 、BC 、AB 的边上,以AF 为直径的⊙O 恰好经过点D 、E ,且DE =EF . (1)求证:BC 是⊙O 的切线; (2)若∠B =30°,求CE CD 的值. 第1题图 (1)证明:如解图,连接OD ,OE ,DF , ∵AF 是⊙O 的直径, ∴∠ADF =90°, ∵∠C =90°, ∴DF ∥BC , ∵DE =EF , ∴DE ︵=EF ︵, ∴OE ⊥DF , ∴OE ⊥BC , ∵OE 是⊙O 的半径, ∴BC 是⊙O 的切线; 第1题解图 (2)解:∵∠B =30°,且OE ⊥BC , ∴∠BOE =60°, ∵OE =OF , ∴△OEF 是等边三角形, ∴∠OEF =60°, 又∵DE =EF ,OE ⊥DF , ∴∠OED =∠OEF =60°, ∴∠CED =30°, ∴∠CDE =60°, 在Rt △CDE 中, ∵tan ∠CDE =tan60°=CE CD =3,

∴ CE CD = 3. 2.如图,在Rt △BGF 中,∠F =90°,AB 是⊙O 的直径,⊙O 交BF 于点E ,交GF 于点D ,AE ⊥OD 于点C ,连接BD . (1)求证:GF 是⊙O 的切线; (2)若OC =2,AE =43,求∠DBF 的度数. 第2题图 (1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, 又∵∠F =90°, ∴∠AEB =∠F ,∴AE ∥GF , ∵AE ⊥OD ,∴OD ⊥GF , ∵OD 是⊙O 的半径, ∴GF 是⊙O 的切线; (2)解:∵OD ⊥AE , ∴AC =CE =1 2AE =23, ∵OA =OB , ∴OC 是△ABE 的中位线, ∴BE =2OC =4, ∴在Rt △AOC 中,OA =OC 2+AC 2=22+(23)2=4, ∵∠CEF =∠DCE =∠F =90°, ∴四边形CDFE 是矩形, ∴DF =CE =23,EF =CD =OD -OC =4-2=2, ∴BF =BE +EF =4+2=6, ∴tan ∠DBF =DF BF =236=3 3, ∴∠DBF =30°. 3.如图,点C 是⊙O 的直径AB 的延长线上一点,点D 在⊙O 上,且∠DAC =30°,∠BDC =1 2∠ABD . (1)求证:CD 是⊙O 的切线; (2)若OF ∥AD 分别交BD 、CD 于点E 、F ,BD =2,求OE 、CF 的长.

中考数学证明题

中考数学证明题 The Standardization Office was revised on the afternoon of December 13, 2020

一、证明题 1. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于E.将点C 翻折到对角线BD上的点N处,折痕DF交BC于点F. (1)求证:四边形BFDE为平行四边形; AB=,求BC的长. (2)若四边形BFDE为菱形,且2 2. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作 PM⊥AD,PN⊥CD,垂足分别为M、N. (1) 求证:∠ADB=∠CDB; (2) 若∠ADC=90?,求证:四边形MPND是正方形.

3. 如图,四边形ABCD 是平行四边形,DE 平分ADC ∠交AB 于点E ,BF 平分ABC ∠交CD 于点F . (1)求证:DE BF =; (2)连接EF ,写出图中所有的全等三角形.(不要求证明) 4. 如图,在平行四边形ABCD 中,E 为BC 边上的一点.连结AE 、BD ,且AE=AB . (1)求证:ABE EAD ∠=∠; (2)若2AEB ADB ∠=∠,求证:四边形ABCD 是菱形.

5. 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高. (1)求证:四边形ADEF是平行四边形; (2)求证:∠DHF=∠DEF. 6.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F. (1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 7.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

中考数学证明题

中考数学证明题 第一篇:中考数学证明题中考数学证明题o是已知线段ab上的一点,以ob为半径的圆o交ab于点c,以线段ao为直径的半圆圆o于点d,过点b作ab的垂线与ad的延长线交于点e (1)说明ae切圆o于点d (2)当点o位于线段ab何处时,△odc恰好是等边三角形〉?说明理由 答案:一题:显然三角形doe是等边三角形: 理由: 首先能确定o为圆心 然后在三角形obd中:bo=od,再因角b为60度,所以三角形obd为等边三角形; 同理证明三角形oce为等边三角形 从而得到:角bod=角eoc=60度,推出角doe=60度 再因为od=oe,三角形doe为等腰三角形,结合上面角doe=60度,得出结论: 三角形doe为等边三角形 第三题没作思考,有事了,改天再解 二题: 要证明三角形ode为等边三角形,其实还是要证明角doe=60度,因为我们知道三角形ode是等腰三角形。 此时,不妨设角abc=x度,角acb=y度,不难发现,x+y=120度。

此时我们要明确三个等腰三角形:ode;bod;oce 此时在我们在三角形bod中,由于角obd=角odb=x度 从而得出角bod=180-2x 同理在三角形oce中得出角eoc=180-2y 则角bod+角eoc=180-2x+180-2y,整理得:360-2(x+y) 把x+y=120代入,得120度。 由于角eoc+角bod=120度,所以角doe就为60度。 外加三角形doe本身为等腰三角形,所以三角形doe为等边三角形! 图片发不上来,看参考资料里的 1如图,ab⊥bc于b,ef⊥ac于g,df⊥ac于d,bc=df。求证:ac=ef。 2已知ac平分角bad,ce垂直ab于e,cf垂直ad于f,且bc=cd (1)求证:△bce全等△dcf 3. 如图所示,过三角形abc的顶点a分别作两底角角b和角c的平分线的垂线,ad垂直于bd于d,ae垂直于ce于e,求证:ed||bc. 4. 已知,如图,pb、pc分别是△abc的外角平分线,且相交于点p。 求证:点p在∠a的平分线上。 回答人的补充20xx-07-1900:101.在三角形abc中,角abc为60度,ad、ce分别平分角bac角acb,试猜想,ac、ae、cd有怎么样的数

中考几何证明题集锦(主要是与圆有关的)

中考几何证明题 1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3 1 ,扇形的圆心角应为多少度?说明你的结论。 4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4 时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B D E 第3 题图 第2题 ⌒

5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F 6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF . (2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母; ②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. 7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。 设EF 交AD 于G ,连结DF 。 (1) 求证:EF ∥BC ; (2) 已知:DF =2 ,AG =3 ,求 EB AE 的值。 8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。 求证:q p h ?=2 ,c p a ?=2 8 题 · B D C F E A G O 图(a) B O A F D C G E l · B O A 图(b) 第6题·

中考数学圆的证明讲义

【2017】23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时. (1)求弦AC的长; (2)求证:BC∥PA. 【2016】23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G. 求证: (1)FC=FG; (2)AB2=BC?BG.

【2014】23、(本题满分是8分) 如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C. (1)求证:AD平分∠BAC; (2)求AC的长。 A B D O C (第23题图)

【2013】23、(本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=0 90 (2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值. 【2012】23.(8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N . (1)求证:OM=AN ; (2)若⊙O 的半径R=3,PA=9,求OM 的长. (第23题图)

【2011】23.(本题满分8分)如图,在△ABC 中,0 60B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC (2) 若AC=3,求PC 的长 【2010】23.如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE (1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径

中考数学证明题

中考数学证明题 中考数学证明题 ~N累~!!回答人的补充 201X-07-19 00:34 1已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CFEF。 2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD 上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。 3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD 交CE于H,连接BH。求证:BH=AC,BH⊥AC。 4已知ΔABC,AD是BC边上的中线,AB= 2,AC= 4,求AD的取值范围。 5已知ΔABC,ABAC,AD是角平分线,P是AD上任意一点。求证:AB-ACPB-PC。 6已知ΔABC,ABAC,AE是外角平分线,P是AE上任意一点。求证:PB+PCAB+AC。 7已知ΔABC,ABAC,AD是角平分线。求证:BDDC。 8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形, AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。 9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。 10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形 2 1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上, BE=CD。AE交BD于F。求证:AE⊥BD。 2已知ΔABC,ABAC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD 延长线于F。求证:BE+BF=2BD。 3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB= 2,CD=3,求AD。 4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。 5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。 6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。 7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。 8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC 于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。 9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。 10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC 全等形 4 1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形, AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。 2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

中考数学 圆的证明及计算

圆的证明与计算 1、如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E. (1)求证:DE是⊙O的切线; (2)当DE=1,∠C=30°时,求图中阴影部分的面积. 2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若⊙O的半径为3,求阴影部分的面积. 3、如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB 于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE. (1)判断CE与半圆O的位置关系,并给予证明. (2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.

4、已知:如图,△ABC中,内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF与⊙O相切; (2)若BF=5,cosC=,求⊙O的半径. 5、如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B. (1)求证:DA是⊙O切线; (2)求证:△CED∽△ACD; (3)若OA=1,sinD=,求AE的长. 6、如图所示,AB为半圆O的直径,点D是半圆弧的中点,半径OC∥BD,过点C作AD 的平行线交BA延长线于点E. (1)判断CE与半圆OD的位置关系,并证明你的结论. (2)若BD=4,求阴影部分面积.

7、如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F. (1)求证:AC是⊙O的切线. (2)若∠C=30°,连接EF,求证:EF∥AB; (3)在(2)的条件下,若AE=2,求图中阴影部分的面积. 8、如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O的半径; ②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)

浙江省中考数学总复习 专题提升五 与圆有关的证明与计算

专题提升五 与圆有关的证明与计算 一、选择题 1.(2016·邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连结BD ,AD ,若∠ACD =30°,则∠DBA 的大小是( D ) A .15° B .30° C .60° D .75° ,第1题图) ,第2题图) 2.(2016·潍坊)如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M 到坐标原点O 的距离是( D ) A .10 B .8 2 C .413 D .241 3.(2016·昆明)如图,AB 为⊙O 的直径,AB =6,AB ⊥弦CD ,垂足为G ,EF 切⊙O 于点B ,∠A =30°,连结AD ,OC ,BC ,下列结论不正确的是( D ) A .EF ∥CD B .△COB 是等边三角形 C .CG =DG D.BC ︵的长为3 2 π ,第3题图) ,第4题图) 4.(2016·枣庄)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( D ) A .2π B .π C.π3 D.2 3 π 二、填空题 6.(2016·黔西南州)如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,若CD =6,BE =1,则⊙O 的直径为__10__. ,第6题图) ,第7题图) 7.(2016·青岛)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =__62°__. 8.(2016·成都)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的 半径OC =13,则AB =__39 2 __.

[全]中考数学有关圆的证明与计算题型解析

中考数学有关圆的证明与计算题型解析 有关圆的证明与计算涉及到的主要知识点有圆周角定理、垂径定理、解直角三角形、 特殊四边形的判定与性质、特殊三角形的性质、全等与相似三角形的判定与性质等. 本节主要对其相应的题型总结归纳如下: 类型一、切线的性质 【例题1】如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C, 过点C 作CE⊥AB,交⊙O 于点E,垂足为点D. (1) 求证:∠PCB=∠BAC; (2) 过点B 作BM∥PC 交⊙O 于点M,交CD 于点N,连接AM . ①求证:CN=BN; ②若cos P = 4/5 , CN = 5 , 求AM 的长 .

例题1图 【参考答案】 (1)证明:如解图1 所示,连接OC,交BM 于点F . 解图1 ∵PC 是⊙O 的切线, ∴OC⊥PC . ∴∠PCO=90°. ∴∠PCB+∠BCO=90°. ∵AB是⊙O的直径, ∴∠ACB=90°. ∴∠ACO+∠BCO=90°.

∴∠PCB=∠ACO. ∵OC=OA, ∴∠ACO=∠BAC. ∴∠PCB=∠BAC. (2) 例题1图①证明: ∵BM∥PC, ∴∠CBM=∠PCB. ∵CE⊥AB, ∴︵BC=︵BE . ∴∠BAC=∠BCE. ∵∠PCB=∠BAC, ∴∠BCE=∠PCB=∠CBM.

∴CN=BN. ②解: 例题1图∵BM∥PC, ∴∠MBA=∠P. ∴cos ∠MBA=cos P=4/5 . 在Rt △BDN 中, cos ∠MBA=BD / BN=4/5,BN=CN=5,∴BD=4. ∴CD=CN+ND=8. 在Rt △OCD 中,设OC=r, 则OD=OB-BD=r-4.

中考数学几何证明专题训练

中考数学几何证明专题 1、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 2、 已知:AB=CD 、AD//BC ,OA=OD ,求证:OB=OC 3、在菱形ABCD 中,GE ⊥CD 、HF ⊥AD ,求证:GE=HF C B C B D B

4、 图,平行四边形ABCD 中,AE=CF , 求证:∠EBF=∠FDE 5、在菱形ABCD 中,对角线AC 、BD 交于点O ,OE ⊥AB 、OF ⊥BC 、 OG ⊥CD 、OH ⊥AD ,求证:E 、F 、G 、H 共圆 6、在矩形ABCD 中,∠ABC 、∠CDA 的平分线交AD 、BC 于F 、E ,求证:BE=DF 、DE=BF D B B D D A C

7、如图,点E 是正方形ABCD 内一点 ,△BEC 绕点C 顺 时针方向旋转90°到△DFC 的位置,求证:BE ⊥DF 8.如图,E 、F 是□ABCD 的对角线AC 上两点,AE=CF. 求证:(1)△ABE ≌△CDF.(2)BE ∥DF. F E D C B A F A

9.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE=CF, 请你以F 为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可). (1)连结_________, (2)猜想______=________. (3)证明: 附加1.如图,已知正方形ABCD 中,E 为BC 上一点, 将正方形折叠起来,使点A 和点E 重合,折痕为MN,若tan ∠AEN=13 ,DC+CE=10. (1)求△ANE 的面积.(2)求sin ∠ENB 的值. K M E N D C B A

中考数学专题训练圆的证明与计算

圆的证明与计算 1.如图,已知△ABC内接于⊙O,P是圆外一点,PA为⊙O的切线,且PA =PB,连接OP,线段AB与线段OP相交于点D. (1)求证:PB为⊙O的切线; (2)若PA=4 5 PO,⊙O的半径为10,求线段PD的长. 第1题图(1)证明:如解图,连接OA、OB, 第1题解图∵PA=PB,OA=OB,OP=OP, ∴△OAP≌△OBP(SSS), ∴∠OAP=∠OBP, ∵PA为⊙O的切线, ∴∠OAP=90°, ∴∠OBP=90°, ∵OB为⊙O的半径,

(2)解:∵PA =4 5PO ,⊙O 的半径为10, ∴在Rt △AOP 中,OA =PO 2-(45 PO )2=10, 解得PO = 503 , ∴cos ∠AOP =AO OP =OD AO , ∴OD =6, ∴PD =PO -OD =32 3 . 2. 如图,在△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连接DE . (1)求证:AC 是⊙O 的切线; (2)若cos C =3 5 ,AC =24,求直径AE 的长. 第2题图 (1)证明:∵AB =AC ,AD =DC , ∴∠C =∠B ,∠DAC =∠C , ∴∠DAC =∠B , 又∵∠E =∠B , ∴∠DAC =∠E , ∵AE 是⊙O 的直径, ∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠DAC +∠EAD =90°,

∴AE ⊥AC , ∵OA 是⊙O 的半径, ∴AC 是⊙O 的切线; (2)解:如解图,过点D 作DF ⊥AC 于点F , 第2题解图 ∵DA =DC , ∴CF =1 2 AC =12, 在Rt △CDF 中,∵cos C =CF CD =3 5 , ∴DC =20, ∴AD =20, 在Rt △CDF 中,由勾股定理得1622==CF CD DF -, ∵∠ADE =∠DFC =90°,∠E =∠C , ∴△ADE ∽△DFC , ∴AE DC =AD DF , 即 AE 20=16 20 ,解得AE =25, 即⊙O 的直径AE 为25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,过点E 作⊙O 的切线EF ,交BC 于点F . (1)求证:EF ⊥BC ; (2)若CD =2,tan C =2,求⊙O 的半径.

相关文档
最新文档