最佳平方逼近分析解析

最佳平方逼近分析解析
最佳平方逼近分析解析

学生实验报告

实验课程名称应用数值分析

开课实验室

学院数学与统计学院年级

专业班

学生姓名学号

开课时间2014 至2015 学年第一学期

数学与统计学院制

开课学院、实验室: 实验时间 : 2014 年 10月 17日

()min a

x ρ∈Φ

?212a x a x +,法方程的系数矩阵为

11213

11111

2

321m m m m m m +++???

?++++?

矩阵。

解出多项式拟合法方程的系数

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

解析完全平方公式

解析完全平方公式 完全平方公式是进行代数运算与变形的重要的知识基础。该知识点重点是对完全平方公式的熟记及应用.难点是对公式特征的理解 (如对公式中积的一次项系数的理解).我在教学完全平方公式后反思学生中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式与;③运算结果中符号错误;④变式应用难于掌握。现我结合教授完全平方公式的实践经验对完全平方公式作如下解析: 一、理解公式左右边特征 (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性; (二)学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. (三)这两个公式的结构特征是:

1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内); 3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一: 因为 所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。 二、把握运用公式四步曲: 1、“察”:计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用相应乘法法则进行计算. 2、“导”:正确地选用完全平方公式,关键是确定式子中a、b分别表示什么数或式. 3、“算”:注意每步的运算依据,即各个环节的

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

《完全平方公式》典型例题

(1) (1) 《完全平方公式》典型例题利用完全平方公式计算: 2 (2 3X) ; (2) (2ab 4a)2 ; (3) (1am2b)2 . 计算: (3a 1)2 ; (2) ( 2x 用完全平方公式计算: (3y |X)2 ; (2) 3 运用乘法公式计算: (X a)(x (X 1)2(x 计算:(2x 3)2a)(X2 八2 / 2 1) (X 1 2 4X; 3y)2; (3) (a b)2 ; a2); (2) 1)2 . (2) (2a b 利用完全平方公式进行计算: 已知a b 3,ab a2 b2; (2) a2 若 3( a2b2c2) (3x y)2. (3) (3a (a b c)(a b (1) 2012 ; (2) 12,求下列各式的值. 2 2 ab b2; (3) (a b)2 . (a b c)2,求证:a b 2 4b 5c)2. c) ; ⑶(X y)2 (X y)2? 992 ; (3) (30-)2 3

参考答案 这几个题都符合完全平方公式的特征,可以直接应用该公式进 2 2 2 22 2 2 3x (3x)2 4 12x 9x 2 ; 1 (3) (-am 说明:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该 公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现 (2 3x)2 4 12x 3x 2 的错误. 例2分析:(2)题可看成[(2x ) 3y ]2 ,也可看成(3y 2x )2 ;( 3)题可看 成[(3x y )]2 ,也可以看成[(3x ) y ]2 ,变形后都符合完全平方公式. 解:(1) (3a 1) (3a) 2 3a 1 1 9 a 2 6a 1 (2)原式(2x)2 2 ( 2x) 3y (3y)2 2 2 4x 12xy 9y 或原式(3y 2x)2 2 2 9y 12xy 4x (3)原式[(3x y)]2 (3x y)2 (3x)2 2 3x 2 2 或原式(3x)2 2 ( 3x) y (2) (2ab 4a)2 (2ab)2 2 2ab 4a (4a)2 4a 2b 2 16a 2b 16a 2 ; 例1分析: 行计算. 解:( 1)(2 3x)2 卜荷 2amb 4b 2. 2b)2 (3y)2 2 3y 2x (2x)2

最佳平方逼近方法

2016-2017(1)专业课程实践论文用最佳平方逼近法求逼近函数 肖夏,29,R数学12-1班

一、算法理论 设函数组φ0,φ1,…,φm 都是[a ,b ]上的连续函数,并且在[a ,b ]上线性无关。以此函数组为基,生成空间C [a ,b ]上的一个子空间 H =Span {φ0,φ1,…,φm } 则H 中的任意一个元素为 p x = c j φj x m j =0 对空间C [a ,b ]的任意两个函数f ,g ,定义内积 f , g = ω x f x g x dx b a 对于给定的函数f (x )∈C [a ,b ],若p ? x ∈H ,满足 f ?p ?,f ?p ? =min p∈H f ?p ,f ?p 则称p ? x 为子空间H 中对于f (x )的最佳逼近平方元素。 特别地,若φj x =x j ,j =0,1,…m 则称满足条件的p ? x ∈H ,为函数f x 在区间[a ,b ]上带权ω x 的m 次最佳平方逼近多项式。 设f (x )∈C [a ,b ],p ? x ∈H 是子空间H 中对于f (x )的最佳平方逼近元素的充分必要条件是 f ?p ?,φj =0,(j =0,1,…,m )或对于任意一个p x ,总有 f ?p ?,p =0。 求最佳平方逼近元素p ? x = c k ?φk x m k =0,只要求出c k ? 。 因 f ?p ?,φj = f ,φj ? c k ? φi ,φj =0m k =0 得 c k ? φi ,φj = f ,φj m k =0 得 φ0,φ0 ? φ0,φm ??? φm ,φ0 ? φm ,φm c 0? ?c m ? = f ,φ0 ? f ,φm 求出c k ?,带入p ? x = c k ? φk x m k =0即可。

因式分解——完全平方公式

14.3.2公式法(完全平方公式) 一、内容及内容解析 1.内容:本节课的主要内容是利用完全平方公式进行因式分解。 2.内容解析:本节是人教版八年级上册第十四章14. 3.2公式法的内容。主要是利用完全 平方公式进行因式分解。因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其 是多项式的乘法关系十分密切。因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因 式分解,是学生进一步学习数学不可或缺的工具。 基于以上分析,确定本节课的教学重点是:能准确判断全平方公式,会用完全平方公式进行因式分解。 二、目标及目标解析 1.目标: (1)知道完全平方式的特征,会用完全平方公式分解因式; (2)能综合运用提公因式法、完全平方公式分解因式。 2.目标解析: 达成目标(1)的具体标志是:学生通过自学,小组合作的方式,能准确说出完全平方式 的特征、并会判断一个式子是否是完全平方式,是哪两个数的完全平方和(或差),从而将这个式子进行因式分解。 达成目标(2)的具体标志是:学生能综合运用提公因式法、完全平方公式分解因式,并 且会判断一个式子是否已经分解到最简,还能否继续分解。从而培养学生的观察和联想能力。 再以课堂习题加以巩固,提高学生灵活运用知识的能力,使新知识得到巩固和升华。 三、教学问题诊断分析 在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因 式分解。这两种方法都是整式乘法的逆运用,所以应先复习整式乘法中的完全平方公式, 再学习用公式法分解因式,可以加强学生对公式的熟练使用。 在思想上:学生个体有所差异,所以应准备不同梯度的题目,让不同层次的学生 尝试完成不同难度的题目,从而达到让“差生吃好,优生吃饱”的教学效果。另外,平 方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。 基于以上分析,确定本节课的教学难点是:能准确判断完全平方式,并能综合运用提公因式法、完全平方公式分解因式。 四、教学过程设计: ●教学基本流程:课前回顾——揭示(学习)目标——指导自学——巡视自学——检查(自学)效果——讨论(学生),点拨(教师)——当堂训练——课后小结 ●教学情景: (一)课前回顾: 1.因式分解的定义: 把一个()化成几个()的积的形式。 练一练: 2a-2= ;a2-1= ;2a2-2= ; 因式分解要注意:有公因式先提公因式;分解因式要彻底

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

函数的一次最佳平方逼近

2013-2014(1)专业课程实践论文题目:函数的最佳平方逼近

一、算法理论 下面研究在区间[],a b 上一般的最佳平方逼近问题。 对于给定的函数()[,]f x C a b ∈,如果存在 *01(){(),(),,()}n S x Span x x x ???∈ 使得 []22*()()()min ()()()b b a a a x b x f x S x dx x f x s x dx ρρ≤≤??-=-???? 则称*()s x 是()f x 在集合01{(),(),,()}n Span x x x ??? 中的最佳平方逼近函数。 为了求*()s x ,由式可知,该为题等价于求多元函数。 若用H 表示行列式2(1,,,....,)n Gn G x x x =对应的矩阵,则*()s x , H 称为Hilbert 矩阵。记 01(,,....,)T n a a a a =,01(,,....,)T n d d d d = 其中 (,)(0,1,.....,)k k d f x k n == 则方程 Ha d = 的解*(0,1,.....)k k a a k n ==即为所求。 二、算法框图

三、算法程序

#include #include double function1(double x) { double s1; s1=1/sqrt(4+x*x);//替换函数 return s1; } double function2(double x) { double s2; s2=x/sqrt(4+x*x);//替换函数 return s2; } double ReiterationOfSimpson(double a,double b,double n,double f(double x)) { double h,fa,fb,xk,xj; h=(b-a)/n; fa=f(a); fb=f(b); double s1=0.0; double s2=0.0; for(int k=1;k

完全平方公式

年级八年级课题完全平方公式课型新授教学媒体多媒体 教学目标知识 技能 1.经历探索完全平方公式的过程,使学生感受从一般到特殊的研究方法,进一 步发展符号感和推理能力. 2.会推导完全平方公式,能说出公式的结构特征,并能运用公式进行简单计算.过程 方法 进一步培养学生用数形结合的方法解决问题的能力. 情感 态度 了解数学的历史,激发学习数学的兴趣.鼓励学生自己探索算法的多样化,有意 识地培养学生的创新能力. 教学重点(a±b)2=a2±2ab+b2的推导及应用. 教学难点完全平方公式的推导和公式结构特点及其应用. 教学过程设计 教学程序及教学内容师生行为设计意图一、复习旧知 探究,计算下列各式,你能发现什么规律? (1)(p+1)2 =(p+1)(p+1)=_________; (2)(m+2)2=(m+2)(m+2)=_________; (3)(p-1)2 =(p-1)(p-1)=_________; (4)(m-2)2=(m-2)(m-2)=_________. 答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4. 二、探究新知 1.计算:(a+b)2 和(a-b)2 ;并说明发现的规律。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2. (a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab -ab+b2=a2-2ab+b2. 2.归纳完全平方公式 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即学生利用多项式与 多项式相乘的法则 进行计算,观察计算 结果,寻找一般性的 结论,并进行归纳 教师让学生利用多 项式的乘法法则进 行推理. 教师让学生用自己 的语言叙述所发现 的规律,允许学生之 间互相补充,教师不 急于概括. 这里是对前边 进行的运算的 复习,目的是 让学生通过观 察、归纳,鼓 励他们发现这 个公式的一些 特点,如公式 左右边的特 征,便于进一 步应用公式计 算 公式的推导既 是对上述特例 的概括,更是 从特殊到一般 的归纳证明, 在此应注意向 学生渗透数学

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式(含答案)

第2课时 完全平方公式 知识点 1 完全平方公式 1.填空:(1)(x +2)2=x 2+2·________·________+________2 =__________; (2)(2a -3b )2 =________2 +________+________2 =__________. 2.下列计算正确的有( ) ①(a +b )2 =a 2 +b 2 ; ②(a -b )2 =a 2 -b 2 ; ③(a +2b )2 =a 2 +2ab +2b 2 ; ④(-2m -3n )2 =(2m +3n )2 . A .1个 B .2个 C .3个 D .4个 3.若x 2 +16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .64 4.计算:(1)(2x +y )2 =______________; (2)? ?? ??12x -2y 2 =______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2 =______________. 5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2 ; (3)(x +y -3)2 . 知识点 2 完全平方公式的几何意义 6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( ) 图8-5-3 A .(a -b )2+4ab =(a +b )2 B .(a -b )(a +b )=a 2-b 2 C .(a +b )2=a 2+2ab +b 2 D .(a -b )2=a 2-2ab +b 2 知识点 3 利用完全平方公式进行简便计算 7.计算:3012 =________. 8.用简便方法计算:20182-4036×2019+20192 . 知识点 4 与完全平方公式有关的化简求值问题 9.(1)[2018·宁波]先化简,再求值:(x -1)2 +x (3-x ),其中x =-12. (2)已知代数式(x -2y )2 -(x -y )(x +y )-2y 2 . ①当x =1,y =3时,求代数式的值; ②当4x =3y 时求代数式的值.

苏教版七年级下册数学[完全平方公式(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 【400108 因式分解之公式法 知识要点】 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

平方差和完全平方公式经典例题

典例剖析 专题一:平方差公式 例1:计算下列各整式乘法。 ①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n --- ③数字变化98102? ④系数变化(4)(2)24n n m m +- 》 ⑤项数变化(32)(32)x y z x y z ++-+ ⑥公式变化2(2)(2)(4)m m m +-+ ◆变式拓展训练◆ … 【变式1】2244()()()()y x x y x y x y ---+++ 【变式2】22 (2)(4)33b b a a --- 【变式3】22222210099989721-+-++-…

、 专题二:平方差公式的应用 例2:计算 22004200420052003-?的值为多少 , ◆变式拓展训练◆ 【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)?+?+ 【变式3】(25)(25)x y z x y z +-+-++ 【变式4】已知a 、b 为自然数,且40a b +=, (1)求22 a b +的最大值;(2)求ab 的最大值。 ( 专题三:完全平方公式

例3:计算下列各整式乘法。 ①位置变化:22()()x y y x --+ ②符号变化:2 (32)a b -- & ③数字变化:2197 ④方向变化:2(32)a -+ ⑤项数变化:2(1)x y +- ⑥公式变化22 (23)(46)(23)(23)x y x y x y x y -+-+++ \ ◆变式拓展训练◆ 【变式1】224,2a b a ab b +=++则的值为( ) 【变式2】已知221() 4.,()_____2 a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( ) 【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值 / 专题四:完全平方公式的运用

完全平方公式讲解

完全平方公式讲解 第一部分概念导入 1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律? (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______; (2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______; 2.学生计算 3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1 (m+2)2=(m+2)(m+2)= m2+4m+4 (2)(p-1)2=(p-1)(p-1)= p2-2p+1 (m-2)2=(m-2)(m-2=m2-4m+4 4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。 推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】 得到公式,分析公式 (1).结论:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即: 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. (2)公式特征 左边:二项式的平方 右边:二项式中每一项的平方与这两项乘积2倍的和. 注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“+”,若这两项异号,则2ab的符号为“-”. (3)公式中字母可代表的含义 公式中的a和b可代表一个字母,一个数字及单项式. (4)几何解释 图1-5 图1-5中最大正方形的面积可用两种形式表示:①(a+b)2②a2+2ab+b2,由于这两个代数式表示同一块面积,所以应相等,即(a+b)2=a2+2ab+b2 因此,用几何图形证明了完全平方公式的正确性. 【学习方法指导】 [例1]计算 (1)(3a+2b)2(2)(mn-n2)2 点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

相关文档
最新文档