第七章-钢筋与混凝土之间的粘结

第七章-钢筋与混凝土之间的粘结
第七章-钢筋与混凝土之间的粘结

第七章钢筋与混凝土之间的粘结

§7.1 概述

钢筋与混凝土的粘结是钢筋与其周围一定影响范围内混凝土的一

种相互作用,它是这两种材料共同工作的前提之一,也是对钢筋混凝土构件的承载力、刚度以及裂缝控制起重要影响的因素之一。粘结的退化和失效必然导致钢筋混凝土结构力学性能的降低和破坏。随着有限元法在钢筋混凝土结构非线性中的应用,钢筋与混凝土之间粘结和滑移的研究更显重要。

7.1.1 粘结应力及其分类

1.粘结应力的定义

粘结应力是指沿钢筋与混凝土接触面上的剪应力。它并非真正的钢筋表面上某点剪应力值,而是一个名义值(对于变形钢筋而言),是指在某个计算范围(变形钢筋的一个肋的区段)内剪应力的平均值,且对于变形钢筋来说,钢筋的直径本身就是名义值。

2.粘结应力分类

·弯曲粘结应力

由构件的弯曲引起钢筋与混凝土接触面上的剪应力。可近似地按材料力学方法求得。由于在混凝土开裂前,截面上的应力不会太大,所以一般不会引起粘结破坏,对结构构件的力学性能影响不大。

该粘结主要体现混凝土截面开裂前钢筋与混凝土的协同工作机理。其大小与弯曲粘结应力及截面的剪力分布有关,即对于未开裂截面,弯曲粘结应力的分布规律与剪力分布相同。

·锚固粘结应力

钢筋的应力差较大,粘结应力值高,分布变化大,如果锚固不足则会发生滑动,导致构件开裂和承载力下降。粘结破坏是一种脆性破坏。

·裂缝间粘结应力

开裂截面的钢筋应力,通过裂缝两侧的粘结应力部分地向混凝土传递,使未开裂截面的混凝土受拉,也使得混凝土内的钢筋平均应变或总变形小于钢筋单独受力时的相应变形,有利于减小裂缝宽度和增大构件的刚度,此即“受拉刚化效应”。

裂缝间粘结应力属于局部粘结应力范围。该粘结应力数值的大小反映了受拉区混凝土参与工作的程度。局部粘结应力应变分布复杂,存在着混凝土的局部裂缝和两者之间的相对滑移,平截面假定不再符合,且影响因素较多,如剪切破坏、塑性铰的转动能力以及结构中的弹塑性分析等。

7.1.2 研究现状

由于影响钢筋与混凝土之间粘结作用的因素较多,且差异性较大,较难给出理想的、普遍共同接受的计算理论。目前,还没有比较完整的、有充分论据的粘结滑动理论。各国规范处理方法各不相同,另外一方面,笼统的构造要求大大忽视了对粘结问题的进一步的研究。

7.1.3 研究的重要性

·工程实践上的重要性——钢筋的锚固、搭接和细部构造;

·理论上的重要性——剪切破坏、裂缝宽度、塑性铰转动能力以及弹塑性分析问题的源头;

·有限元方法在钢筋混凝土结构中应用的要求,需给出粘结应力与相对滑动的数学模式;

·钢筋混凝土结构的动力反应,尤其是在大变形下的粘结性能的研究,在很大程度上取决于构件的连接部位的恢复力特性,粘结退化是使节点区强度丧失和刚度降低的主要原因。

§7.2 粘结性能试验

7.2.1 试验方法

结构中钢筋粘结部位的受力状态复杂,很难准确模拟。根据试验性质以及获取数据的内容,分为静力试验方法和动力试验方法。

1.静力试验方法

·拔出试验

最初的试验方法,将钢筋埋置于混凝土中心。由于加载端混凝土受到混凝土的局部挤压,与结构中钢筋端部附近的应力状态差别大,影响了试验结果的真实性。因此,将其改为试件加载端的局部钢筋与周围混凝土脱空的试件。但是,螺纹钢筋采用这种试验方法时,试件常发生劈裂破坏。所以,又设置横向钢筋(螺旋箍筋)以改善其性能。(三种试件图7-1所示)

·梁式试验

梁式试验(图7-2)是为了更好地模拟梁端锚固粘结性能状态。由于拔出试验不能反映钢筋锚固区域存在弯矩和剪力共同作用的影响。图7-1

拔出试验的试件

梁式试验试件梁端无粘结,中央为10d 的粘结区域,使粘结应力分布更为均匀。

这两类试件的对比试验结果表明:材料和粘结长度相同的试件,拔出试验比梁式试验得到的平均粘结强度高,其比值约为1.1-1.6。除了钢筋周围混凝土应力状态差别外,后者的混凝土保护层较薄也是主要原因。

7-2 梁式试验的构件

无论哪种试验,试验中均需要量测钢筋的拉力、拉力极限值以及钢筋加载端和自由端与混凝土的相对滑移量。

必要时,需要在钢筋内部埋置应变片,以准确量测钢筋的应变。按试验相邻电测点的钢筋应力差计算相应的粘结应力,从而得到粘结应力的分布规律。此外,还可以通过在裂缝处涂上诸如红色墨水以观察粘结裂缝的发展规律。

·局部粘结-滑移试验

钢筋混凝土结构非线性分析需要建立钢筋与混凝土在接触面上的力和滑移的物理模型,即局部粘结应力和局部滑移的本构关系。但是,通常的粘结试验得到的只是平均粘结应力与试件加载端或自由端的关系,并不代表试件内部的关系。

目前,采用两种局部粘结-滑移试验:一种是短埋长的拔出试验,一种是埋长较长的拉伸试验,如图7-4所示。

(a)短埋长的拔出试验装置(b)长埋长的拔出试验装置

图7-4 不同埋长的拔出试验装置

短埋长试验是为了使量测的平均粘结应力及自由端具有局部对应

关系,使得粘结应力及滑动量沿埋长分布接近于均匀,可近似地代表均布关系。

当钢筋与混凝土有较大的粘结长度时,一般情况下钢筋与混凝土的应变和沿试件长度上是变化的。因此,钢筋的位移,及与钢

筋接触面上的混凝土位移,以及钢筋与混凝土之间的相对滑移=- 沿试件长度方向上也是变化的。如果能够直接量测试件内部的钢筋与混凝土在接触面上的相对滑动量,则局部粘结应力与局部滑移的关系便不难得出。但是应该指出,在不会过分地破坏粘结的条件下,量测试件内部的相对滑动量

的问题,目前还没有可靠的解决方法。另外一种途径是通过测定钢筋及混凝土的应变分布,利用系数关系间接地得出:

2.动力试验方法

·梁柱节点试验

梁柱节点试验可较为真实地模拟在轴向力和剪力作用下局部粘结滑移关系。量测的结果有的以粘结应力-滑移关系体现,有的以梁端弯矩和转角来体现。

·Tassios 装置

在其静力加载装置基础上改装而成,可以测得局部粘结应力与相对滑移之间的关系,但是不能考虑轴向力的影响。 图7-5

拉伸试件中的应变及位移分布

综上所述,用于粘结-滑移的试验装置众多,都具有自己的特点,没有形成一个共同认可的标准试验装置,阻碍了各个试验数据之间的对比,不利于粘结作用的深入研究。

7.2.2 拔出试验的粘结和滑移

拔出试验在钢筋拔出过程中,钢筋的应力不断增加,而粘结应力的峰值却不断地后移,即从加载端逐渐地退出工作,图7-6是Amstutz 的试验曲线。应该指出,实际的钢筋应变不是光滑的,因而由钢筋反算的粘结应力:

(式中d 为钢筋的直径)也不是光滑的。在变形钢筋中,由于肋的咬合作用以及次生斜裂缝出现,混凝土的拉应力沿杆长也必然是不连续的,当钢筋上所贴的应变片越长,间距越大,这一不连续性越被掩盖。此外,在一定的埋长下,自由端的滑移比加载端要小得多。

图7-6 拔出试验中钢筋应力

目前拉伸试验是为了模拟构件主裂缝的间距,因而较短。钢筋在梁端拉伸后,试件中点应是不动点。由于试件较短,钢筋应力一开始沿长度的差别就不那么大,但粘结应力最大值则随着肋左混凝土退出工作而向内移动。

§7.3 粘结机理

7.3.1 粘结力的组成

粘结力主要是由三部分组成:

1.胶结力

混凝土水化产生的凝胶体对钢筋表面产生化学胶结力。这种胶结力一般很小,仅在受力阶段的局部无滑移区域起作用,一旦接触面发生相对滑动时,该力立即消失,且不可恢复。

2.摩阻力

混凝土硬化时体积收缩,将产生裹紧钢筋的摩阻力。这种摩阻力的大小取决于握裹力和钢筋与混凝土表面的摩擦系数。对钢筋产生的垂直于摩擦面的正压力越大,接触面的粗糙程度越大,摩阻力就越大。

3.机械咬合力

钢筋表面凹凸不平与混凝土之间产生机械咬合力。对于光圆钢筋,表面的自然凹凸程度较小,这种作用力较小,因此它与混凝土的粘结强度是较低的,需要设置弯钩以阻止钢筋与混凝土之间产生较大的相对滑动;对于变形钢筋,肋的存在可显著增加钢筋与混凝土的机械咬合作用,从而大大增加粘结强度,这是它粘结组成的很大一部分。 图

7-7 变形钢筋的粘结机理

其实,粘结力的三个部分都与钢筋表面的粗糙度和锈蚀程度密切相关,在试验中很难单独量测或严格区分。而且,在钢筋的不同受力阶段,随着钢筋滑移的发展、荷载(应力)的加卸载等原因,各部分粘结作用也有变化。

对于光圆钢筋,其粘结力主要来自前两项;而变形钢筋的粘结力三项都包括,其中第三项占大部分。二者的差别,可以用订入木料中的普通钉和螺丝钉的差别来解释。

7.3.2 光圆钢筋与混凝土的粘结

一般认为,光圆钢筋与混凝土的握裹强度由水泥凝胶体和钢筋表面的化学粘结所组成。但是即使在低应力下也将产生相当大的滑移,并可能破坏混凝土和钢筋间的这种粘结。一旦产生这样的滑移,握裹力将主要取决于钢筋表面的粗描程度和埋置长度内钢筋横向尺寸的变化。

(a) 曲线 (b) 应力和滑移分布

图7-8 光圆钢筋的拔出试验结果如图7-8所示光圆钢筋应力、粘结应力以及加载端和自由端滑

移量的试验曲线。从中可以知道:

(1)随着拉拔力的增大,粘结应力图形的峰值由加载端向内部移动,临近破坏时,移至自由端附近,同时粘结应力图形的长度(有效埋长)也达到了自由端,钢筋的应力渐趋均匀;

(2)当荷载达到后,钢筋的受力段和滑移段继续扩展,加载端的滑移()明显成曲线增长,但自由端无滑移。粘结应力不仅分布区延伸,峰点加快向自由端漂移,其形状也由峰点右偏曲线转为左偏曲线;

(3)当时,钢筋的自由端开始滑动,加载端的滑移发展迅速,此时滑移段已遍及钢筋全埋长,粘结应力的峰点很靠近自由端。加载端附近的粘结破坏严重,粘结应力已很小,钢筋的应力接近均匀;

(4)当自由端的滑移为时,试件的荷载达到最大值,即达到钢筋的极限粘结强度。此后,钢筋的滑移(和)急速增大,拉拔力由钢筋表面的摩阻力和残存的咬合力承担,周围混凝土被碾碎,阻抗力下降,形成曲线的下降段。

上述是针对短埋长的试件,其破坏形式是钢筋从混凝土中被徐徐拔出;如果是长埋长的试件,其破坏形式是钢筋受拉屈服,而钢筋不被拔出。可以通过此试验确定最小锚固长度。

7.3.3 变形钢筋与混凝土的粘结

1.无横向配筋时变形钢筋的粘结性能试验

变形钢筋和光圆钢筋的主要区别是钢筋表面具有不同形状的横肋

或斜肋。变形钢筋受拉时,肋的凸缘挤压周围混凝土,大大地提高了机械咬合力,改变粘结受力机理,有利于钢筋在混凝土中的粘结锚固性能。

图7-9所示为无横向配筋的粘结性能试验结果,由图可知:

(1)开始受力后钢筋的加载端局部就由于应力集中而破坏了与混凝土的粘结力,发生滑移;

(2)当荷载增大到时,钢筋自由端的粘结力也被破坏,开始出现滑移,加载端的滑移加快增大,钢筋的受力区域和滑移区

第三节钢筋和混凝土粘结强度对比试验.

第三节钢筋和混凝土粘结强度对比试验 第10.3.1条本节适用于直径大于10mm的各类非预应力钢筋的粘结强度对比试验,并根据对比试验结果评价钢筋和混凝土粘结性能。 第10.3.2条钢筋和混凝土的粘结强度应采用无横向钢筋的立方体中心拔出试件(简称拔出试件)确定。拔出试件应符合下列要求: 一、拔出试件应采用边长为10倍钢筋直径的混凝土立方体试件(图10.3.2)。钢筋放置在立方体的中轴线上,埋入部分长度和无粘结部分长度各为5d。钢筋伸出混凝土试件表面的长度:自由端为20mm,加载端应根据垫板厚度、穿孔球铰高度及加载装置的夹具长度确定,但不宜小于300mm; 二、钢筋表面不应有锈蚀、油污及不正常的横肋轧制标记,安装百分表的钢筋端面应加工成垂直于钢筋轴的平滑表面; 在混凝土中无粘结部分的钢筋应套上硬质的光滑塑料套管,套管末端与钢筋之间空隙应封闭; 三、试件的混凝土应采用普通骨料,粗骨料最大颗粒粒径不得大于1.25倍钢筋直径; 试件的混凝土强度等级为C30,混凝土立方体抗压强度允许偏差应为 ±3MPa。 四、拔出试件数量每组应制作六个。应同时制作混凝土立方体试件,每组三个,其振捣方法与养护条件应与拔出试件一致; 五、试件应在钢模或不变形的试模中成型。模板上应预留钢筋位置孔。宜用振动台振捣;

试件的浇注面应与钢筋纵轴平行。钢筋应与混凝土承压面垂直,并水平设置在模板内。钢筋的两纵肋平面应放置在水平面上; 六、试件应在标准养护室内进行养护。在试件龄期为28d时进行试验。 第10.3.3条试验装置承压垫板的边长不应小于拔出试件的边长,其厚度不应小于15mm。垫板中心孔径应为2倍钢筋直径(图10.3.3)。 第10.3.4条加载速度应根据各种钢筋的直径确定,每种钢筋施加荷载的速度应按下式计算: 式中V F——加载速度(kN/min); d——钢筋直径(mm)。 加载速度应均匀,不应施加冲击荷载。

混凝土试题及答案

西南交通大学2010-2011学年第(一)学期考试试卷A 课程代码 课程名称 结构设计原理I 考试时间 120分钟 阅卷教师签字: 一、单项选择题(每小题1.5分,共15分) 在下列各题给出的四个备选项中只有一个是正确的,请将其代码填写在下面的表格中。 1. 钢筋混凝土构件中纵筋的混凝土保护层厚度是指( B )。 A. 箍筋外表面至构件表面的距离;B. 纵筋外表面至构件表面的距离; C. 箍筋形心处至构件表面的距离;D. 纵筋形心处至构件表面的距离。 2. 两个轴心受拉构件,其截面形式和尺寸、混凝土强度等级、钢筋级别均相同,只是纵筋配筋率不同,构件受荷即将开裂时(尚未开裂),( D )。 A. 配筋率大的构件钢筋应力σs 也大; B. 配筋率大的构件钢筋应力σs 小; C. 直径大的钢筋应力σs 小; D. 因为混凝土极限拉应变基本相同,所以两个构件的钢筋应力σs 基班 级 学 号 姓 名 密 封装订线 密 封装 订线 密封 装 订 线

本相同。 3. 为保证受扭构件的纵筋和箍筋在破坏时基本达到屈服,设计时需满足 ( D )的要求。 A. 混凝土受压区高度x ≤ ξb h0; B. 配筋率大于最小配筋率; C. 纵筋与箍筋的配筋强度比系数ζ 在0.6至1.7之间; D.上述A、B、C都正确 4. 一般螺旋箍筋柱比普通箍筋柱承载能力提高的主要原因是因为 ( A )。 A. 螺旋箍筋约束了混凝土的横向变形使其处于三向受压状态; B. 螺旋箍筋参与受压; C. 螺旋箍筋使混凝土更加密实,其本身又能分担部分压力; D. 螺旋筋为连续配筋,配筋量大。 5. 大偏心受拉截面破坏时,若受压区高度x<2a s’,则(A)。 A. 钢筋A s达到受拉设计强度,钢筋A s’达到受压设计强度; B. 钢筋A s达到受拉设计强度,钢筋A s’达不到受压设计强度; C. 钢筋A s达不到受拉设计强度,钢筋A s’达到受压设计强度; D. 钢筋A s、A s’均达不到设计强度。 6. 钢筋混凝土受弯构件的挠度计算是按(A)。 A. 短期荷载效应组合和长期刚度计算; B. 短期荷载效应组合和短期刚度计算; C. 长期荷载效应组合和长期刚度计算; D. 上述A、B、C均不对。 7. 某钢筋砼梁经计算挠度过大,为提高该梁的抗弯刚度,最为有效的方 法是( B )。 A. 提高砼强度等级; B. 加大截面的高度;

钢筋混凝土结构习题答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力 。 3、弯起筋应同时满足 、 、 ,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足 、 ,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计 算以 阶段为依据;③承载能力计算以 阶段为依据。 5、界限相对受压区高度b ζ需要根据 等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按 截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。 8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁 的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力满足:V ≤ 时,仍可不必计算 抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的 剪力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。

钢筋与混凝土的粘结

钢筋与混凝土的粘结 随着社会的发展,技术的进步,钢筋混凝土材料在住房、建筑、交通、军事、水利等领域被广泛应用,钢筋混凝土结构就是利用了钢筋的高抗拉强度和混凝土的高抗压强度,而钢筋和混凝土之间的足够粘结是保证两者共同受力的前提。目前,两者完美的结合,造就了许多建筑奇迹,满足了结构的高强性、耐久性、抗灾性、抗震性等实用要求,保证了结构的使用寿命和使用安全。同时,也给人们的生产生活带来了翻天覆地的变化,让人们享受到安全舒适的生存环境。由此可见,钢筋和混凝土的粘结非常重要,下面从以下几个方面加以论述。 一、粘结力的作用 粘结力是指粘结剂与被粘结物体界面上分子间的结合力,粘结力使得钢筋和混凝土两种性质不同的材料在一起共同受力、共同工作,并承受构件因受荷在两种材料之间产生的剪应力,两者不至于发生滑移。如果粘结力失效,钢筋混凝土构件就会发生破坏。可见,粘结力的大小,直接影响着构件的稳定性和使用寿命。 二、粘结力的组成及粘结机理 钢筋和混凝土的粘结力由三部分组成: 1、化学胶结力 混凝土在硬化过程中,水泥胶体与钢筋之间产生的吸附

胶着作用,这种吸附作用力来自浇筑时水泥浆体对钢筋表面氧化层的渗透,以及水化过程中水泥晶体的生长和硬化,这种作用力一般比较小,仅在受力阶段的局部无滑移区域起作用,当接触面发生相对滑移时,该力即消失。 2、摩阻力 由于混凝土凝固时的收缩,使钢筋周围的混凝土握裹在钢筋上,当钢筋和混凝土之间出现相对滑移的趋势,则此接触面上将产生摩阻力。 对于光圆钢筋表面轻度锈蚀有利于增加摩阻力,但摩阻作用也很有限;对于光面钢筋表面的自然凹凸程度很小,机械咬合也不大,因此,光面钢筋与混凝土的粘结强度是较低的,为保证光面钢筋的锚固,通常需要在钢筋端部弯钩、弯折或焊短钢筋,以阻止钢筋与混凝土间产生较大的相对滑动。 3、机械咬合力 即钢筋表面凹凸不平与混凝土之间产生的机械咬合力作用力,对于光圆钢筋这种咬合力来自表面的粗糙不平。将钢筋表面轧制出肋形成带肋钢筋,即变形钢筋,可显著增加钢筋与混凝土的机械咬合作用,从而大大增加了粘结强度。 三、粘结问题的分类及相应的试验方法

天大18年秋-钢筋混凝土结构作业题库和答案

下列( )状态被认为超过正常使用极限状态。 A.影响正常使用的变形 B.因过度的塑性变形而不适合于继续承载 C.结构或构件丧失稳定 D.连续梁中间支座产生塑性铰 混凝土的弹性模量是指( )。钢筋混凝土构件的抗力主要与其( )有关。 A.材料强度和截面尺寸 B.材料强度和荷载 C.只与材料强度 D.荷载 A.原点弹性模量 B.切线模量 C.割线模量 D.变形模量 混凝土强度等级应按立方体抗压强度标准值确定。 A.正确 B.错误 下列哪个状态为正常使用的极限状态( )。 A.轴心受压构件发生整体失稳 B.构件材料发生疲劳破坏 C.雨蓬发生倾覆 D.构件裂缝宽度超过使用容许值 剪跨比是指计算截面至支座截面的距离与截面有效高度的比值 A.正确 B.错误 下列关于荷载分项系数的叙述()不正确。 C 超筋梁正截面极限承载力与什么有关: A.混凝土强度等级有关 B.配筋强度有关 C.混凝土级别和配筋强度都有关 D.混凝土级别和配筋强度都无关 发生在无腹筋梁或腹筋配得很少的有腹筋梁1,一般出现在剪跨比m>3的情况,0出现()。 A.斜拉破坏 B.剪压破坏 C.斜压破坏 D.以上均可

下列说法正确的是( )。 A.加载速度越快,测得的混凝土立方体杭压强度越低 B.棱柱体试件的高宽比越大,测得的抗压强度越高 C.混凝土立方体试件比棱柱体试件能更好地反映混凝土的实际受压情况 D.混凝土试件与压力机垫板间的摩擦力使得混凝土的抗压强度提高。 在保持不变的长期荷载作用下,钢筋混凝土轴心受压构件中,( )。 A.徐变使混凝土压应力减小 B.混凝土及钢筋的压应力均不变 C.徐变使混凝土压应力减小,钢筋压应力增大 D.徐变使混凝土压应力增大,钢筋压应力减小。 下面正确的是( )。 A.构件的承载力满足了目标可靠指标的要求,也就满足了允许失效概率的要求 B.受弯构件在正常使用条件下是不会出现裂缝的 C.可变荷载不参与荷载长期效应组合 D.荷载的标准值大于其设计值 保持不变的长期荷载作用下,钢筋混凝土轴心受压构件中,混凝土徐变使( )。 A.混凝土压应力减少,钢筋的压应力也减少 B.混凝土及钢筋的压应力均不变 C.混凝土压应力减少,钢筋的压应力增大。 D. 可变荷载的分项系数() A.对结构有利时<1.0 B.无论何时>1.0 C.无论何时=1.4 D.作用在挡土墙上=1.4 热轧钢筋冷拉后,( )。 A.可提高抗拉强度和抗压强度 B.只能提高抗拉强度 C.可提高塑性,强度提高不多 D.只能提高抗压强度。 超筋梁正截面极限承载力与什么有关: A.混凝土强度等级有关 B.配筋强度有关 C.混凝土级别和配筋强度都有关 D.混凝土级别和配筋强度都无关 承载力极限状态下结构处于失效状态时,其功能函数()。 A.大于零 B.小于零 C.等于零 D.以上都不是 我国建筑结构设计规范采用( ) 。 A.以概率理论为基础的极限状态设计方法 B.以单一安全系数表达的极限状态设计方法 C.容许应力法

k7第七章 钢筋混凝土偏心受力构件承载力计算(课件)-13页word资料

7 钢筋混凝土偏心受力构件承载力计算 7.1 概述 偏心受力构件 ● 偏心受拉构件 ● 偏心受压构件 ● 单向偏心受压构件 ● 双向偏心受压构件 偏心受压构件 ● 矩形截面 ● 工字形截面 ● 箱形截面 ● 圆形截面 偏心受拉构件 ● 矩形截面 7.2 偏心受压构件正截面承载力计算 偏心距0M e N = 偏心受压构件可概括受弯构件和轴心受压构件 ● 当0N =时,为受弯构件,弯矩为M ● 当0M =、00e =时,为轴心受压构件,轴力为N 7.2.1 偏心受压构件的破坏特征 7.2.1.1 破坏类型 1、受拉破坏——大偏心受压情况。 偏心距0e 较大,纵筋配筋率不高。称为大偏心受压情况。 2、受压破坏——小偏心受压情况。 偏心距0e 小,或偏心距0e 较大,同时受拉钢筋的配筋率过高。称为小偏心受压破坏。 7.2.1.2 两类偏心受压破坏的界限

两类偏心受压破坏的本质区别在于,破坏时受拉钢筋是否达到屈服。 ● 若受拉钢筋先屈服,然后是受压区混凝土被压碎,即为受拉破坏; ● 若受拉钢筋或远离轴力一侧的钢筋,无论是受拉还是受压,均未屈服,则为受压破坏。 两类偏心受压破坏的界限应该是,当受拉钢筋达到屈服的同时,受压区混凝土达到极限压应变。即,界限破坏。此时,纵向钢筋配筋率为b ρ,相应的相对界限受压区高度为b b 0 x h ξ= 。显然, ● 若b ξξ≤,受拉钢筋首先屈服,然后混凝土被压碎,偏心受压 构件破坏类型为受拉破坏,即,大偏心受压破坏; ● 若b ξξ>,则为受拉钢筋未达到屈服的受压破坏,即,小偏心 受压破坏。 7.2.1.3 偏心受压构件截面强度的N M -相关曲线 N M -相关曲线: 钢筋混凝土偏心受压构件截面达到极限承载力,即,材料破坏时的轴力N 和弯矩M 的关系。图7-7 a 点表示轴力为零的偏心受压构件(纯受弯构件)破坏时所对 应的弯矩; c 点表示弯矩为零的偏心受压构件(轴心受压构件)破坏时所 对应的轴力; d 点为曲线上任意一点,其坐标代表截面承载力的轴力N 和弯矩 M 的组合,即,在这种组合条件下,偏心受压构件截面发生破坏时 所对应的轴力N 和弯矩M ; b 点为受拉钢筋与受压混凝土同时达到其强度值时,偏心受压 构件截面承载力(轴力N 和弯矩M 的组合)的界限状态。 显然,ab 段表示大偏心受压(受拉破坏)时的N M -相关曲线,在该区段内,随着轴力N 的增大,截面能承担的弯矩M 也相应提高。到达b 点时,偏心受压构件承受的弯矩M 最大。 bc 段表示小偏心受压(受压破坏)时的N M -相关曲线,在该区 段内,随着轴力N 的增大,截面能承担的弯矩M 逐渐降低。 若图上任意点e 点位于图中曲线的内侧,说明截面在该点坐标给出的内力组合下,未达到承载能力极限状态,是安全的; 若e 点位于图中曲线的外侧,则表明截面的承载能力不足。

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能 问答题参考答案 1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增 f作为钢筋的强度极限。另一个强度指标是加以致无法使用,所以在设计中采用屈服强度 y f,一般用作钢筋的实际破坏强度。 钢筋极限强度 u 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。 设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

图2-2硬钢拉伸试验的应力应变曲线 2. 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级? 答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi ,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV 、20MnSiNb 、20MnTi ,符号,Ⅲ级)、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3. 钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法? 答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。 冷加工方法有冷拨、冷拉、冷轧、冷扭。 冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。 4. 什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质? 答:均匀伸长率δgt 为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。 s b gt E l l l 000'σδ+-= 0l ——不包含颈缩区拉伸前的测量标距;'l ——拉伸断裂后不包含颈缩区的测量标距;0b σ——实测钢筋拉断强度;s E ——钢筋弹性模量。 均匀伸长率δgt 比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。 5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是

第七章 钢筋与混凝土之间的粘结

第七章钢筋与混凝土之间的粘结 §7.1 概述 钢筋与混凝土的粘结是钢筋与其周围一定影响范围内混凝土的一 种相互作用,它是这两种材料共同工作的前提之一,也是对钢筋混凝土构件的承载力、刚度以及裂缝控制起重要影响的因素之一。粘结的退化和失效必然导致钢筋混凝土结构力学性能的降低和破坏。随着有限元法在钢筋混凝土结构非线性中的应用,钢筋与混凝土之间粘结和滑移的研究更显重要。 7.1.1 粘结应力及其分类 1.粘结应力的定义 粘结应力是指沿钢筋与混凝土接触面上的剪应力。它并非真正的钢筋表面上某点剪应力值,而是一个名义值(对于变形钢筋而言),是指在某个计算范围(变形钢筋的一个肋的区段)内剪应力的平均值,且对于变形钢筋来说,钢筋的直径本身就是名义值。 2.粘结应力分类 ·弯曲粘结应力 由构件的弯曲引起钢筋与混凝土接触面上的剪应力。可近似地按材料力学方法求得。由于在混凝土开裂前,截面上的应力不会太大,所以一般不会引起粘结破坏,对结构构件的力学性能影响不大。 该粘结主要体现混凝土截面开裂前钢筋与混凝土的协同工作机理。其大小与弯曲粘结应力及截面的剪力分布有关,即对于未开裂截面,弯曲粘结应力的分布规律与剪力分布相同。 ·锚固粘结应力 钢筋的应力差较大,粘结应力值高,分布变化大,如果锚固不足则会发生滑动,导致构件开裂和承载力下降。粘结破坏是一种脆性破坏。

·裂缝间粘结应力 开裂截面的钢筋应力,通过裂缝两侧的粘结应力部分地向混凝土传递,使未开裂截面的混凝土受拉,也使得混凝土内的钢筋平均应变或总变形小于钢筋单独受力时的相应变形,有利于减小裂缝宽度和增大构件的刚度,此即“受拉刚化效应”。 裂缝间粘结应力属于局部粘结应力范围。该粘结应力数值的大小反映了受拉区混凝土参与工作的程度。局部粘结应力应变分布复杂,存在着混凝土的局部裂缝和两者之间的相对滑移,平截面假定不再符合,且影响因素较多,如剪切破坏、塑性铰的转动能力以及结构中的弹塑性分析等。 7.1.2 研究现状 由于影响钢筋与混凝土之间粘结作用的因素较多,且差异性较大,较难给出理想的、普遍共同接受的计算理论。目前,还没有比较完整的、有充分论据的粘结滑动理论。各国规范处理方法各不相同,另外一方面,笼统的构造要求大大忽视了对粘结问题的进一步的研究。 7.1.3 研究的重要性 ·工程实践上的重要性——钢筋的锚固、搭接和细部构造; ·理论上的重要性——剪切破坏、裂缝宽度、塑性铰转动能力以及弹塑性分析问题的源头; ·有限元方法在钢筋混凝土结构中应用的要求,需给出粘结应力与相对滑动的数学模式; ·钢筋混凝土结构的动力反应,尤其是在大变形下的粘结性能的研究,在很大程度上取决于构件的连接部位的恢复力特性,粘结退化是使节点区强度丧失和刚度降低的主要原因。

钢筋混凝土第七章答案

答案 第七章 受压构件(共203分) 一 填空题(每空1分,共19分) 1. 通过约束核心混凝土从而提高混凝土的抗压强度和变形能力。 2.大偏破坏、小偏心破坏。 3. 把该方向当成轴心受压构件计算受压承载力。 4. 受拉、受压,受压、受拉。 5.增加,轴力N 最大取到A f c 3.0。 6.偏心方向截面尺寸的1/30和20mm 中的较大值。 7.0.6%,5%。 8.b x x ≤ 9.等于,小于。 10.减小、增大、界限破坏。 二 选择题(每空2分,共90分): (1-20) CADCA DAAAB ABACB CADAD (21-40) DDDBC AACCA CDBBA CABCC (41-45) BACCA 三 简答题(共34分) 1. 试说明受压构件中箍筋和纵筋的作用?(6分) 答:箍筋作用 (1)防止纵筋压曲。 (2)固定纵筋的位置,起到骨架作用。 (3)约束混凝土,提高构件的延性。 (4)采用螺旋箍筋,能提高混凝土的强度,增大构件承载力。 纵筋作用 (1)参与承受压力。 (2)防止偶然偏心产生的破坏。 (3)改善构件的延性,并减小混凝土的徐变变形。 (4)与箍筋形成钢筋骨架。 2. 为什么对于轴心受压柱,全部纵筋的配筋率不宜大于5%?(6分) 答:轴心受压构件在加载后荷载维持不变的条件下,由于混凝土的徐变,随着时间的增加,混 凝土的压应力逐渐变小,钢筋的压力逐渐变大,经过一段时间后趋于稳定。如果突然卸载,构件回弹,但由于混凝土的徐变变形的大部分不可恢复,限制钢筋弹性回弹,使得混凝土受拉,钢筋受压,如果配筋率太大,混凝土的应力重分布程度大,可能使得混凝土拉裂。故要限制配筋率,一般不宜大于5%。 3. 偏心受压柱的破坏形态有哪两类?分类的依据是什么?简述各自的破坏特点?(6分) 答: (1)如果b ξξ≤,属于大偏心构件,破坏形态为受拉破坏。这种破坏属于延性破坏,其 特点是受拉钢筋先达到屈服强度,然后压区混凝土压碎。 (2)如果b ξξ>,属于小偏心构件,破坏形态为受压破坏。这种破坏属于脆性破坏,其 特点是构件破坏始于压区混凝土压碎,远端钢筋不管受拉,还是受压,一般达不到屈

钢筋与混凝土粘结——滑移关系

钢筋与混凝土粘结——滑移关系 混凝土与钢筋间粘结滑移性能向来作为钢筋混凝土结构的重要使用参考依据 ,它是钢筋与混凝土共同协调工作的基础和前提,正因为他们之间的界面存在相互的粘结力 ,促使两种材料能够实现应力的传递 ,从而实现承受外部荷载的作用,这足以显示它对钢筋混凝土结构的重要性。目前关于普通混凝土与钢筋间的粘结滑移性能进行了大量的研究,并已出台了相应的国家规范标准,而再生混凝土作为一种新型的绿色环保材料 ,其应用于实际工程前,还有许多性能有待研究解决,再生混凝土与钢筋间的粘结滑移性能就是其中亟待解决的问题之一。且再生混凝土区别于普通骨料混凝土之处在于其骨料采用废弃混凝土破碎产生,再生骨料与水泥砂浆的界面情况远远复杂于普通骨料 ,然而粘结滑移性能恰恰是钢筋与再生混凝土两种材料界面之间的相作用,由于骨料界面的差异导致它们之间粘结界面的差异是必然的,这就更增加了对两种材料间粘结滑移性能研究的必要。钢筋与混凝土间粘结锚固性能是混凝土结构工作的前提和基础 ,目前关于再生骨料混凝土与钢筋间的粘结性能,国内外仅仅进行了一些简单的拉拔试验研究。在对再生骨料混凝土与钢筋之间的粘结强度进行了试验研究,得出的结论认为与普通混凝土的差异不大;通过试验发现再生骨料混凝土与纵向钢筋的粘结强度远大于与横向钢筋的粘结强度与其他试验结论较为接近,认为再生骨料混凝土与钢筋间的粘结强度较普通混凝土稍低。 考虑不同再生粗骨料取代率、再生细骨料取代率、强度、保护层厚度等因素对再生混凝土一钢筋间的粘结滑移进行试验,发现随着再生粗骨料取代率的增加,粘结性能有所提高,且在60%达到最大;相反,随着再生细骨料取代率的增加,粘结性能有所降低。但以上试验研究均统一采用基于平均粘结应力假设的简单拉拔试验进行试探性研究,即假设认为钢筋在再生混凝土中锚固段内的粘结应力处处相等 ,显然这并不完全符合实际钢筋受力状况。通过钢筋内贴片试验方法,完成了18个锈前钢筋—再生混凝土试块的拉拔试验,分别研究了再生骨料取代率、钢筋种类、混凝土抗压强度对其粘结滑移性能的影响,同时对钢筋在再生混凝土中长锚和短锚两种情况下其粘结应力分布的差异进行了研究分析,最后通过量测的钢筋应力理论推导钢筋在再生混凝土中的粘结位置函数,从而确定其粘结一滑移本构关系。并得出以下结论:

基于abaqus中cohesive element 对钢筋混凝土粘结性能的研究[整理]

基于abaqus中cohesive element 对钢筋混凝土粘结性能 的研究[整理] 基于abaqus中cohesive element 对钢筋混凝土粘结性能的研究 摘要:考虑到钢筋与混凝土界面受力的复杂性,基于用来模拟三种裂缝和失效的零厚度界面单元,采用分离式模型,引入内聚力黏结模型,并以文献中的拉拔试验结果为参照,利用abaqus中cohesive element单元建立起钢筋拉拔试验的计算模型。通过与文献中试验结果的比较,结果符合较好,验证了该计算模型的合理性。关键词:钢筋混凝土粘结;拉拔试验;黏结单元;数值模拟 0.引言 混凝土结构中,钢筋与混凝土这两种材料之所以能够共同作用、承担外荷载,其中一个很重要的原因是混凝土硬化后与钢筋之间形成了良好的粘结。尽管对粘结试验的研究已有一百多年的历史,国内外的学者发表了为数众多的试验和理论资料,但是由于影响粘结的因素很多破坏的机理复杂,以及试验技术方面的原因等,目前粘结问题还没有得到很好的解决。关于粘结的机理还不能提出一套比较完整的、有充分论据的粘结滑移理论。由于试验中存在诸多不确定性,数值模拟在钢筋混凝土粘结性能分析中也逐渐重视起来,自上世纪六十年代美国学者把有限元引入钢筋混凝土结构的分析以来,有限元已经成为对混凝土问题进行研究的一种典型的数值模拟方法,目前有限元模拟主要有以下三种分析模型:l)分离式模型;2)组合式模型;3)整体式模型。 由于整体式模型不能反映钢筋混凝土这种非均质材料的微观受力机理,而组合式模型假定钢筋与混凝土粘结可靠而不产生相对位移,这又与实际的微观机理不符,因此对粘结性能的研究只能采用分离式模型。

钢筋混凝土第八章答案

答案 第八章 受拉构件(共64分) 一 填空题(每空1分,共3分) 1.钢筋 2.当纵向拉力N 作用在钢筋s A 合力点和钢筋's A 合力点范围内,或者a h e -<2/0 3.降低 二 选择题(每题2分,共18分) (1-9) ACABB ABCA 三 简答题(18分) 1. 小偏拉构件和大偏拉构件的破坏形态有何不同? 答:对于大偏拉构件,破坏时,截面开裂,但没有贯通,仍然有受压区,配筋合适仍为受拉 破坏。小偏拉构件,破坏时,截面裂缝贯通,没有受压区,拉力全部由钢筋承担。 2. 试说明为什么大、小偏心受拉构件的区分只与轴向力的作用位置有关,与配筋率无关? 答:大、小偏心受拉构件的区分,与偏心受压构件不同,它是以到达正截面承载力极限状态时,截面上是否存在有受压区来划分的。当纵向拉力作用N 于A s 与A s 之间时,受拉区混凝土开裂后,拉力由纵向钢筋A s 负担,而A s 位于N 的外侧,有力的平衡可知,截面上将不可能再存在有受压区,纵向钢筋A s 受拉。因此,只要N 作用在A s 与A s 之间,与偏心距大小及配筋率无关,均为全截面受拉的小偏心受拉构件。当纵向拉力作用N 于A s 与A s 间距之外,部分截面受拉,部分受压。拉区混凝土开裂后,有平衡关系可知,与A s 的配筋率无关,截面必须保留有受压区,A s 受压为大偏心受拉构件。 3.怎样区别偏心受拉构件所属的类型? 答:偏心受拉构件的正截面承载力计算,按纵向拉力的位置不同,可分为大偏心受拉与小偏心受拉两种情况:当纵向拉力作用N 作用在钢筋A s 合力点及A ¢s 的合力点范围以外时,属于大偏心受拉的情况;当纵向拉力作用N 作用在钢筋A s 合力点及A ¢s 的合力点范围以内时,属于小偏心受拉的情况。 四、计算题(25分) 1.已知截面尺寸为b ×h =300mm ×500mm 的钢筋混凝土偏拉构件,承受轴向拉力设计值N =300kN ,弯矩设计值M =90kN·m 。采用的混凝土强度等级为C30,钢筋为HRB335。试确定该柱所需的纵向钢筋截面面积A s 和A 's 。(15分) 6039010300mm 215mm 300102M h e a N ???===>-= ???? 所以,属于大偏心受拉构件。 0/2300500/23585mm e e h a =-+=-+ = 0y c b s s y y f f bh N A A f f αξ'+'=+

专科适用钢筋混凝土结构习题及答案

中南大学现代远程教育课程考试(专科)复习题及参考答案 钢筋混凝土结构 一、单项选择题 1.下列有关轴心受压构件纵筋的作用,错误的是:() A 帮助混凝土承受压力; B 增强构件的延性; C 纵筋能减小混凝土的徐变变形; D 纵筋强度越高,越能增加构件承载力; 2.在梁的配筋不变的条件下,梁高与梁宽相比,对正截面受弯承载力Mu() A 梁高影响小; B 两者相当; C 梁高影响大; D 不一定; 3.四个截面仅形式不同:1、矩形;2、倒T形;3、T形;4、I形,它们的梁宽(或肋宽) b 和受拉翼缘宽度f b相同,在相同的正弯距M作用b相同、梁高h相等,受压翼缘宽度f 下,配筋量As() A As1=As2>As3=As4; B As1>As2>As3>As4; C As1>As2=As3>As4; D As2>As1>As3>As4 4.梁内弯起多排钢筋时,相邻上下弯点间距应≤Smax,其目的是保证:() A 斜截面受剪能力; B 斜截面受弯能力; C 正截面受弯能力; D 正截面受剪能力 5.《规范》验算的裂缝宽度是指() A 钢筋表面的裂缝宽度; B 钢筋水平处构件侧表面的裂缝宽度; C 构件底面的裂缝宽度; D 钢筋合力作用点的裂缝宽度; 6.整浇肋梁楼盖中的单向板,中间区格板的弯矩可折减20%,主要是因考虑() A 板的内拱作用; B 板上荷载实际上也向长跨方向传递一部分; C 板上活载满布的可能性较小; D 节约材料; 7.在双筋梁计算中满足2a'≤x≤ξb h o时,表明() A 拉筋不屈服,压筋屈服; B 拉筋屈服,压筋不屈服; C 拉压筋均不屈服; D 拉压钢筋均屈服; 8.受扭纵筋与箍筋的配筋强度比ζ在0.6~1.7之间时,() A 均布纵筋、箍筋部分屈服; B 均布纵筋、箍筋均屈服; C 仅箍筋屈服; D 不对称纵筋、箍筋均屈服; 9.一般板不作抗剪计算,主要因为() A 板内不便配箍筋; B 板的宽度大于高度; C 板一般承受均布荷载; D 一般板的受剪承载力大于受弯承载力; 10.梁的剪跨比减小时,受剪承载力() A 减小; B 增加; C 无影响; D 不一定;

钢筋与混凝土粘结性能的分析

钢筋与混凝土粘结性能的分析 摘要:从钢筋与混凝土之间粘结性能的粘结机理、影响因素和粘结应力-滑移本构关系等三个方面进行了分析和探讨。 关键词:钢筋混凝土粘结机理影响因素粘结强度 1、引言 混凝土结构是目前应用最为广泛的工程结构形式之一。钢筋与混凝土结构之间的粘结是保证两种材料形成整体、共同工作的基础,对于混凝土结构构件的受力性能、破坏形态、计算假定、承载能力、裂缝和变形等有着重要的影响。一直以来,粘结问题是结构工程技术人员关注的热点问题之一。本文主要从粘结机理、影响因素和粘结应力-滑移本构关系等三个方面进行分析和研究,以期深入理解、把握钢筋与混凝土之间的粘结性能,提出提高粘结能力的建议。2、粘结机理 钢筋和混凝土是两种性能不同的材料组成的组合结构材料,其能够共同工作的基本要素是两者之间的粘结锚固作用。所谓钢筋和混凝土之间的粘结应力指的是两者接触面上的剪应力,由钢筋与混凝土之间的粘着力、摩阻力和咬合力三部分组成[1][2]。 (1)粘着力。混凝土中的水泥凝胶体在钢筋表面产生的化学粘着力或吸附力,其抗剪极限值取决于水泥的性质和钢筋表面的粗糙程度和清洁度。当钢筋受力后有较大变形、发生局部滑移后,粘着力就丧失了[1]。 (2)摩阻力。周围混凝土对钢筋的摩阻力,当混凝土的粘着力破坏

后发挥作用[1]。如果垂直于钢筋作用有压力,则在产生极小的移动时,就会在钢筋和混凝土之间引起摩擦力,这种横向压力取决于混凝土发生收缩或者荷载和反力等对钢筋的径向压应力,以及二者间的摩擦系数等。由于钢筋表面的粗糙度,摩擦系数μ可高达0.3~0.6,生锈的圆钢与新扎的圆钢以及冷拔钢丝的表面粗糙度相差可达36倍[3]。挤压力越大,接触面越粗糙,则摩擦力越大。 (3)咬合力。钢筋表面粗糙不平,或变形钢筋凸肋和混凝土之间的机械咬合作用,即混凝土对钢筋表面斜向压力的纵向分力产生的剪切粘结,是最有效和最可靠的粘结方式。为了充分利用这种粘结,通常在钢筋表面轧制肋条来实现[4]。依靠钢筋与混凝土间的粘结应力,也即两者接触面上的剪应力,使得钢筋和混凝土两种性质完全不同的材料,在钢筋混凝土结构中共同工作。这种关系使得两种材料间相互传递力,实现弥补各自的缺点,发挥各自的优点。 3、主要影响因素 钢筋和混凝土的粘结性能及其各项特征值,受到许多因素的影响而变化。 3.1 混凝土强度 随着混凝土强度提高,钢筋与混凝土的粘结力提高,且粘结力的提高与混凝土劈裂强度成正比。变形钢筋的粘结强度fb主要取决于混凝土的抗拉强度ft;混凝土振捣越密实,粘结强度也越高[4];此外,养护条件的好坏亦对对粘结强度有很大的关系,养护条件好,粘结强度能够得到更大的提高。同时,混凝土的组分也影响粘结强

基于abaqus中cohesiveelement对钢筋混凝土粘结性能的研究[整理]

中cohesive element 对钢筋混凝土粘结性能基于abaqus 的研究[ 整理] 基于abaqus 中cohesive element 对钢筋混凝土粘结性能的研究摘要: 考虑到钢筋与混凝土界面受力的复杂性,基于用来模拟三种裂缝和失效 的零厚度界面单元,采用分离式模型,引入内聚力黏结模型,并以文献中的拉拔试 验结果为参照,利用abaqus 中cohesive element 单元建立起钢筋拉拔试验的计算 模型。通过与文献中试验结果的比较,结果符合较好,验证了该计算模型的合理 性。关键词:钢筋混凝土粘结; 拉拔试验; 黏结单元; 数值模拟 0. 引言混凝土结构中,钢筋与混凝土这两种材料之所以能够共同作用、承担外荷载, 其中一个很重要的原因是混凝土硬化后与钢筋之间形成了良好的粘结。尽管对粘结 试验的研究已有一百多年的历史,国内外的学者发表了为数众多的试验和理论资 料,但是由于影响粘结的因素很多破坏的机理复杂,以及试验技术方面的原因等, 目前粘结问题还没有得到很好的解决。关于粘结的机理还不能提出一套比较完整 的、有充分论据的粘结滑移理论。由于试验中存在诸多不确定性,数值模拟在钢筋 混凝土粘结性能分析中也逐渐重视起来,自上世纪六十年代美国学者把有限元引入 钢筋混凝土结构的分析以来,有限元已经成为对混凝土问题进行研究的一种典型的 数值模拟方法,目前有限元模拟主要有以下三种分析模型:l) 分离式模型;2) 组合式 模型;3) 整体式模型。 由于整体式模型不能反映钢筋混凝土这种非均质材料的微观受力机理,而组合 式模型假定钢筋与混凝土粘结可靠而不产生相对位移,这又与实际的微观机理不 符,因此对粘结性能的研究只能采用分离式模型。

第四章 钢筋混凝土工程试题与答案

第四章钢筋混凝土工程试题及答案 一、单项选择题 1.悬挑长度为1.5m、混凝土强度为C30的现浇阳台板,当混凝土强度至少应达到 B 时方可拆除底模。 A、15N/mm2C、22.5N/mm2 B、21N/mm2D、30N/mm2 2.某混凝土梁的跨度为6.3m,采用木模板,钢支柱支模时其跨中起拱高度可为 A 。 A、1mm B、2mm C、4mm D、12mm 3.冷拉后的HPB235钢筋不得用作 D 。 A、梁的箍筋 B、预应力钢筋 C、构件吊环 D、柱的主筋 4.某梁纵向受力钢筋为5根直径为20mm的HRB335级钢筋(抗拉强度为300N/mm2),现在拟用直径为25mm的HPB235级钢筋(抗拉强度为210N/mm2)代换,所需钢筋根数为C 。 A、3根 B、4根 C、5根 D、6根 5.某梁宽度为250mm,纵向受力钢筋为一排4根直径为20mm的HRB335级钢筋,钢筋净间距为 B 。 A、20mm B、30mm C、40mm D、50mm 6.混凝土试配强度应比设计的混凝土强度标准值提高D 。 A、1个数值 B、2个数值 C、10N/mm2 D、5N/mm2 7.浇筑混凝土时,为了避免混凝土产生离析,自由倾落高度不应超过 B 。 A、1.5m B、2.0m C、2.5m D、3.0m 8.所谓混凝土的自然养护,是指在平均气温不低于 D 条件下,在规定时间内使混凝土保持足够的湿润状态。 A、0℃ B 、3℃C、5℃D、10℃ 9.已知某钢筋混凝土梁中的1号钢筋外包尺寸为5980mm,钢筋两端弯钩增长值共计156mm,钢筋中间部位弯折的量度差值为36mm,则1号钢筋下料长度为 A 。 A、6172mm B、6100mm C、6256mm D、6292mm 10.模板按 A 分类,可分为现场拆装式模板、固定式模板和移动式模板。 A、材料 B、结构类型 C、施工方法 D、施工顺序 11.C 是一种大型工具式摸板,整体性好,混泥土表面容易平整、施工速度快。 A、胶合摸板 B、组合钢摸板 C、台摸 D、爬升摸板 12.跨度大于A 的板,现浇混泥土达到立方体抗压强度标准值的100%时方可拆除底摸板。 A、8m B、6m C、2m D、7.5m 13.悬挑长度为2m、混泥土强度为C40的现浇阳台板,当混泥土强度至少应达到 B 时方可拆除底摸板。 A.70% B.100% C.75% D.50% 14.不同种类钢筋代换,应按 D 的原则进行。 A、钢筋面积相等 B、钢筋强度相等 C、钢筋面积不小于代换前 D、钢筋受拉承载力设计值相等 15.构件按最小配筋率时,按代换前后A 相等的原则进行钢筋代换。 A、面积 B、强度 C、刚度 D、变形 16.钢筋的冷拉调直必须控制钢筋的C 。 A.变形 B.强度 C.冷拉率. D.刚度 17.套筒挤压连接缺点是 D 。 A.接头强度低 B.质量不稳定 C.脆性大 D.连接速度较慢 18.确定试验室配合比所用的砂石 B 。 A、都是湿润的 B、都是干燥 C、砂子干、石子干 D、砂子湿、石子干

钢筋混凝土工程试题与答案

第4章钢筋混凝土工程试题及答案 一、单项选择题 1.悬挑长度为、混凝土强度为C30的现浇阳台板,当混凝土强度至少应达到 B 时方可拆除底模。 A、15N/mm2 C、mm2 B、21N/mm2 D、30N/mm2 2.某混凝土梁的跨度为,采用木模板,钢支柱支模时其跨中起拱高度可为 A 。 A、1mm B、2mm C、4mm D、12mm 3.冷拉后的HPB235钢筋不得用作 D 。 A、梁的箍筋 B、预应力钢筋 C、构件吊环 D、柱的主筋 4.某梁纵向受力钢筋为5根直径为20mm的HRB335级钢筋(抗拉强度为300N/mm2),现在拟用直径为25mm的HPB235级钢筋(抗拉强度为210N/mm2)代换,所需钢筋根数为 C 。 A、3根 B、4根 C、5根 D、6根 5.某梁宽度为250mm,纵向受力钢筋为一排4根直径为20mm的HRB335级钢筋,钢筋净间距为 B 。 A、20mm B、30mm C、40mm D、50mm 6.混凝土试配强度应比设计的混凝土强度标准值提高 D 。 A、1个数值 B、2个数值 C、10N/mm2 D、5N/mm2 7.浇筑混凝土时,为了避免混凝土产生离析,自由倾落高度不应超过 B 。 A、 B、 C、 D、 8.所谓混凝土的自然养护,是指在平均气温不低于 D 条件下,在规定时间内使混凝土保持足够的湿润状态。 A、 0℃ B 、3℃ C、 5℃ D、 10℃ 9.已知某钢筋混凝土梁中的1号钢筋外包尺寸为5980mm,钢筋两端弯钩增长值共计156mm,钢筋中间部位弯折的量度差值为36mm,则1号钢筋下料长度为 A 。 A、6172mm B、6100mm C、6256mm D、6292mm 10.模板按 A 分类,可分为现场拆装式模板、固定式模板和移动式模板。 A、材料 B、结构类型 C、施工方法 D、施工顺序 11. C 是一种大型工具式摸板,整体性好,混泥土表面容易平整、施工速度快。 A、胶合摸板 B、组合钢摸板 C、台摸 D、爬升摸板 12.跨度大于 A 的板,现浇混泥土达到立方体抗压强度标准值的100%时方可拆除底摸板。 A、8m B、6m C、2m D、 13.悬挑长度为2m、混泥土强度为C40的现浇阳台板,当混泥土强度至少应达到 B 时方可拆除底摸板。 % % % % 14.不同种类钢筋代换,应按 D 的原则进行。 A、钢筋面积相等 B、钢筋强度相等 C、钢筋面积不小于代换前 D、钢筋受拉承载力设计值相等 15.构件按最小配筋率时,按代换前后 A 相等的原则进行钢筋代换。 A、面积 B、强度 C、刚度 D、变形 16.钢筋的冷拉调直必须控制钢筋的 C 。 A.变形 B.强度 C.冷拉率 . D.刚度 17.套筒挤压连接缺点是 D 。 A.接头强度低 B.质量不稳定 C.脆性大 D.连接速度较慢 18.确定试验室配合比所用的砂石 B 。 A、都是湿润的 B、都是干燥 C、砂子干、石子干 D、砂子湿、石子干 19.混凝土在运输过程中不应产生分层、离析现象。如有离析现象,必须在浇筑进行 C 。 A、加水 B、振捣 C、二次搅拌 D、二次配合比设计 20.施工缝宜留在结构受剪力较小且便于施工的部位,柱施工缝宜留在 C 。 A、无梁楼板柱帽的上面 B、基础的底面 C、梁或吊车梁牛腿的下面 D、吊车梁的下面 二、多项选择题 1.钢筋锥螺纹连接方法的优点是 BCDE 。 A、丝扣松动对接头强度影响小 B、应用范围广 C、不受气候影响 D、扭紧力距不准对接头强度影响小 E、现场操作工序简单、速度快 2.某大体积混凝土采用全面分层法连续浇筑时,混凝土初凝时间为180min,运输时间为30min。已知上午8时开始浇

相关文档
最新文档