(完整版)微分的概念教案首页

(完整版)微分的概念教案首页
(完整版)微分的概念教案首页

图2-5

,则2

=。薄片受温度变化的影响,面积的改变S x

x?时,函数S相应的增量

22

-=?+?

()2()

x x x x

因此,函数()y f x =在点0x 处的微分就是曲线()y f x =上点0,0()M x y 处切线MT 的纵坐标的增量。

图2-6

对图形的观察分析,我们还发现:

(1)当x ?很小时,y dy ?-也很小,即可用函数的微分dy 来近似替代函数的增量y ?。

(2)当x ?很小时,

1MN

MP

≈,即在某点的附近可以用“直”代“曲”.这一思想在微积分学中是非常重要的。

三、小结(5分钟)

总结求解函数微分过程中的注意事项。

四、布置作业(5分钟) 习题2-2 1,2(1)(3)(5)

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

函数微分的定义

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。 叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。 通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。 导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的x值,都对

应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。 导数公式微分公式 函数和、差、积、商的求导法则函数和、差、积、商的微分法则 拉格朗日中值定理 如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。 注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理 如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

微分的概念、性质及应用

第二章第 6 节:函数得微分 教学目得:掌握微分得定义,了解微分得运算法则,会计算函数得微分,会利用微分作近似计算 教学重点:微分得计算 教学难点:微分得定义,利用微分作近似计算 教学内容: 1.微分得定义 计算函数增量就是我们非常关心得。一般说来函数得增量得计算就是比较复杂得,我们希望寻求计算函数增量得近似计算方法。 先分析一个具体问题,一块正方形金属薄片受温度变 化得影响,其边长由变到(图21),问此薄片得面积改变了 多少? 设此薄片得边长为,面积为,则就是得函数:。薄片受温 度变化得影响时面积得改变量,可以瞧成就是当自变量自 取得增量时,函数相应得增量,即 。 从上式可以瞧出,分成两部分,第一部分就是得线性函 数,即图中带有斜线得两个矩形面积之与,而第二部分在图 中就是带有交叉斜线得小正方形得面积,当时,第二部分就 图21 是比高阶得无穷小,即。由此可见,如果边长改变很微小, 即很小时,面积得改变量可近似地用第一部分来代替。 一般地,如果函数满足一定条件,则函数得增量可表示为 , 其中就是不依赖于得常数,因此就是得线性函数,且它与之差 , 就是比高阶得无穷小。所以,当,且很小时,我们就可近似地用来代替。 定义设函数在某区间内有定义,及x在这区间内,如果函数得增量 可表示为 , ① 其中就是不依赖于得常数,而就是比高阶得无穷小,那么称函数在点就是可微得,而叫做函数在点相应于自变量增量得微分,记作,即。 定理1 函数在点可微得充分必要条件就是函数在点可导,且当在点可微时,其微分一定就是 。 设函数在点可微,则按定义有①式成立。①式两边除以,得。 于就是,当时,由上式就得到 。 因此,如果函数在点可微,则在点也一定可导(即存在),且。 反之,如果在点可导,即 存在,根据极限与无穷小得关系,上式可写成 , 其中(当)。由此又有

微分方程的基本概念

求函数关系是数学中的重要问题。然而,在实际中有时很难直接找出函数关系,我们所得到的仅是含有未知函数及其导数的关系式,称之为微分方程.我们的任务就是求解微分方程,找出未知函数。本章将介绍一些微分方程的基本概念和几种常用的微分方程的解法. 微分方程的基本概念 下面通过几个例题来说明微分方程的基本概念. 例1 一曲线通过)2,1(点,且在该曲线上任一点),(y x 处 的切线的斜率为x 2,求曲线的方程. 解 由导数的几何意义可得 x dx dy 2= ① 此外,未知函数)(x y y =还应满足条件 1=x 时,2=y (或写成21==x y ) ② 在式①两端积分,得 C x y +=2 , ③ 其中C 为任意常数.将条件②代入式③中,得1=C , 于是得所求曲线的方程为 ④ 12+=x y

我们知道式③表示一族曲线, 曲线族中的每一条曲线的函数 代入式①中都成为恒等式, 而式④仅表示是其中的一条,它是通过点()2,1的. 从以上例子中,可归纳出如下一些基本概念. (一)微分方程:含有自变量、未知函数以及未知函数导数或微分的方程叫微分方程(以下简称方程)。在方程中出现的未知函数导数的最高阶数成为微分方程的阶,n 阶微分方程的一般形式为 ()(,,,,,)0n F x y y y y '''=L ⑤ 如式①为一阶微分方程.

(二)解:一个函数代入微分方程后,使其成为恒等式,则该函数称为微分方程的解. 含有任意常数,且独立的任意常数的个数和微分方程的阶数相等的解,称为微分方程的通解或一般解.不含任意常数的解叫特解. 若I x x y ∈=),(?为方程⑤的解,则有 ()[,(),(),,()]0n F x x x x φφφ'≡L , I x ∈. 方程⑤的通解应含有n 个独立的任意常数, 其通解有时用隐函数表达式 12(,,,,,)0n x y C C C Φ=L 表示. ⑥ 例如:式③为方程①的通解.

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

微分方程(习题及解答)

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程 3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程2 3550x x y '+-=的通解是 . 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'=的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答: Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++=

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

微分方程的基本概念

第一节 微分方程的基本概念 教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等 教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解 教学内容: 1、首先通过几个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函 数

)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得 2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。 2、 定义 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。本章只讨论常微分方程。 微分方程中所出现的求知函数的最高阶导数的阶数,叫做微分方程的阶。例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+- 是四阶微分方程。

微分方程的基础知识与练习

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度 2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了 多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运 动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020 s t == 。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们 都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

微分的概念与运算教学设计

《微分的概念与运算》教学设计 1. 教材分析 1.1课标要求分析 从教材上的要求来看,知识点的目标层面不高,只要求初步理解微分的概念。在引入的过程中认识到微分与导数的区别与联系,理解微分的几何意义。要求学生掌握正确微分的符号表示,以及运算公式和运算法则。我认为在通过直观的图象引入微分的意义这步很重要,是这堂课的灵魂所在,是学生对微分这一抽象概念理解与否的关键。所以要很详细的讲解。至于微分的运算公式和法则,可通过求导公式与法则进行联系记忆。 1. 2教学内容分析 1.2.1内容背景分析 本节内容是第七章第八节内容,是在学完导数的概念与运算后引入的,一方面可以让学生可以对比导数的概念和运算来学习微分的概念和运算,另一方面也为学习积分打好基础。本节内容可以说是在联系导数与积分两个模块中起到承上启下的重要作用。 1.2.2教学内容的分析 主要是在通过作图复习导数内容中的有关y x ??与等增量和关于曲线)(x f y =在某点0x 的切线方程等,并提示切线上的增量y dy ?与的区别与关系,接着就引入微分的概念,说明dy 就是函数)(x f y =的微分。并按照切线方程引入微分公式dx x f dy )('=。由微分的这个定义式知道,可以利用导数来求微分,通过例1和例2 说明如何利用导数公式来求微分,对应的导数运算法则也可以运用,从而引入微分的运算公式和法则。我认为用教材这种简洁,直观的设计思路把微分这个抽象的知识点呈现出来的方法很好,让学生容易接受。但在引入时,要适当的讲细一点,有必要补充点内容。 2.学情分析 民族预科理科生上课思维比较活跃,接受能力也不错,但也有几个后进生,基础较为薄弱,所以知识内容不宜挖得太深。从学习的阶段性来看,前边的有关导数的知识内容掌握得还可以,基本理解导数的概念,明白导数的几何意义,会运用导数的公式和法则进行运算。所以这节课可以从复习导数的几何意义入手引入微分的概念。综合学生的特点,我打算通过复习导数的几何意义借助图象形象直观地引入微分,简单的概括微分的概念,重点放在微分的运算公式与法则上,让学生多练习微分的计算。 3.教学目标 (1)知识与技能:初步理解微分的概念,掌握微分的计算公式和法则。 (2)过程与方法:通过复习导数的几何意义入手,探究切线的增量与曲线上的增量的关系理解微分的概念,并掌握微分计算公式与法则。 (3)情感态度、价值观目标:通过对导数几何意义的复习探究,培养学生自主探究自主学习的方法,激发学生对学习和探究问题的热情。 4.教学重点和难点 重点:明白微分的概念,掌握微分的计算公式与法则。 难点:对微分概念的理解,以及微分与导数的关系的理解。 5.教学过程 一.复习导入: 复习提问:导数的概念,几何意义,运算公式和法则。

§1常微分方程的基本概念

第十三章 常微分方程简介 本章介绍微分方程的有关概念及某些简单微分方程的解法。 微分方程是包含未知函数及其导数的方程。由微分方程能够求出未知函数的解析表达式,从而掌握所研究的客观现象的变化规律和发展趋势。因此,掌握这方面的知识,用之分析解决问题是非常重要的。 由于在大多数情况下,微分方程很难求出初等解(即解的形式是初等函数)。那么,就需要研究解的存在理论,借助计算机求出微分方程的数值解。 本章的内容,仅仅包含常微分方程的一些最初步的知识,特殊的一阶和部分二阶微分方程的初等解法;最后一节讨论微分方程的简单应用。 §1 常微分方程的基本概念 像过去我们研究其他许多问题一样,首先通过具体实际例子来引入微分方程的概念。 两个实例 例1.1 设某一平面曲线上任意一点),(y x 处的切线斜率等于该点处横坐标x 的2倍,且曲线通过点)2,1(,求该曲线的方程。 解 平面上的曲线可由一元函数来表示 设所求的曲线方程为)(x f y =,根据导数的几何意义,由题意得 x dx dy 2=(这是一个含未知函数)(x f y =的导数的方程)。 另外,由题意,曲线通过点)2,1(,所以,所求函数)(x f y =还满足2|1==x y 。 从而得到 12 (1.1)|2(1.2) x dy x dx y =ì??=?í??=??,。 为了解出)(x f y =,我们只要将的两端积分,得 ?+=+==C x C x xdx y 22 2 22, 我们说 C x y +=2对于任意常数C 都满足方程。 再由条件,将2|1==x y 代入C x y +=2,即

C +=2121=?C 。 故所求曲线的方程为12+=x y 。 再看一个例子: 例1.2 设质点以匀加速度a 作直线运动,且0=t 时0,0v v s ==。求质点运 动的位移与时间t 的关系。 解 这是一个物理上的运动问题。 设质点运动的位移与时间的关系为 )(t s s =。 则由二阶导数的物理意义,知a t d s d =22,这是一个含有二阶导数的方程。 再由题意000 |0 |t t s v v ==ì=??í ?=??,因此,)(t S S =应满足问题 22 000 (1.3)|0|(1.4)t t d s a dt s v v ==ì??=?í??==???,,。 要解这个问题,我们可以将两边连续积分两次,即 1C at dt ds +=, ??++=21C dt C tdt a s ,即 2122 C t C t a s ++=, 其中21,C C 为任意常数。 由条件,因为0|0==t s ,代入,得02=C ; 再由00|v v t ==,代入,得01v C =。 故得 t v t a s 02 2 += 为所求。 下面我们将通过分析这两个具体的例子,给出微分方程的一些基本概念。 微分方程的基本概念 总结所给出的两个具体的例子,我们看到: (1) 例的)1(式和例 的)1(式都是含有未知函数的导数的等式(例1含一阶导数,例2含二阶导数); (2) 通过积分可以解出满足这等式的函数;

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

微分的概念、性质及应用

第 二 章 第 6 节:函数的微分 教学目的:掌握微分的定义,了解微分的运算法则,会计算函数的微分,会利用 微分作近似计算 教学重点:微分的计算 教学难点:微分的定义,利用微分作近似计算 教学内容: 1. 微分的定义 计算函数增量()()00x f x x f y -?+=?是我们非常关心的。一般说来函数的增量的计算是比较复杂的,我们希望寻求计算函数增量的近似计算方 法。 先分析一个具体问题,一块正方形金属薄片受温度变 化的影响,其边长由0x 变到x x ?+0(图2-1),问此薄片 的面积改变了多少? 设此薄片的边长为x ,面积为A ,则A 是x 的函数: 2x A =。薄片受温度变化的影响时面积的改变量,可以看 成是当自变量x 自0x 取得增量x ?时,函数A 相应的增量A ?,即 ()()2020202x x x x x x A ?+?=-?+=?。 从上式可以看出,A ?分成两部分,第一部分A x ?02是A ?的线性函数,即图中带有斜线的两个矩形面积之和,而第二部分()2 x ?在图中是带有交叉斜线的小正方形的面积,当0→?x 时,第二部分()2x ?是比x ?高阶的无穷小,即()()x x ?=?02。由此可见,如果边长改变很微小,即x ?很小时,面积的改变量A ?可近似地用第一部分来代替。 一般地,如果函数()x f y =满足一定条件,则函数的增量y ?可表示为 ()x x A y ?+?=?0, 其中A 是不依赖于x ?的常数,因此x A ?是x ?的线性函数,且它与y ?之差 图2-1

()x x A y ?=?-?0, 是比x ?高阶的无穷小。所以,当0≠A ,且x ?很小时,我们就可近似地用x A ?来代替y ?。 定义 设函数()x f y =在某区间内有定义,x x ?+0及x 0在这区间内,如果函数的增量 ()()00x f x x f y -?+=? 可表示为 ()x x A y ?+?=?0, ① 其中A 是不依赖于x ?的常数,而()x ?0是比x ?高阶的无穷小,那么称函数()x f y =在点0x 是可微的,而x A ?叫做函数()x f y =在点0x 相应于自变量增量x ?的微分,记作dy ,即 x A dy ?=。 定理1 函数()x f 在点0x 可微的充分必要条件是函数()x f 在点0x 可导,且当()x f 在点0x 可微时,其微分一定是 ()x x f dy ?'=0。 设函数()x f y =在点0x 可微,则按定义有①式成立。①式两边除以x ?,得 ()x x A x y ??+=??0。 于是,当0→?x 时,由上式就得到 ()00lim x f x y A x '=??=→?。 因此,如果函数()x f 在点0x 可微,则()x f 在点0x 也一定可导(即()0x f '存在),且()0x f A '=。 反之,如果()x f y =在点0x 可导,即 ()00lim x f x y x '=??→? 存在,根据极限与无穷小的关系,上式可写成 ()α+'=??0x f x y , 其中0→α(当0→?x )。由此又有 ()x x x f y ?+?'=?α0。

相关文档
最新文档