机器人视觉传感技术及应用.

机器人视觉传感技术及应用.
机器人视觉传感技术及应用.

题目机器人视觉传感器的应用

姓名

班级测控122 学号

小组成员

机器人视觉传感器的应用

摘要

机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。

关键词:机器人、视觉、弧焊、采摘机器人

1.绪论

机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。

2.机器人常用的视觉传感器

2.1光电二极管与光电转换器件

图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光

子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构

在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。

2.2 PSD

PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。

2.3CCD图像传感器

电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。

CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。

图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构的方法。接收部分多使用二极管。每一帧曝光所储蓄的电荷分别被垂直或水平的传送,然后以图像信号的形式被取出。在CCD内部电荷传送的效率非常高,因此其具有高的灵敏度。由于整个传送区域是被遮光的,所以在传送中不会曝光。

图2.2 CCD摄像器件的结构

CCD图像传感器把垂直寄存器用作单画面图像的缓存,所以可以将曝光时间和信号传送时间分离开。也就是说,其具有所有像素能在同一时间曝光的特点。

2.4 CMOS图像传感器

CMOS图像传感器是由接收部分(二极管)和放大部分组成的一个个单元,然后按照二维排列。由于放大器单元之间特性的分散性大,以至于其噪声比较大。不过,近年来噪声消除电路的性能已经得到改善,故使COMS图像传感器得到迅速普及和应用。

CMOS传感器的优点是耗电低,并利用一般半导体制造技术就可以完成CMOS处理器的设计和加工,这都是有利于图像处理电路和图像传感器的单片化和低成本化。

3. 弧焊机器人视觉技术

焊接作为一种机械加工的重要特殊工艺手段,在制造业中具有举足轻重的地位,但是,传统的手工焊接力一法己经不能满足现代高新技术产品制造的要求。囚此,保证焊接产品质量的稳定性、提高生产效率、减轻工人的劳动强度和改善劳动环境己经成为现代焊接技术极待解决的问题。随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化己经成为必然趋势。

焊接机器人具有通用性强、工作可靠的优点,但是无法自主获取工件定位信息、焊缝空间位置信息、焊缝熔透信官、,当焊接对象改变时需要重新示教,造成工作效率低下,囚此智能化是焊接机器人的发展趋势。焊接机器人智能化技术是指在焊接机器人上装配各种传感器,使焊接机器人对外界环境具有一定的感知能力,从而使焊接机器人可以自主地适应环境,并根据环境的变化,对自身下一步操作自主调整。

使用焊接传感器的日的是为了实现焊接过程的自动控制,进而实现焊接的智能化。焊接传感器根据原理可以分为声学、力学、电弧和光学传感器等。声学传感器主要用于GMAW过程熔滴过渡的检测、等离子穿孔焊等。力学传感器能够反映熔池振荡频率同熔池体积之间的关系,但日前只能用于步进焊接,无法实现

连续行走。电弧传感器由于直接检测电弧自身的特性,不需要外加传感器及附件,应用简单,主要用于焊缝跟踪和熔敷控制。据统计,焊工进行手弧焊操作时获取的信息有80%来自视觉。熟练的焊接工人通过观测熔池、工件的接头、电弧的形状和熔滴过渡形式等来预测背而的形状和尺寸参数,通过调节焊接参数实现熔透的控制,保证焊接质量的稳定。下文介绍了视觉传感技术及其在机器人焊接中的作用。

3.1 弧焊视觉传感技术的优点

与传统的传感方法相比,光学传感器具有不与焊接回路接触、不与焊接工件接触、信号的检测操作不影响正常的焊接过程、传感信息丰富、硬件设备简单、易于维护的优点。电子技术、光学技术、机器视觉和图像处理技术为视觉传感技术提供了软硬件支持,如光学器件和摄像机成本下降、性能提高、可靠性改善,图像处理硬件性能改善和种类的增多为视觉传感器提供了硬件支持,机器视觉、图像处理和软件技术的发展为视觉传感器提供了软件保障,因此光学传感器在焊接过程中具有非常广泛的应用前景。光学传感器根据光学器件所工作的波段可以分为X射线传感器、视觉传感器和红外传感器三种。

3.2焊接熔池视觉传感

熔池形状和尺寸对于焊缝成形具有非常重要的作用,熔池形状和尺寸的传感是焊缝成形控制的基础,焊接过程中的声、光、电、磁、热等信急可以用来传感熔池的形状信息。

3.2.1主动式一维视觉传感技术

对于连续电流GTAW,熔池连续处在强烈电弧光的笼罩下,采用常规的CCD 摄像方法很难排除弧光干扰得到清晰的熔池原始图像。有人提出了一种由高能量密度脉冲激光器和与激光脉冲同步的电子快门频闪高速摄像机组成的“频闪视觉”系统检测高亮度区景物的方法。辅助光源采用高密度脉冲激光或者Xe灯闪烁光源在脉冲期间强度高于弧光强度,视觉传感器采用频闪高速CCD摄像机捕捉瞬时清晰的熔池图像。频闪视觉方法在GMAW、GTAW、等离子弧焊(PAW)、

电子束焊(EBW)、激光焊(LW)过程中均获得了清晰度和对比度都较好的熔池图像,如图3.5所示。

图3.5频闪视觉熔池图像传感

3.2.2 被动式二维视觉传感技术

图3.6是GTAW同轴检测方法的示意图。有人开发了一套放置在焊炬内部与电极同轴观测焊接熔池的集成视觉传感系统,在TIG焊熔池观察和MIG焊焊缝跟踪等方面进行了初步的研究。针对低碳钢TIG焊辐射源中各组分发光机理及规律进行的研究,发展了一种在电弧焊条件下获得焊接区图像的光谱传感方法,该方法能够使电弧光谱中各组分的光强在可见光范围内得到调整和控制,从而使熔池图像质量明显提高, 如图3.7所示。在连续光谱选取取像窗口,利用熔池液态金属表面对电弧光的镜面反射及未熔化的和已凝固的工件表面对电弧光的漫反射获取熔池图像,提高熔池图像的对比度。获取熔池正面图像时,开发了由窄带滤光片和中性滤光片组成的复合滤光系统抑制并充分利用弧光。同时开发了一套熔池同时同幅图像传感系统,它通过两条独立的光路将同时刻的熔池正反面的图像聚焦于摄像机的CCD靶面,如图3.8所示。

图3.6 GTAW同轴熔池检测方法

图3.7光谱传感方法

图3.8 熔池正反面图像同时同幅传感系统

3.2.3主动式三维视觉传感技术

相对于二维信息而言,焊接区的三维信息在表现焊接熔池形状、焊缝成形方面更具有优势。为了获取熔池表面的三维信息,有人设计了一套由强脉冲激光栅格状多结构光条纹和高速电子快门摄像机组成的熔池视觉检测系统,摄像机的电子快门与激光脉冲同步,检测正面熔池的下塌量,如图3.9所示。在摄像机成像光路系统中加了与激光波长相匹配的窄带滤光片,有效地抑制了弧光的干扰,进一步提高了图像的信噪比,获得了非常清晰的TIG焊熔池表面反射图像。采用一定的图像处理算法可以提取结构光条纹的栅格框架和轮廓,进而可以计算出熔池正面的高度,建立了正面焊缝平均下塌量与反面熔宽之间关系的数学模型。

图3.9结构光视觉传感

焊接智能化、机器人化是焊接技术必然的发展趋势,但是焊接过程控制的关键是信息传感。焊接过程传感信息包括光学、声学、力学、电磁学等,视觉传感技术以其特点成为将来最有发展前景的传感技术之一。弧焊机器人中的视觉传感技术,将随着相关技术的发展,进一步推动焊接智能化技术发展。

4.机器视觉在农业机器人中的应用

根据机器人视觉技术的不同层次,其在农业机器人中的应用也有所不同。一维成像视觉技术只是通过视觉传感器对作业对象的某一个特征值进行检测,如光的强度、作业对象的颜色等。一维成像的视觉技术由于简单、易于实现,因而在刚开始时得到了较多的应用。但是由于一维成像技术反馈回来的信息量少,不太全面,因此限制了它的应用范围。所以,应用越来越多的是二维成像的视觉技术。二维成像视觉技术是由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。在人类获取信息的感观中,视觉所得到的信息量是最大的。依靠两只眼睛,我们可以感觉到景物的深度,而不是两张图片的简单重叠。这样的二目视觉技术如果能够应用到计算机视觉中,将给农产品的采摘带来非常大的便利。在果实采摘机器人中,通过二维成像的视觉技术就可以对看到的图像进行分析处理,由图像轮廓的形状判断出果实所在的位置,同时对其成熟度(如颜色)进行检测,由此决定是否采摘以及如何对果实进行采摘。Grass等人研究的机器人具有独立的可伸缩性,安装在一个公共平台上,由液压系统支持。每一个机械臂末端安装了一个带广交镜的小摄像机,由于从不同的视点进行获取图像,因此,用立体匹配算法计算水果

的具体位置,将RGB图像阀值化为二值图像,经过平滑处理和边界检测后,估算中心位置,结果表明有86%的检出率和5%的误识率。郑小东等以番茄的形心为匹配基元进行双目视觉的研究,通过模板匹配实现番茄图像轮廓信息的补全和修复,然后根据轮廓特征求的形心,当两个摄像机都能拍摄到完整轮廓时,可以确定番茄的空间位置。但该算法对图像的噪声很敏感,影响了精度。在对果树修枝的机器人中,采用视觉传感器对果树的枝干进行二维成像,通过图像识别确认果树各个枝干的生长情况,将其在计算机中与果树修枝的标准要求对比,由此来决定如何修整果树,并通过视觉传感器反馈机器人手臂的动作,从而引导机器人用手部的剪刀将无用的枝条剪掉。

随着科技的发展,人们的要求也越来越高。为了更加全面地掌握作业对象的信息,三维成像的视觉技术也开始进入了人类的研究范围。三维成像视觉技术主要是以二维成像视觉技术为基础,通过用不同角度的视觉传感器对作业对象进行二维成像,数据送入计算机后再进行分析处理,最终合成作业对象在空间的三维图像,其原理与我们人的眼睛类似。机器人根据此图像即可决定对作业对象的不同操作。在将采摘、检测、分级合为一体的农业机器人中,通过三维成像的视觉技术,机器人首先就可以判断并确定果实所在的位置、果实的空间形状,并检测出果实的大小、成熟度等,然后根据分级的标准将果实放入不同的箱内。更加智能的三维成像视觉技术将自动引导机器人在果园内行走,搜索、发现并识别目标,然后对成熟的果实进行采摘、自动分级,最后再进行自动包装。如果机器人的控制软件开发得足够丰富的话,则带有三维成像视觉技术的机器人将是一个全能机器人,它不仅能完成果实的检测、采摘、分级和包装,而且还能对果树进行修整、施肥等,完成对果树的日常维护。随着三维成像视觉技术的日益成熟,农业机器人将会走向一个更加辉煌的时代。

参考文献:

[1](日)日本机器人学会编,宗光华,程君实等译. 机器人技术手册[M]. 科学出版社2008-1-1

[2] 李来平. 弧焊机器人视觉技术[J].现代焊接, 2007,8

[3] 吕宏明,姬长英. 视觉技术在农业采摘机器人中的应用及发展[J].江西农业学报. 2008,20(2):79~80.

[4] 鲍官军,荀一,戚利勇,杨庆华,高峰. 机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报.2010-2,38(1)

《机器视觉及其应用》习题

第一章机器视觉系统构成与关键技术 1、机器视觉系统一般由哪几部分组成?机器视觉系统应用的核心目标是什么?主要的分 成几部分实现? 用机器来延伸或代替人眼对事物做测量、定位和判断的装置。组成:光源、场景、摄像机、图像卡、计算机。用机器来延伸或代替人眼对事物做测量、定位和判断。三部分:图像的获取、图像的处理和分析、输出或显示。 2、图像是什么?有那些方法可以得到图像? 图像是人对视觉感知的物质再现。光学设备获取或人为创作。 3、采样和量化是什么含义? 数字化坐标值称为取样,数字化幅度值称为量化。采样指空间上或时域上连续的图像(模拟图像)变换成离散采样点(像素)集合的操作;量化指把采样后所得的各像素的灰度值从模拟量到离散量的转换。采样和量化实现了图像的数字化。 4、图像的灰度变换是什么含义?请阐述图像反色算法原理? 灰度变换指根据某种目标条件按照一定变换关系逐点改变原图像中每一个像素灰度值,从而改善画质,使图像的显示效果更加清晰的方法。对于彩色图像的R、G、B各彩色分量取反。 第二章数字图像处理技术基础 1、对人类而言,颜色是什么?一幅彩色图像使用RGB色彩空间是如何定义的?24位真彩 色,有多少种颜色? 对人类而言,在人类的可见光范围内,人眼对不同波长或频率的光的主观感知称为颜色。 一幅图像的每个像素点由24位编码的RGB 值表示:使用三个8位无符号整数(0 到255)表示红色、绿色和蓝色的强度。256*256*256=16,777,216种颜色。 2、红、绿、蓝三种颜色为互补色,光照在物体上,物体只反射与本身颜色相同的色光而吸 收互补色的光。一束白光照到绿色物体上,人类看到绿色是因为? 该物体吸收了其他颜色的可见光,而主要反射绿光,所以看到绿色。 3、成像系统的动态范围是什么含义? 动态范围最早是信号系统的概念,一个信号系统的动态范围被定义成最大不失真电平和噪声电平的差。而在实际用途中,多用对数和比值来表示一个信号系统的动态范围,比如在音频工程中,一个放大器的动态范围可以表示为: D = lg(Power_max / Power_min)×20; 对于一个底片扫描仪,动态范围是扫描仪能记录原稿的灰度调范围。即原稿最暗点的密度(Dmax)和最亮处密度值(Dmin)的差值。 我们已经知道对于一个胶片的密度公式为D = lg(Io/I)。那么假设有一张胶片,扫描仪向其投射了1000单位的光,最后在共有96%的光通过胶片的明亮(银盐较薄)部分,而在胶片的较厚的部分只通过了大约4%的光。那么前者的密度为: Dmin=lg(1000/960)= 0.02; 后者的密度为: Dmax=lg(1000/40)= 1.40 那么我们说动态范围为:D=Dmax-Dmin=1.40-0.02=1.38。

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

浅谈机器人视觉技术

浅谈机器人视觉技术 摘要 机器人视觉是使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。本文介绍了机器人的发展以及视觉计算理论和视觉的关键技术。 关键词:机器人、视觉、计算、关键技术 一、机器人发展概述 科学技术的发展,诞生了机器人。社会的进步也提出要求,希望创造出一种能够代替人进行各种工作的机器,甚至从事人类不能及的事情。自从1959年诞生第一台机器人以来,机器人技术取得了很大的进步和发展,至今已成为一门集机械、电子、计算机、控制、传感器、信号处理等多学科门类为一体的综合性尖端科学。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不 断提高,并逐步向智能化方向发展。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领域的拓宽和性能水平的提高,二者相辅相成、相互促进。 智能机器人是具有感知、思维和行动功能的机器,是机构学、自动控制、计算机、人工智能、微电子学、光学、通讯技术、传感技术、仿生学等多种学科和技术的综合成果阎。智能机器人可获取、处理和识别多种信息,自主地完成较为复杂的操作任务,比一般的工业机器人具有更大的灵活性、机动性和更广泛的应用领域。要使机器人拥有智能,对环境变化做出反应,首先,必须使机器人具有感知

FANUC机器人机器人视觉成像应用(2D)

发那科机器人视觉成像应用(2D) 目录 第一部分:视觉设定 (2) 第二部分:视觉偏差角度的读取与应用 (8) 应用范围:摄像头不安装在机器人上。

第一部分:视觉设定 发那科机器人视觉成像(2D-单点成像),为简化操作流程,方便调试,请遵循以下步骤:1、建立一个新程序,假设程序名为A1。程序第一行和第二行内容为: UFRAME_NUM=2 UTOOL_NUM=2 以上两行程序,是为了指定该程序使用的USER坐标系和TOOL坐标系。此坐标系的序号不应被用作视觉示教时的坐标系。 2、网线连接电脑和机器人控制柜,打开视频设定网页(图一)。 3、放置工件到抓取工位上,通过电脑看,工件尽量在摄像头成像区域中心,且工件应该全 部落在成像区域内。 4、调整机器人位置,使其能准确的抓取到工件。在程序A1中记录此位置,假设此位置的 代号为P1。抬高机械手位置,当其抓取工件运行到此位置时自由运动不能和其他工件干涉,假设此点为P2。得到的P1和P2点,就是以后视觉程序中要用到的抓件的趋近点和抓取点。 5、安装定位针,示教坐标TOOL坐标系(不要使用在程序A1中使用的坐标系号,假设实际 使用的是TOOL3坐标系);TOOL坐标系做完之后一定不要拆掉手抓上的定位针,把示教视觉用的点阵板放到工件上,通过电脑观察,示教板应该尽量在摄像头成像区域中心。 示教USER坐标系(不要使用在程序A1中使用的坐标系号,假设实际使用的是USER3坐标系)。此时可以拆掉手抓上的定位针USER坐标系做好之后一定不要移动示教用的点阵板。 6、按照如下图片内容依次设定视觉。 图一:设定照相机(只需要更改),也就是曝光

FANUC机器人机器人视觉成像应用D

F A N U C机器人机器人视 觉成像应用D This manuscript was revised by the office on December 10, 2020.

发那科机器人视觉成像应用(2D) 目录 应用范围:摄像头不安装在机器人上。 第一部分:视觉设定 发那科机器人视觉成像(2D-单点成像),为简化操作流程,方便调试,请遵循以下步骤: 1、建立一个新程序,假设程序名为A1。程序第一行和第二行内容为: UFRAME_NUM=2 UTOOL_NUM=2 以上两行程序,是为了指定该程序使用的USER坐标系和TOOL坐标系。此坐标系的序号不应被用作视觉示教时的坐标系。 2、网线连接电脑和机器人控制柜,打开视频设定网页(图一)。 3、放置工件到抓取工位上,通过电脑看,工件尽量在摄像头成像区域中心,且工件应该 全部落在成像区域内。 4、调整机器人位置,使其能准确的抓取到工件。在程序A1中记录此位置,假设此位置的 代号为P1。抬高机械手位置,当其抓取工件运行到此位置时自由运动不能和其他工件干涉,假设此点为P2。得到的P1和P2点,就是以后视觉程序中要用到的抓件的趋近点和抓取点。 5、安装定位针,示教坐标TOOL坐标系(不要使用在程序A1中使用的坐标系号,假设实 际使用的是TOOL3坐标系);TOOL坐标系做完之后一定不要拆掉手抓上的定位针,把示教视觉用的点阵板放到工件上,通过电脑观察,示教板应该尽量在摄像头成像区域中心。示教USER坐标系(不要使用在程序A1中使用的坐标系号,假设实际使用的是USER3坐标系)。此时可以拆掉手抓上的定位针USER坐标系做好之后一定不要移动示教用的点阵板。 6、按照如下图片内容依次设定视觉。 图一:设定照相机(只需要更改),也就是曝 光时间,保证:当光标划过工件特征区域的最亮点时, 中g=200左右。其他不要更改。 图二:标定示教点阵板。此时,只需要更改如下内容: 图三:标定示教点阵板需要做的设定 图四: 标定示教点阵板时,观察数据误差范围 设定完以上内容后,方可以移走示教用的点阵板。之前任何时候移动此示教板,都会造成错误!! 图五(与图六为同一个页面,一个图上截屏不完整。此页只需要更改曝光时间。)图六(与图5是同一个页面)除了设定曝光时间外,什么都不要动。 图七:此图完成后,才可以做图6的set .ref.pos 在完成以上操作后,按照如下步骤示教机器人

一张图搞懂机器人视觉与机器视觉

机器人视觉与计算机视觉:有什么不同? By Alex 机器人视觉、计算机视觉、图像处理、机器视觉和图形识别,这几者之间到底有神马区别呢? 要弄清楚他们哪一个是哪一个,有时候也真的是容易混淆的。接下来看看这些术语的具体含义是什么,以及他们与机器人技术有什么关联。读了这篇文章后,你就再也不会被这些概念弄糊涂了! 当人们有时候谈论机器人视觉的时候,他们搞混淆了。当他们说,他们正在使用“计算机视觉”或“图像处理”的时候,实际上,他们的意思是正在使用…机器视觉?,这是一个完全可以理解的错误。因为,所有不同术语之间的界限有时候也是有些模糊的。 在这篇文章当中,我们分解了机器人视觉的“族谱”,以显示在更广泛的信号处理领域所在的位置。 什么是机器人视觉(Robot Vision)? 在基本术语中,机器人视觉涉及使用相机硬件和计算机算法的结合,让机器人处理来自现实世界的视觉数据。例如,您的系统可以使一个二维摄像头,检测到机器将拿起来的一个对象物。更复杂的例子可能是使用一个3D立体相机来引导机器人将车轮安装到一个以移动中的车辆上。 如果没有机器视觉,你的机器人基本上是个瞎子。对一些机器人任务来说,这也许不是一个问题。但对于某些应用来说,机器人视觉是有帮助的,甚至是必不可少的。 机器人视觉(Robot Vision)的“族谱” 机器人视觉与机器视觉密切相关,机器视觉我们稍后再介绍。他们两个又都与计算机视觉密切相关。如果他们谈论的是一个“族谱”,计算机视觉可以看作是他们的“父母”。然而,为了详细的了解他们在整个系统中的位置,我们要更进一步介绍他们的“祖父母”-信号处理。 族谱 信号处理(Signal Processing)

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器人视觉系统的组成及工作原理

机器人视觉系统的组成及工作原理 【摘要】随着大规模集成电路技术的发展,视觉系统逐渐走向实用化。由于微型计算机的飞速发展,使用的视觉系统已经进入领域,其中机器人视觉系统是机器视觉应用的一个重要领域。本文叙述机器人视觉系统的各部分组成,及各部分组成的工作原理。 【关键词】CCD;视频数字;信号处理器 1.机器人视觉系统的硬件系统 1.1机器人视觉系统的硬件由下述几个部分组成 (1)景物和距离传感器常用的摄像机、CCD图像传感器、超声波传感器和结构光设备等。 (2)视频信号数字化设备其任务是把摄像机或CCD输出的信号转换成方便计算和分析的数字信号。 (3)视频信号快速处理器,视频信号实时、快速、并行算法的硬件实现设备:如DSP系统。 (4)计算机及其外设根据系统的需要可以选用不同的计算机及其外设来满足机器人视觉信息处理及机器人控制的需要。 (5)机器人或机械手及其控制器。 1.2机器人视觉的软件系统有以下几个部分组成 (1)计算机系统软件选用不同类型的计算机,就有不同的操作系统和它所支持的各种语言、数据库等。 (2)机器人视觉信息处理算法图像预处理、分割、描述、识别和解释等算法。 (3)机器人控制软件。 https://www.360docs.net/doc/b813432500.html,D原理 视觉信息通过视觉传感器转换成电信号,在空间采样和幅值化后,这些信号就形成了一幅数字图像。机器人视觉使用的主要部分是电视摄像机,它由摄像管或固态成像传感器及相应的电子线路组成。这里我们只介绍光导摄像管的工作原理,因为它是普遍使用的并有代表性的一种摄像管。固态成像传感器的关键部分有两种类型:一种是电荷耦合器件(CCD);另一种是电荷注入器件(CID)。与具有摄像管的摄像机相比,固态成像器件重量轻、体积小、寿命小、功耗低。不过,某些摄像管的分辨率仍比固态摄像机高。光导摄像管外面是一圆柱形玻璃外壳2,内部有位于一端的电子枪7以及位于另一端的屏幕1和靶。加在线圈6、9上的电压将电子束聚焦并使其偏转。偏转电路驱使电子束对靶的内表面扫描以便“读取”图像。玻璃屏幕的内表面镀有一层透明的金属薄膜,它构成一个电极,视频信号可从此电极上获得。一层很薄的光敏“靶”附着的金属膜上,它是一层由一些极小的球状体组成,球状的电阻反比于光的强度。在光敏靶的后面有一个带正电荷的细金属网,它使电子枪发射出的电子减速,以接近于0的速度达到靶面。在正常工作时,将正电压加在屏幕的金属镀膜上。在无光照时,光敏材料呈现绝缘体特性,电子束在靶的内表面上形成一个电子层以平衡金属膜上的正电荷。当电子束扫描靶内表面时,光敏层就成了一个电容器,其内表面具有负电荷,而另一面具有正电荷。光投射到靶层,它的电阻降低,使得电子向正电荷方向流动并与之中和。由于流动的电子电荷的数量正比于投射到靶的某个局部区域上的光的强度,因此其效果是在靶表面上形成一幅图像,该图像与摄像管屏幕上的图像亮

国内机器视觉的发展现状

国内机器视觉的发展现状 机器视觉是最近几年新发展起来的新兴技术领域,通过利用计算机模拟人的视觉能力来进行判断和识别,它是机器人、智能装备以及自动化领域至关重要不可或缺的技术之一。 目前国内的机器视觉技术和国外相比还相对落后,关键的技术设备还依赖于进口。国内大部分的机器视觉公司都集中在系统集成领域。国内机器视觉市场需求凸显,而国内机器视觉技术的滞后已无法满足国内市场的需求。 机器视觉应用主要包括表面缺陷检测、产品尺寸测量、机器人视觉定位、视觉目标识别这个四大类: 表面质量的检测至关重要,产品的表面缺陷不仅影响产品外观本身,还将对产品使用性能产生影响,比如做易拉罐的镀锡板,如果表面有微小的孔洞;卫生用无纺布表面有污点;液晶玻璃面板表面有结晶;太阳能电池片有断栅或隐裂等。 现代化高速的生产线,人眼无法识别或效率较低,还有高额的人工成本,都迫使生产企业进行变革,引入表面视觉检测系统,让机器来替代人工检测,大幅提高生产检测效率。 产品尺寸测量大部分应用于机械加工制造领域,现代机械加工技术精益求精,大规模批量化生产,通过构建机器视觉系统,对产品外观尺寸进行检测处理,发现不合格进行剔除。随着机械加工现代化水平的日益发展,视觉尺寸检测不可或缺。

视觉图像识别技术应用广泛,互联网中的人脸识别、交通防中的车牌识别、商品中二维码条码识别、ocr文字识别等。相比视觉检测和视觉测量,视觉图像识别技术相对成熟。 机器视觉定位系统主要应用机器人视觉引导,机器视觉给机器人装上大脑和眼睛,通过视觉系统引导机器人做各种不同的姿态和动作,机器人与机器视觉的融合将是未来智能装备发展的重要领域。 从整个国内机器视觉发展来看,国产化程度不高,机器视觉硬件设备核心零部件主要依靠进口。机器人技术和国外相比不仅是价格上的差距。系统集成企业以中小型企业为主,大部分企业一方面代理国外设备,一方面进行系统集成,真正投入的研发力量非常有限。 国内机器视觉无疑是个处于上升时期的朝阳产业,2025中国制造大战略政策支持下,机器视觉企业将加大投入力量,促进国内机器视觉技术的快速发展。 本文作者:大军闲谈

基于视觉的智能机器人的生产技术

图片简介: 本技术介绍了基于视觉的智能机器人,包括:机器人本体和设置在机器人本体内的控制系统;机器人本体包括:Kinect设备、网络摄像头、控制箱体、电池层以及四轮差动平台;Kinect设备通过支撑板设在控制箱体的顶部,网络摄像头设在Kinect设备的上表面,电池层固定在控制箱体的下表面,电池层的下表面通过伸缩柱连接有四轮差动平台,控制系统设在控制箱体中,该智能机器人克服现有技术中的机器人使用GPS来实现机器人自主定位,使用人工输入已知的环境地图和建筑物结构图来代替机器人自主学习和构建地图,但GPS定位的精度不够,仅适用于室内,人工输入地图的方式限制了机器人的工作范围,对于室外变化的环境不适用的问题。 技术要求 1.一种基于视觉的智能机器人,其特征在于,所述基于视觉的智能机器人包括:机器人本体和设置在所述机器人本体内的控制系统;其中, 所述机器人本体包括:Kinect设备(8)、网络摄像头(7)、控制箱体(5)、电池层(9)以及四轮 差动平台(1);所述Kinect设备(8)通过支撑板(6)设置在所述控制箱体(5)的顶部,所述网络 摄像头(7)设置在所述Kinect设备(8)的上表面,所述电池层(9)固定在所述控制箱体(5)的下 表面,所述电池层(9)的下表面通过伸缩柱(2)连接有四轮差动平台(1),所述控制系统设置在所述控制箱体(5)中;

所述Kinect设备(8)和所述网络摄像头(7)用于采集机器人周围的环境信息,所述控制系统对获取的环境信息进行分析并且执行SLAM程序,实现环境地图构建和自主定位,并且通过串口线路控制所述四轮差动平台的运动;所述电池层(9)中设置有电池组,用于提供系统运行的电能。 2.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述控制系统包括:中央处理器和存储器,所述Kinect设备(8)、所述网络摄像头(7)、所述存储器以及所述电池组分别与所述中央处理器相连,所述存储器对所述中央处理器构建的环境地图数据进行存储。 3.根据权利要求2所述的基于视觉的智能机器人,其特征在于,所述控制系统还包括人体传感器,所述人体传感器用于识别人体,在识别到人体的情况下,所述中央处理器控制所述四轮差动平台围绕所述人体的周围运动,以使得所述Kinect装置采集到所述人体的周围的数据,通过中央处理器实现构建环境地图以及自主定位。 4.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述控制箱体(5)的外侧面铰接设置有暗门(3),所述暗门(3)的背面与所述控制箱体(5)的内部相连通。 5.根据权利要求4所述的基于视觉的智能机器人,其特征在于,所述暗门(3)上嵌入显示器(4),所述暗门(3)与所述中央处理器电性连接,用于显示所述中央处理的信息。 6.根据权利要求5所述的基于视觉的智能机器人,其特征在于,所述显示器(4)为触摸式液晶显示屏。 7.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述四轮差动平台四轮独立驱动的平台,且设置在平台侧面的驱动轮为表面布设有防滑凸起条的橡胶轮。 8.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述网络摄像头(7)至少设置两个,且间隔设置在所述Kinect设备(8)的上表面,经过标定之后构成双目视觉传感设备。 9.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述机器人本体的材料为木头。

机器人视觉传感器的应用

机器人视觉传感器应用 庞浜 学号19920141152889 (厦门大学物理与机电工程学院,福建厦门 361005) 摘要:传感器是自动控制特别是机器人技术中一个很重要的部分。它类似人的五感(眼、耳、鼻、舌、身)对对象物,周围环境,系统内部状态进行快速、准确的感觉、检测、识别。本译文介绍了几种类似人视觉功能的传感器(红外线传感器,视觉—位置传感器,色识别传感器),及其原理、特点、应用及主要技术指标。在机器人发展日益成熟的今天,视觉传感器的重要作用日益显现。 关键词:视觉传感器,图像处理,机器人 Abstract:Sensor is a very important part of automatically controlled in particular robotics. It is similar to one of the five senses (eyes,ears,nose, tongue,body) to the object, the surroundings, the internal state of the system for fast, accurate feeling, detection, identification.The translation introduces several features similar to human vision sensors (infrared sensors, vision - position sensors,color recognition sensor),and its principles,characteristics,applications and main technical indicators.In today's increasingly sophisticated robot development, the important role of the visual sensor becomes increasingly obvious. 1引言 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量 大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强藕合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。计算机视觉应用多采用光电传感器、视觉传感器或者视觉系统来实现。光电传感器结构简单,价格

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器人技术及其视觉论文.

课程名称: 机器人技术及视觉学院: 机电工程学院专业: 仪器仪表工程姓名: ** 学号:

0.引言 近年来,随着科学技术的发展,机器人的应用日趋广泛,联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的操作机;或是为了执行不同的任务而具有可用电脑改变和可编程动作的专门系统。”而移动机器人作为机器人学中的一个重要分支,是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。 移动机器人融合运动控制与执行、动态决分析、感知环境等功能于一体。移动机器人是机电一体化技术与产品的典型代表,其涵盖了机械设计技术、电子技术、计算机技术、传感器技术、信息处理及自动化控制工程等多项技术,在科学技术领域较为活跃。由于科研人员对机器人的研究越来越深入,机器人的各项指标和要求逐步实现,其应用范围也愈加广泛,普遍应用于工、农、医、服务等民用领域,而且在防恐防暴、军事和外空探测等领域也到达不可替代的作用。 移动机器人可以在条件复杂的环境中工作,具有自主能力的机器人,集中了机械、电子。计算机等技术。机器人学是一门学科交叉的综合性学科,机器人技术在工业领域显得尤为重要,可以说现代的工业发展离不开机器人技术。基本的机器人由执行机构、控制系统、驱动装置、检测装置等四个主要的模块组成。 移动机器人在工业、农业、医疗、军事、服务等领域的价值不言而喻,而在外太空探测、海洋资源开发、核能开发等领域的应用前景极为明朗。机器人按应用的场合和性质不同主要分为民用机器人、工业机器人、军事机器人和探索机器人等四类。 2014年巴西世界杯,对于治安混乱的里约热内卢来说,赛事安全成为一大隐患。为了应对安保挑战,巴西政府一次性采购了30台iRobot公司生产的小型军用机器人Packbot(图1)用于安保工作。而在此之前,该军用机器人已在各地大批的服役,在爆炸物探测与清除、危险物质侦测、放射性和核侦查及危险物品处置等方面表现异常出色,拯救无数生命。 移动机器人的应用十分广泛,极大地解放劳动力,创造了更大的价值,如工厂的流水线。移动机器人在外太空探测时也是极为重要的。美国和前苏联的外太空探测机器人技术水平很高,这两个国家多次对月球表面进行了探测,如美国的Apollo号登月飞船和前苏联的Lunokhod探测车都登上了月球,出色的完成探测

机器人视觉知识汇总

机器人视觉知识汇总 到如今,中国已经成为世界机器视觉发展最为活跃地区,应用范围涵盖了工业、农业、医药、军事、航天、气象等国民经济各个行业。虽然机器视觉的成长速度非常快,但是还是有很多人对机器视觉并不了解,今天我们来了解下机器视觉。 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMO和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 【机器视觉的优势】 机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度和速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 【系统组成】 一个典型的机器视觉系统包括以下部分: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉光源照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳的效果。光源可分为可见光和不可见光,常见的几种可见光源有白炽灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不稳定。所以如何使光能在一定的程度上保持稳定,是目前急需解决的问题;另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。 照明系统按照照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向光照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像;前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装;结构光照明是将

相关文档
最新文档