桥梁监测方案解读

桥梁监测方案解读
桥梁监测方案解读

摘要和关键词

【摘要】

结合工程实践,对桥梁监测系统进行了总体的介绍,可以初步了解桥梁监测系统的构成。分析了桥梁相应的危险有害因素并进行了相应的分类,同时,对检测过程中各种传感器的选择选择与使用也做了相应的介绍,本文同时对桥梁监测系统的数据采集,分析和相应的过程进行了介绍,阐述了每个部分的应用和各个系统之间的联系,是比较系统和完善的对桥梁监测系统做了相应的介绍,随着时代进步,安全监测会凸显出其重要性。

【关键词】

桥梁监测系统;监测设备;危险源;传感器;数据分析;

1、桥梁监测系统

1.1 桥梁检测的简介

桥梁安全监测是在传统的桥梁检测技术的基础上,运用现代化传感设备与光电通信及计算机技术, 实时监测桥梁运营阶段在各种环境条件下的结构响应和

行为, 获取反映结构状况和环境因素的信息, 由此分析结构健康状态, 评估结

构的可靠性, 为桥梁的管理与维护提供科学依据。在偶发事件( 如地震) 发生后, 可通过监测数据识别结构的损伤和关键部位的变化, 对桥梁结构的承载能力和

抗风、抗震能力做出客观的定量的评估。由于桥梁( 尤其是斜拉桥、悬索桥) 的力学和结构特点以及所处的特定环境, 在桥梁设计阶段完全掌握和预测结构的

力学特性和行为是非常困难的,桥梁的设计依赖于理论分析并通过风洞、振动台模拟试验预测桥梁的动力性能并验证其动力安全性。而结构理论分析常基于理想的有限元模型, 并且分析时常以很多假定为前提, 这种模拟试验和计算假定可

能与真实桥位不完全相符。因此, 可以通过桥梁健康监测所获得的实际结构的动静力行为, 可以验证桥梁的结构分析模型、计算假定和设计方法的合理性, 而且监测数据可用于深入研究桥梁结构及其环境中的未知和不确定性问题。而且桥梁健康监测信息反馈于结构设计的更深

1.2 桥梁监测系统的结构

桥梁监测系统就是通过对桥梁结构进行无损检测, 实时监控结构的整体行为, 对结构的损伤位置和程度进行诊断, 对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估, 为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决策提供依据和指导。桥梁监测系统的基本组成如图1所示。

图1 桥梁检测系统基本组成框图

1.3 桥梁监测系统的特点

桥梁监测系统作为现代桥梁系统中必不可少的一部分,有着极其重要的地位,对桥梁的安全和争产运行起到了极其重要的作用,基于对桥梁监测系统的研究,其具有以下一些共同特点:

(1) 通过测量结构各种响应的传感装置获取反映结构行为的各种记录.

(2) 除监测结构本身的状态和行为以外,还强调对结构环境条件(如风、车辆荷载等) 的监测和记录分析;同时,试图通过桥梁在正常车辆与风载下的动力响应来建立结构的“指纹”,并借此开发实时的结构整体性与安全性评估技术.

(3) 在通车运营后连续或间断地监测结构状态,力求获取的大桥结构信息连续而完整. 某些桥梁监测传感器在桥梁施工阶段即开始工作并用于监控施工质量.

(4) 监测系统具有快速大容量的信息采集、通讯与处理能力,并实现数据的网络共享.

1.4 桥梁监测系统的监测方面

桥梁监测的基本内涵即是通过对桥梁结构状态的监控与评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁维护、维修与管理决策提供依据和指导. 为此,监测系统对以下几个方面进行监控:

( 1) 桥梁结构在正常车辆荷载及风载作用下的结构响应和力学状态。

( 2) 桥梁结构在突发事件( 如地震、意外大风或其它严重事故等) 之后的损伤情况。

( 3) 桥梁结构构件的耐久性, 主要是提供构件疲劳状况的真实情况。

( 4) 桥梁重要非结构构件( 如支座) 和附属设施( 如斜拉桥振动控制装置) 的工作状态。

( 5) 大桥所处的环境条件, 如风速、温度、地面运动等。

2、桥梁危险源

2.1 桥梁中的危险因素

桥梁中存在诸多因素会导致桥梁发生事故,对这些因素的研究有助于我们对桥梁事故更好的预测和分析,可以更好地避免事故发生,减少人员伤亡和财产的损失,因此,桥梁监测系统所监测的因素主要有以下几方面。

( 1) 荷载。包括风、地震、温度、交通荷载等。

( 2) 几何监测。监测桥梁各部位的静态位置、动态位置、沉降、倾斜、线形变化、位移等。

( 3) 结构的静动力反应。监测桥梁的位移、转角、应变应力、索力、动力反应( 频率模态) 等。

( 4) 非结构部件及辅助设施。支座、振动控制设施等。

2.2 桥梁事故的事故树分析

针对可能发生的桥梁事故,分析导致的原因事件,然后根据这些原因事件建造事件树,确定成立的事故方案,并应用ANSYS软件等工具计算出桥梁结构在各种可能原因事件以及各种可能事故方案的作用下的空间应力状态;最后通过对这些可能事故方案的分析来确定事故的原因及机理。具体分析过程如图2所示。

图2 基于可靠性的事故分析模型

如果某工程事故在事故原因调查分析时通过专家意见、现场调查、文献搜集

以及回顾等确定有3 种可能事故原因事件(E

1,E

2

,E

3

),则有6种可能事故方案,

如图3所示。

图3 所有可能引起事故的方案

在完成事件树建造之后,下一步就是对每个破坏事件进行品质分析(也即这些事件发生的条件概率)和确定每种事故方案的发生概率. 如果事故方案中的某一事件的条件概率小于事故发生的极限概率值,则认为该事故方案不成立,而只需要对那些成立的方案进行分析,如图4所示.

图4 研究的事故方案

通过上述理论,可以形成事件树分析法对事故分析步骤.

(1) 确定或寻找可能导致事故的事件. 破坏事件可通过专家意见、工程现场调查、文献搜集以及回顾等确定;

(2) 确定可能导致事故严重后果的初因破坏事件,所有的事故失效事件都有可能

是初因失效事件;并对初因事件进行分类,对于那些可能导致相同事件树的初因事件可划分为一类;

(3) 建造事件树,对事件进行分析,排除包含事件的条件概率小于极限失效概率值的事故方案,确定成立的事故方案;

(4) 对事故方案进行仿真计算,计算出各种事件作用时对结构的应力状态影响,并比较分析确定这些事件对事故的权重;

(5) 评价被调查的事故方案发生的可能性,找出事故原因.

3、桥梁传感器

3.1 桥梁监测系统中的传感器

桥梁检测系统中由于检测的因素过多,因此会使用到种类众多的传感器,具体传感器类型包括:

(1)应变/温度传感器——测量混凝土构件内部应变和温度的分布。

(2)斜拉锁索力计(锚索计和智能拉索)——测量斜拉索索力。

(3)静力水准仪——测量桥梁沿桥轴线方向各断面的相对高程变化、即挠度。

(4)倾角计——测量桥梁墩柱、索塔、箱梁等构件偏转角。

(5)加速度/速度计——测量桥梁运营过程中自振和强迫振动的动态特性。

(6)位移计——测量斜拉桥索塔与主梁之间相对纵向位移。

(7)桥梁线形及变位永久监测网——由基准站、测站和监测点构成,定期监测桥梁几何线形变化。

3.2 桥梁中针对不同因素所使用的传感器

桥梁中的不同因素由于性质差别大,则需要选择相应的传感器,下面是针对不同的因素所使用的相应传感器:

( 1) 荷载。包括风、地震、温度、交通荷载等。所使用的传感器有: 风速仪——记录风向、风速进程历史, 连接数据处理系统后可得风功率谱; 温度计——记录温度、温度差时程历史; 动态地秤——记录交通荷载流时程历史, 连接数据处理后可得交通荷载谱;强震仪——记录地震作用; 摄像机——记录车流情况和交通事故。

( 2) 几何监测。监测桥梁各部位的静态位置、动态位置、沉降、倾斜、线形变化、位移等。所使用的传感器有: 位移计、倾角仪、GPS、电子测距器( EDM) 、数字像机等。

( 3) 结构的静动力反应。监测桥梁的位移、转角、应变应力、索力、动力反应( 频率模态) 等。所使用的传感器有: 应变仪——记录桥梁静动力应变应力, 连接数字处理后可得构件疲劳应力循环谱; 测力计( 力环、磁弹性仪、剪力销) ——记录主缆、锚杆、吊杆的张拉历史; 加速度计——记录结构各部位的反应加速度、连接数据处理后可得结构的模态参数。

( 4) 非结构部件及辅助设施。支座、振动控制设施等。

3.3 桥梁中针对不同因素监测方式和频率

桥梁中涉及到的因素有静态的有动态的,有有形的有无形的,因此针对不同的因素要采取不同的方法和频率。依据桥梁中不同因素所属的种类不同,将相应因素进行了相应的分类,同时给出了相应的监测手段。下表1中具体列出了不同

因素的监测方式和频率。

表1 不同因素的分析表

4、桥梁监测系统的具体实施方案

在桥梁监测系统中不同的功能目标所要求的监测项目不尽相同. 绝大多数桥梁监测系统的监测项目都是从结构监控与评估出发的,个别也兼顾结构设计验证甚至部分监测项目以桥梁问题的研究为目的.如果监测系统考虑具有结构设计验证的功能,那就要获得较多结构系统识别所需要的信息,因此,对于大型桥梁,需要较多的传感器布置于桥塔、加劲梁以及缆索/ 拉索各部位,以获得较为详细的结构动力行为并验证结构设计时的动力分析模型和响应预测,另外,在支座、挡块以及某些联结部位需安设传感器获取反映其传力、约束状况等的信息.

4.1 桥梁监测方案中组成部分

(1)硬件部分

监测系统的硬件主要用于桥梁参数的采集和数据处理,在监控分中心设置数据服务器进行系统数据分析处理,并设置工作站计算机进行实时监控,在桥梁现场设置网络传输设备和数据采集处理设备进行远程数据的传输和采集,在桥梁的不同位置设置原始数据采集设备进行桥梁实时状态的监测。原始数据采集设备如下:

(1)风力风向监测设备

成桥后风荷载是桥梁结构的主要动力荷载之一。在风荷载作用下,桥梁的主要构件索、梁和塔都将产生振动,引起疲劳损伤累积,导致桥梁抗力衰减。通过监测风速、风向,统计最大风速值、风荷载脉动特性及风功率谱密度等,可以得出结构的风与结构响应关系,从而对结构进行风致振动的分析。

(2)环境温度监测设备

通过环境温度的监测,可以分析环境温度对结构静力响应的影响,以使基于静力测试的识别方法能更准确地反映结构基准状态;可以分析环境温度对振动特性的影响,以使基于振动测试的损伤检测方法能更准确;可以预测可能出现的极限环境温度荷载。同时,空气湿度对结构的耐久性影响也较大。环境监测中温度和湿度的监测对于分析结构状态和结构损伤发展状态是重要的参数指标,另外温湿度监测可以为系统采集站设备的工作环境控制提供参考数据。

(3)结构温度监测设备

构件温度的分布状况将直接影响到结构的变形和内力状态,构件温度场中的温差效应的实际分布也是设计单位关心的一个重要结构参数;对结构温度分布情况的监测可以用于分析结构温度场对结构静力响应的影响,以使基于静力测试的识别方法能更准确地反映结构基准状态;可以帮助分析结构温度场对振动特性的影响,以使基于振动测试的损伤检测方法能更准确。因此温度荷载的监测可以帮助考察可能出现的极限温度场荷载,为结构分析提供帮助。另外温度场监测可为部分监测设备做温度补偿。

(4)地震监测设备

地震荷载的监测是指在地震事件或船舶撞击下监测大桥桥址处的地震动加速度时程及其频谱,为结构整体和局部的动静力响应及灾后评估提供依据,为大桥管理部门处理突发事件提供资料。

(5)动态交通荷载监测

交通荷载的监测一方面可以对运营期大桥的交通量进行统计,对过桥的车辆轴重、速度、车长进行动态实时监测,当车辆超载时可给出预警。另一方面,车辆

交通荷载的监测可以为结构响应大小提供对比的参照,提供桥梁是否处于无车辆活荷载的近似恒载的判断依据,作为桥梁恒载状态对比分析的前提条件。

(6)结构应变监测设备

对构件应力的监测可以分析求解出测点的应力状况。结构的应力是重要的结构局部信息,一旦应力超限,便可能导致材料开裂或破坏,进而导致构件和桥梁的破坏。应变指标是运营期间安全性预警的重要信息,也是结构状态分析的参考信息,尤其对一些关键的结构部位(如主梁跨中、主梁支座顶部、桥塔根部等),必须对其进行监测。

(7)主梁挠度监测设备

桥梁主梁挠度直接反应了主梁当前的整体受力状态,桥梁挠度也是监测系统预警和安全评定的主要指标。

(8)索塔倾斜监测设备

桥塔是斜拉桥的主要承重构件,桥塔一旦出现较大倾斜,整个斜拉桥会有倾覆的危险。另外桥塔沿桥纵向倾斜也是索力不均匀分布的表现。

(9)主梁及索塔空间变位监测设备

主梁和索塔的空间变位是反映大桥安全状态及进行内力状态评估分析的重要参数,是结构安全预警的重要指标。

(10)整体位移监测设备

斜拉桥主梁在温度作用下会发生纵向变形,这种纵向变形将通过伸缩缝处主梁端部位移来反映。伸缩缝处主梁端部位移与温度之间具有一定的对应关系,通过监测可以掌握主梁纵向变形情况,如果主梁的纵向变形异常(变形未被释放),则会导致主梁出现较大的温度应力,这对主梁安全将产生危险。

(11)斜拉索索力监测设备

斜拉索是斜拉桥最重要的受力构件,斜拉索索力的变化直接反映桥梁结构受力状态的变化,关系到整座大桥的安全,通过索力的监测能够为运营期间的安全性提供直接的预警信息和状态评估信息。

(12)动力特性监测设备

桥梁动力特性参数的变化(频率、振型、模态阻尼系数)是桥梁构件性能改变的标志。桥梁的振动水平(振动幅值)反映桥梁的安全运营状态。桥梁自振频率的降低、桥梁局部振型的改变可能预示着结构的刚度降低和局部破坏,是进行结构损伤评估的重要依据。

(13)腐蚀监测设备

桥墩支撑着整个桥梁,一旦出现问题,后果极其严重。桥墩所处位置环境恶劣,各种腐蚀因素会导致桥墩混凝土耐久性降低,通过对桥墩处混凝土耐久性CL一腐蚀进程监测,能及时掌握桥墩混凝土的腐蚀程度,在腐蚀速度过快或腐蚀程度过大时可及时进行补救。在桥梁现场设置的工作站进行数据转换后,将光信号和模拟信号转换成数字信号,通过光缆传输到监控分中心,在现场的工作站设置一套同步时钟系统,以保证各个设备采集数据的同时性。

(2)软件部分

监测系统要实现全桥整体状态的监测,离不开最后软件系统的数据分析与处理,其中,又可以把软件系统分为三大块,分别是:

(1)数据采集与传输系统

数据采集与传输系统是整个监测系统实现的首要条件,通过这个子系统,实现了对传感器信号的采集、处理、存储、传输与显示功能,现场设备与数据服务器紧

密联系,可以随时对所需要的数据进行调用。

(2)数据处理与分析系统

这个子系统是桥梁监测系统的核心,它完成桥梁巡检、养护管理及预警功能,实现巡检动态数据的录入、存储、导出、上传功能。达到桥梁监测系统要求的数据接收与处理服务器上的数据传输、数据下载、数据处理及数据存储等功能,并通过WEB统一门户形式,提供给用户使用。

(3)数据库管理系统

根据系统运行数据的规模和系统功能要求,数据库管理系统利用数据库软件,作为结构监测系统数据存储及共享的平台。这个子系统是整个系统的基础。软件部分三个子系统实际上是密不可分的,系统进行数据分析,不仅仅是自动采集的,也包括人工巡检后录人数据库的数据。其中桥墩变位、斜拉索索力、斜拉索探伤、钢结构焊缝探伤、腐蚀、混凝土强度、混凝土碳化深度、混凝土裂缝测量、桥面线形、桥面状况、混凝土表观状况、钢结构状况、斜拉索状况、阻尼器状况、伸缩缝状况、支座状况、桥梁的抗震设施、人行通道、护栏状况、其他设施状况等都需要人工巡检后录入。

4.2 桥梁监测系统中的布置

4.2.1 桥梁中传感器/作动器网络的优化设计准则

无论是以静力作用下的结构参数识别还是动力作用下桥梁的模态识别为主要目的的监测情况,下面一些优化设计准则是常用

(1)识别(传递)误差最小准则

该方法的要点是连续对传感网络进行调整,直至识别(传递)目标的误差达到最小值为至。基本思想是逐步消防那些对目标参量的独立性贡献最小的自由度,以使目标的空问分辩率达到最佳程度;

该准则即适于静力作用下的结构参数识别也适于动力作用下桥梁的模态识别。

(2)模型缩减准则

在模型缩减中常常将系统自由度区分为主要自由度和次要自由度,缩减以后的模型应保留主要自由度而去掉次要自由度。将传感器配置于这些主要自由度上测得的结构效应或响应,应能较好的反映结构的动、静力特性。

(3)插值拟合准则

有时传感器优化配置的目的是为了利用有限测点的效应(对动力而言为响应)来获得未测量点的响应。这时可采用插值拟合的方法获得目标点(未测量点)的响应,为了得到最佳效果,可采用插值拟合的误差最小原则来配置传感器。

(4)模态应变能准则

其基本思想是具有较大模态应变能的自由度上的响应也比较大,将传感器配置于这些自由度所对应的位置上将有利于参数识别。这一方法需要借助有限元分析法。

针对以上原则设计出最好的实验方案,由于不同桥梁的设计方案不尽相同,在此不一一赘述。

4.3 桥梁监测系统总体运行

桥梁监测系统由外场设备进行数据的采集,由软件进行数据的归纳分析,对桥梁的整体状态进行评估,并根据桥梁的初始状态暨通车前交工后的状态和正常

运营时的状态进行对比,设定桥梁危险信号的预警值,当系统分析桥梁不安全时,会自动发出警报,实现尽早发现、尽早处理的管理方式,可以提前规避重大事故的发生。

5、桥梁监测系统分析数据的方法

5.1 分析数据的相应方法

(1)有限元法

有限元“化整为零”的思想十分简单明了. 它把一个复杂的结构分解成相对简单的“单元”,各单元之间通过结点相互连接. 单元内的物理量由单元结点上的物理量按一定的假设内插得到,这样就把一个复杂结构从无限多个自由度简化为有限个单元组成的结构. 只要分析每个单元的力学特性,然后按照有限元法的规则把这些单元“拼装”成整体,就能够得到整体结构的力学特性.

进行有限元分析,可以基于计算机语言编程,如: Fortran和Matlab等. 同时,亦有众多的有限元商用软件流行,其中平面分析的有限元软件有:国内有桥梁博士、桥梁通和GQJX,国外有Midas等; 空间分析的通用有限元软件大多为国外的,有:Midas,ANSYS, NASTRAN, AD INA和ABAQUS等,它们包含众多单元类型,能求解各类问题.

5.2 数据处理流程

(1)数据预处理

这一过程在数据采集单元内完成,主要进行简单的统计运算,如:设定时段内的最大值、最小值、均值、方差和标准差等,计算结果作为初级预警的输入.

(2)数据的二次处理在数据处理与分析服务器上进行,主要计算方法, 如: 傅立叶变换、HHT 变换和小波变换等及其他方法,流程如图1所示. 其中动力数据处理的具体方法及其比较见表2.

图2 数据二次处理计算方法及流程框图

(3)数据后处理

主要进行监测数据的高级分析,如:实时模态分析、桥梁特征量与环境因素之间的相关性分析和非线性回归分析等. 由于这些方法常需占用一定的计算时间,这一过程往往离线进行,分析数据来自动态数据库和已备份的原始数据库.

5.3 数据预处理与传输系统

数据预处理工作由数据采集单元完成,以对信号进行调理、滤波、A/D转换,以及进行简单的统计处理,并将信号通过系统主干光纤网络传输给数据

处理与控制服务器。现场数据采集单元同时管理本地NAS存储,当上位机或主干网故障时,现场采集单元通过降档控制继续执行数据采集工作,并保证经预处理的采集数据在本地NAS保存30d。

5.4 数据处理与分析系统

数据处理与分析系统运行在监控分中心的桥梁监测工作站上,通过网中网连接并控制各被测桥梁的现场控制单元,并经由现场控制单元与现场安装的传感器和采集设备通讯。运行数据处理与分析软件的桥梁监测工作站应装备足够的缓冲内存、网卡、适当的备份设备、光纤网络接口和执行数据处理分析的操作模块;数据处理与分析系统管理一个桥梁信息数据库和一个动态数据库,桥梁信息数据库用于存储采集到的原始数据、处理结果、评估报告、桥梁运营档案等相关信息。动态数据库用于保存桥梁结构当前的原始数据和预处理结果。动态数据库信息保存30 ;桥梁信息数据库中的信息通过定期存档、备份作永久保存,以保持数据连续性。

5.5 系统集成

系统硬件由传感器、现场采集设备、通信链路、供电电路、接地防雷设备、远程监控工作站等组成。根据总体功能要求及现场环境条件,数据采集系统采用分布式布置监控中心设一远程监控工作站进行人机联系:控制数据采集单元工作、监视运行情况、进测行结构安全评估的等工作。网络交换机在数据采集单元与远程监控工作站之间完成现场数据与控制数据的交换各桥桥址处均设立结构线形和变位永久观测网,由基准站、观测站和监测点组成。

6、结束语

桥梁监测系统为运营期桥梁科学有序的养护运营管理提供了一个平台,建立了桥梁监控系统全寿命期大桥的数字化、信息化“档案”,对大桥整体与局部性能、工作状态做出评估,对构件异常现象及时作出判断并找出原因,及早发现安全隐患,通过制定合理、主动、预防性的养护措施,有效地掌控了运营期桥梁的结构使用状态及其发展演化趋势,有效地降低了桥梁全寿命期的运营养护成本,最大限度延长了桥梁的使用年限,这是科技的进步与发展。

【参考文献】

[1] 孙剑平,朱○1. 结构控制方法评述[J]。力学进展,2000 ,30 (4) :495 –505。

[2] 郑凯锋, 陈宁, 张晓翘. 桥梁结构仿真分析技术研究[J]. 桥梁建设,

1998(2):10-15。

[3] 李俊会,张景绘等.振动工程中智能结构的研究进展.力学进展,1999,29(2):165~177。

[4] 符欲梅, 等。桥梁远程状态自动监测系统的研究、开发及实际应用[J ]1 土木工程学报, 2003, 36 (2)。

[5] 孟庆成,齐欣,李乔.南京长江第三大桥健康监测系统传感器优化布置研究[J]。桥梁建设,2007,(5):76-79。

[6] 王应良. 大跨度斜拉桥考虑几何非线性的静、动力分析和钢箱梁的第二体系应力研究[D]. 西安: 西南交通大学, 2000。

[7] 谭冬莲, 肖汝诚. 基于Levenberg-Marquar dt 算法的桥梁结构静力参数识别[ J] . 交通运输工程学报, 2005, 5。

[8] 荆龙江,项贻强. 基于柔度矩阵法的大跨度斜拉桥主梁损伤识别研究[ J ]。浙江大学学报(工学版)。

[9] 梁艳春. 计算智能与力学反问题中的若干问题[J ]。力学进展,2000 ,30 (3) :321 – 331。

[10]中铁大桥勘测设计院有限公司。东海大桥桥梁结构健康监测系统工程系统应用设计文件[ R].2006。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

桥梁监控测量方案

桥梁监控测量方案 导线控制测量、桥轴线测量控制、墩、台、桩定位测量、支座垫石施工放样和支座安装、桥面控制测量、高程控制测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行各匝道桥桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采用全站仪坐标法进行。 (2)承台施工放样 用全站仪坐标法放出承台轮廓线特征点,供安装模板用。通过吊线法和水平靠尺进行模板安装,安装完毕后,用全站仪测定模板四角顶口坐标,直至符合规范和设计要求。用水准仪进行承台顶面的高程放样,其精度应达到四等水准要求,用红油漆标示出高程相应位置。 (3)墩身放样 桥墩墩身形式多样,大型桥梁地般采用分离式矩形薄壁墩。墩身放样时,先在已浇筑承台的顶面上放出墩身轮廓线的特征点,供支模板用(首节模板要严格控制其平整度)。用全站仪测出模板顶面特征点的三维坐标,并与设计值相比较,

桥梁监控方案参考

桥梁监控方案参考 Document number:BGCG-0857-BTDO-0089-2022

目录

XXXX连续箱梁桥施工监控方案 一、工程概况 ……。主箱梁预应力采用纵、横、竖三向预应力体系。主梁采用C50混凝士,按照悬臂现浇法施工。下部采用板式墩身,钻孔灌注桩基础。 本桥采用节段悬臂灌注法施工。先由0#段对称向两侧悬臂施工,形成单“T”,先合拢边跨,再合拢中跨,完成梁部施工。主梁最大悬臂施工长度64m,分成18个悬臂段,边跨直线段长22.85m,再边墩旁搭设支架现浇施工。 桥梁设计设计时速100km/h;设计荷载取按公路——I 级的倍,温度作用、汽车制动力及冲击力按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。 二、施工控制的目的、意义 对于分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,从开工到成桥要经过一个复杂的施工过程,结构要经过多次体系转换,结构内力和变形亦随之不断发生变化,并决定成桥后结构的受力及线形。由于各种因素的直接和间接影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致,施工控制就是在施工过程中根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬臂浇筑节段的立模标高,并在施工过程中根据施工监测的成果对

误差进行分析、预测和对下一立模标高进行调整,以此来保证施工沿着预定轨道(能达到成桥设计目标的施工路径)进行,从而保证主梁合拢段两悬臂端标高的相对偏差不大于规定值(±15mm),成桥后主梁各控制点的标高与设计值最大相差控制在30mm以内,成桥后主梁各控制截面的内力与设计值最大相差控制在10%以内。 总之,桥梁施工控制的目的就是保证施工过程中主桥结构的安全、桥梁顺利合拢、桥梁成桥受力状态及合拢后桥面线形良好。三、施工监控方法和依据 本桥采用悬臂施工,属于典型的自架设施工方法。由于连续梁桥在施工过程中的已成结构(悬臂梁段)几何状态(平面、立面)是无法事后调整的,所以,施工控制主要采用事前预测和事中控制法,主要体现在施工控制结构仿真分析、施工监测(包括结构变形与应力监测)、施工误差分析与后续施工状态预测、梁段施工立模标高提供等几个方面。 (一)施工控制方法 大跨度连续梁桥,悬臂施工中每个节段的受力状态达不到设计所确定的理想目标的重要原因是计算模型中计算参数的取值问题,主要包括混凝土弹性模量、材料的容重、徐变系数和预应力张拉力与施工中实际情况有一定的差距以及环境温度、临时荷载的影响。要得到比较准确的控制调整量,必须根据施工中实测到的结构反应来修正计算

隧道监控量测方案完整版

隧道监控量测方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

四川省雅安至康定高速公路工程项目 C17合同段 隧道监控量测实施方案 中铁隧道股份有限公司 雅康高速公路C17合同段项目经理部 二0一四年九月十五日

目录

一、编制依据 1、《工程测量规范》(GB 50026-2007) 2、《公路工程技术标准》JTG B01-2003 2、《公路隧道施工技术规范》(JTG F60-2009) 4、隧道监控施工技术规范 3、招投标文件、设计图纸等有关资料。 二、编制目的 现场监控量测是斜井施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数及混凝土衬砌支护时间提供信息依据,为完善斜井工程设计与指导施工提供可靠的足够的数据。 三、工程概况 雅安至康定高速公路项目路基土建工程施工C17标段位于四川省西部二郎麓、甘孜藏族自治州东南部,界于邛崃山脉与大雪山脉之间,大渡河由北向南纵贯全境。川藏公路穿越东北部,是进藏出川的咽喉要道,素有之称。 本合同段横跨泸定县烹坝乡喇嘛寺村与黄草坪村、康定县姑咱镇大杠村与上瓦斯村,涉及2县2乡镇4村,起讫桩号为 K108+450~K118+370,线路全长9.92km。本标段工程主要包括路基工程:1段长283.5米;桥梁工程:3座总长522.5米;隧道工程:3座隧道,其中大坪隧道长3021米,最大埋深863m;大杠山隧道长

4799米,最大埋深669米,龙进隧道长1287.5米,最大埋深 328m;涵洞工程:钢筋混凝土盖板涵,33m+12.52m两处。 四、监控量测管理 1、成立隧道现场监控量测小组,受项目总工领导并配齐必须的检测仪器、设备、用品,明确工作职责和标准,承担量测任务。 2、量测组负责测点埋设、日常量测、数据处理和仪器设备的保养维修工作,并及时将量测信息反馈于施工和设计。 3、现场监控量测按制定的量测工作计划认真组织实施,并与其它施工环节紧密配合,不间断的贯穿于整个施工过程中。 4、各预埋测点埋设要牢固可靠,易于识别并妥善保护,不能任意撤换和避免破坏。 5、按现场监控量测计划,在做好现场量测工作的同时,及时分析整理内业资料并分类归档,按规范要求做好量测竣工文件。 6、监控量测组织机构框图 图一监控量测组织机构图 五、监控量测技术要求 1.量测数据必须准确可靠。

桥梁监控量测实施计划方案

桥梁施工监控量测实施方案

五实施本项目监测大纲 1桥梁施工监控量测实施方案 1.1监测技术方案 1.1.1监测目标 坝溪大桥和马溪河大桥施工控制将严格按照审批后的施工程序和工艺进行,本桥施工控制实现的目标主要有:通过调整拱架立模标高,控制拱架和拱圈线形,以保证成桥线型光顺,满足设计要求,同时应使桥面线型在经过若干年的混凝土收缩徐变后也满足使用要求。在施工过程中,保证拱架和拱圈的应力控制在预想和容许围,以保证结构在施工期间的安全性,测量的应力同时可以校核理论分析的准确性。 1.1.2监测容 对混凝土浇筑过程拱圈应力、变形进行监测坝溪大桥和马溪河大桥拱圈采用分次浇筑,在拱架荷载和拱圈混凝土浇筑过程中,对拱架关键部位的应力和拱架变形进行监测,确保施工过程的安全。 1)拱架关键部位的应力监测 为避免拱圈浇筑过程中拱架应力过高导致结构破坏,需在拱架拱脚位置、跨中位置、1/4跨位置设置拱架应变计,随时监测这些关键部位应力。 2)拱架变形监测 为防止拱圈混凝土浇筑过程中拱架发生异样变形,需在拱架跨中

截面和1/4跨截面的上下游两侧均设置挠度观测点和轴线偏差测点,测量仪器采用水准仪和全站仪。 1.2监测实施组织 施工监控不是一个独立的理论计算或实践技术问题,它是一项牵涉到设计、施工、监理、监控等单位的综合性工作。为了保证施工监控工作的顺利进行,及时、准确地按照监控单位提出的监控数据进行施工,并将施工结果及时反馈给监控单位进行误差分析,便于监控单位及时预报下一节段的施工控制数据,必须建立一个完善的施工监控实施组织,建议这一实施组织分两个层次开展工作,即成立施工监控领导小组与施工监控工作办公室。 施工监控领导小组组长由业主担任,设计、施工、监理、监控单位派员参加,负责组织、协调处理施工过程可能出现的重大问题。施工监控工作办公室主任由监控单位常驻工地的项目负责人担任,具体负责处理施工监控的有关日常事项。 在这个组织机构中,各方密切配合,各行其责: 业主单位:统一协调各方关系,主持解决施工过程中出现的重大问题。 设计单位:密切配合施工和监控单位的工作,对监控单位发出的主要监控指令予以确认,对施工中出现的需要变更的问题予以解决,及时调整或确认施工监控的目标状态,保证桥梁以理想状态投入营运阶段。 监理单位:接受监控单位提交的监控数据,向施工单位发布监控

桥梁工程变形监测方案

桥梁工程变形监测方案内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置

桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置与观测方法,以及基准网的观测方法等因素确定,一般分两级布设,基准网布设在岸上稳定的地方并埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点,用它们测定桥面观测点的水平位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便,一般将岸上的平面基准网点纳入垂直位移基准网中,同时还应在较稳定的地方增加深埋水准点作为水准基点,它们是大桥垂直位移监测的基准;为统一两岸的高程系统,在两岸的基准点之间应布置了一条过江水准线路。 四、方法与成果精度 1)GPS定位系统测量平面基准网 为了满足变形观测的技术要求,考虑到基准网边长相差悬殊,对基准网边长相对精度应达到不低于1/120000和边长误差小于±5mm的双控精度指标;由于工作基点多位于大桥桥面,它们与基准点之间难以全部通视,可采用GPS定位系统施测。为了在观测期间不中断交通,且避开车辆通行引起仪器的抖动和干扰GPS接收机的信号接收,对设置在桥面工作基点的观测时段应安排在夜间作业,尽可能使其

监控量测管理规定new

监控量测管理规定n e w Prepared on 22 November 2020

土建工程监控量测管理办法 北京市轨道交通建设管理有限公司 二零零五年五月

目录 总则 (1) 监测各方职责 (2) 监测成果报告及异常数据处理程序 (6) 附件1 北京市轨道交通新建线路监测体系管理框图 附件2 监控量测成果报告报送工作程序 附件3 监测异常情况处理程序框图 一、总则 1.为确保地铁建设工程的信息化设计与施工,加强地铁建设工程监控量测管理工作,保证监测成果及时有效地为地铁工程建设服务,特制定本管理办法。 2.本管理办法适用于北京地铁四号线、十号线工程监控量测管理工作。 3.监控量测工作是为动态描述地铁土建施工期间结构自身、地下管线及周围建筑物的稳定性而进行的一项重要工作。通过对工程施工期间变形监测得到的数据、信息进行采集与分析,为优化设计和施工方案提供依据,使城市轨道交通建设更加安全、可靠。 4.监控量测工作内容包括土建施工阶段的结构变形监测及对周边影响范围内地表建筑物、道路、桥梁、地下管线等设施的变形监测。5.监控量测管理体系包含第三方监测(地铁沿线影响范围内的道路、桥梁、建筑物)、施工监测(在施结构)工程影响范围内的桥梁监测及降水监测。

6.监控量测及其信息反馈是提出安全预警,调整设计参数和施工方案的依据,及时调整施工方案,以确保施工安全和周边建筑构物、地下管线的安全。 7.监测各方应根据工程所处地层岩土条件、埋深和结构特点、支护类型、开挖方式以及环境状况等因素认真编制监控量测方案。8.参与地铁施工建设的各单位有关监测人员应充分认识到地铁监控量测的重要性及特点,严格管理,精心施测,确保数据精确。9.北京地铁新建线路工程全线分区段施工,开工时间、施工方法、承包商不同,参与地铁施工监测的监测单位要密切配合施工进度进行监控量测工作。 10.各监测单位均有责任和义务保证监测点不丢失、损毁。11.为了确保地铁测量精度,监测单位应使用先进的测量仪器和技术,并根据国家有关规定,定期对测量仪器和工具进行检定,保持监测工作人员的稳定。 12.本管理办法旨在规范地铁监控量测管理工作,提高地铁工程信息化设计与施工的技术水平。 二、监测各方职责 科技部 组织有关专家或咨询组对涉及地铁施工的监测方案进行审查。为工程监控量测工作提供技术依据。会同工程部制定地铁工程监控量测工作管理办法 工程部

既有桥梁监控监测方案(最终1)

昆明两面寺立交连接寺瓦路工程 既有桥梁施工监控监测方案 中铁西南科学研究院有限公司 2015年5月

目录 1 工程概况 (2) 项目概况 (2) 施工监控监测主要依据 (3) 2 施工监控监测的目的 (4) 3 施工监控工作计划 (4) 4 本项目施工监控的主要内容 (5) 5施工监控监测方法 (5) 仿真计算分析 (5) 既有桥梁变位监测 (6) 施工异常情况的对策 (13) 6 监控技术方案保证措施 (13) 7 施工监控技术质量保证体系 (14) 8安全、文明及环保施工监控量测措施 (15)

1 工程概况 项目概况 两面寺立交连接寺瓦路工程位于昆明市盘龙区。现状两面寺立交是连接虹桥路与绕城高速的互通式立交,其中虹桥路呈东西走向,绕城高速呈南北走向。虹桥路为城市主干路,双向6车道,设计车速60km/h。绕城高速相当于昆明四环,允许货车全日通行,主要承担过境交通流量转换功能,双向6车道,设计车速80km/h。寺瓦路起于虹桥路,止于两面寺立交,是一跳贯通昆明东二环与东三环的重要城市主干路,双向6车道,设计车速40km/h。现状两面寺立交缺少右转入寺瓦路的匝道,为完善立交功能,解决两面寺立交桥底交通拥堵问题,本工程新建3条定向匝道实现虹桥路、绕城高速与寺瓦路的快速连接。 两面寺立交连接寺瓦路工程的桥梁布置如下: 立交分为三层,地面层为改造拓宽的寺瓦路辅导和线位调整后的寺瓦路连接线,寺瓦路拓宽需要在既有桥左侧新建一座跨径20m,桥宽的的预制空心板桥;因寺瓦路连接线线位调整,需新建一座跨径20m,桥宽11m、的预制空心板桥跨越凤凰河。 地上一层为虹桥路、绕城高速右转寺瓦路的高架A匝道,虹桥路拓宽,新增开口汇入绕城高速左转进入市区的匝道,然后通过绕城高速左转匝道直接分流进入寺瓦路。A 匝道桥桥宽8m桥长,引道长度。桥梁结构为现浇预应力混凝土连续箱梁。 地上二层为寺瓦路上虹桥路高架B匝道和绕城高速的高架C匝道。B匝道桥桥宽主要为10m和8m两种(其中有一联变宽),桥长,引道长度为。桥梁结构除上跨虹桥路采用一联37+60+37m的钢混叠合梁外,其他的为现浇预应力混凝土连续箱梁。C匝道桥桥宽均为8m,桥长153m,桥梁结构为现浇预应力混凝土连续箱梁。

桥梁工程变形监测方案

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约1.5m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置与观测方法,以及基准网的观测方法等因素确定,一般分两级布设,基准网布设在岸上稳定的地方并埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点,用它们测定桥面观测点的水平位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便,一般将岸上的平面基准网点纳入垂直位移基准网中,同时还应在较稳定的地方增加深埋水准点作为水准基点,它们是大桥垂直位移监测的基准;为统一两岸的高程系统,在两岸的基准点之间应布置了一条过江水准线路。 四、方法与成果精度 1)GPS定位系统测量平面基准网

桥梁监控方案(参考)

目录 一、工程概况?错误!未定义书签。 二、施工控制的目的、意义?错误!未定义书签。 三、施工监控方法和依据?错误!未定义书签。 (一)施工控制方法?错误!未定义书签。 (二)施工监测方法?错误!未定义书签。 (三)施工控制的技术依据?错误!未定义书签。 四、施工控制的主要内容.................................................................. 错误!未定义书签。 (一)施工控制结构分析 ............................................................... 错误!未定义书签。 (二)施工控制误差分析 ............................................................... 错误!未定义书签。 (三)设计参数识别及实时跟踪分析?错误!未定义书签。 (四)预告主梁下阶段立模标高 .................................................... 错误!未定义书签。 (五)模型优化?错误!未定义书签。 五、施工过程的参数监测方法?错误!未定义书签。 (一)控制截面应力监测?错误!未定义书签。 (二)主梁温度观测?错误!未定义书签。 (三)主梁标高观测 .................................................................... 错误!未定义书签。 (四)主梁平面位置及桥面横坡观测?错误!未定义书签。 (五)混凝土收缩徐变参数测定?错误!未定义书签。 (六)钢铰线管道摩阻损失的测定 .............................................. 错误!未定义书签。 (七)混凝土弹性模量测试?错误!未定义书签。 (八)混凝土容重的测量?错误!未定义书签。

桥梁监控量测实施方案设计

实用文档 桥梁施工监控量测实施方案

五实施本项目监测大纲 1桥梁施工监控量测实施方案 1.1监测技术方案 1.1.1监测目标 坝溪大桥和马溪河大桥施工控制将严格按照审批后的施工程序和工艺进行,本桥施工控制实现的目标主要有:通过调整拱架立模标高,控制拱架和拱圈线形,以保证成桥线型光顺,满足设计要求,同时应使桥面线型在经过若干年的混凝土收缩徐变后也满足使用要求。在施工过程中,保证拱架和拱圈的应力控制在预想和容许范围内,以保证结构在施工期间的安全性,测量的应力同时可以校核理论分析的准确性。 1.1.2监测内容 对混凝土浇筑过程拱圈应力、变形进行监测坝溪大桥和马溪河大桥拱圈采用分次浇筑,在拱架荷载和拱圈混凝土浇筑过程中,对拱架关键部位的应力和拱架变形进行监测,确保施工过程的安全。 1)拱架关键部位的应力监测 为避免拱圈浇筑过程中拱架应力过高导致结构破坏,需在拱架拱脚位置、跨中位置、1/4跨位置设置拱架应变计,随时监测这些关键部位应力。 2)拱架变形监测 为防止拱圈混凝土浇筑过程中拱架发生异样变形,需在拱架跨中

截面和1/4跨截面的上下游两侧均设置挠度观测点和轴线偏差测点,测量仪器采用水准仪和全站仪。 1.2监测实施组织 施工监控不是一个独立的理论计算或实践技术问题,它是一项牵涉到设计、施工、监理、监控等单位的综合性工作。为了保证施工监控工作的顺利进行,及时、准确地按照监控单位提出的监控数据进行施工,并将施工结果及时反馈给监控单位进行误差分析,便于监控单位及时预报下一节段的施工控制数据,必须建立一个完善的施工监控实施组织,建议这一实施组织分两个层次开展工作,即成立施工监控领导小组与施工监控工作办公室。 施工监控领导小组组长由业主担任,设计、施工、监理、监控单位派员参加,负责组织、协调处理施工过程可能出现的重大问题。施工监控工作办公室主任由监控单位常驻工地的项目负责人担任,具体负责处理施工监控的有关日常事项。 在这个组织机构中,各方密切配合,各行其责: 业主单位:统一协调各方关系,主持解决施工过程中出现的重大问题。 设计单位:密切配合施工和监控单位的工作,对监控单位发出的主要监控指令予以确认,对施工中出现的需要变更的问题予以解决,及时调整或确认施工监控的目标状态,保证桥梁以理想状态投入营运阶段。 监理单位:接受监控单位提交的监控数据,向施工单位发布监控

大桥挂篮施工测量监控方案

大桥挂篮施工测量监控方案 箱梁在悬浇施工中,由于受自重、温度、外荷载等因素影响会产生挠度,同时,混凝土自身的收缩、徐变等因素也会产生标高变化,并随着悬臂长度的加大而增加。为了使成桥后的线形达到或接近设计要求,因此必须在悬浇过程中对已浇筑或准备浇筑的梁段的各工况的沉降、位移进行监控测量,并以此随时调整悬浇的立模标高、浇筑后各块段的标高,使最终合拢后标高与设计标高差小于L/5000(10mm)。 1、监控原理 监控的主要内容有:主梁挠度、中轴线偏差、裂纹观察等。施工控制阶段分为挂篮前移立模完毕、试压前后、浇注完成和预应力张拉后,均应对各测点进行量测。施工监测控制基本原理如图3所示。施工监控流程为:梁体各测点布设→控制阶段量测各测点的标高、墩柱水平位移、应力等观测变量→计算分析→预报下一节段施工参数→确定梁体端面竖向位移、→理想的梁体线形、应力变化→施工输出→进入下一节段施工监控。 图1:施工监测控制基本原理 2、监测方案 ⑴、施工测量网的建立

根据现有的测量控制网导线点ST01、ST02、ST03、9IIB237组成大地四边形作为控制网,对主桥上部结构进行测量控制和复核,箱梁顶面布置施工控制点。 监控测量控制网ST01 ST02 ST03QIIB237右幅2#墩 右幅3#墩右幅4#墩右幅5#墩左幅2#墩 左幅3#墩左幅4#墩左幅5#墩 图2:控制网示意图 ⑵、测点的布置 ①0号块高程测点布置在0号块上布置高程观测点用以控制顶板的设计标高,同时也作为以后各现浇节段高程观测的基准点。每个0号块的顶板各布置9个观测点, 观测点位置如图3所示。观测点用专门制作的钢筋或普通螺栓直接焊接在顶板钢筋上。 ②各现浇节段的高程观测点布置每个节段各设2个测点,对称布置在翼板与腹板外交点,离待浇块件前端15cm 。两座跨线桥的左、右幅桥梁均按上述要求进行结构位移监测。通过控制网来精确测定局部控制点的平面位置和高程。局部控制点用来控制各个梁段挠度观测点和

隧道监控量测方案审批稿

隧道监控量测方案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

四川省雅安至康定高速公路工程项目 C17合同段 隧道监控量测实施方案 中铁隧道股份有限公司 雅康高速公路C17合同段项目经理部 二0一四年九月十五日

目录

一、编制依据 1、《工程测量规范》(GB 50026-2007) 2、《公路工程技术标准》JTG B01-2003 2、《公路隧道施工技术规范》(JTG F60-2009) 4、隧道监控施工技术规范 3、招投标文件、设计图纸等有关资料。 二、编制目的 现场监控量测是斜井施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数及混凝土衬砌支护时间提供信息依据,为完善斜井工程设计与指导施工提供可靠的足够的数据。 三、工程概况 雅安至康定高速公路项目路基土建工程施工C17标段位于四川省西部二郎麓、甘孜藏族自治州东南部,界于邛崃山脉与大雪山脉之间,大渡河由北向南纵贯全境。川藏公路穿越东北部,是进藏出川的咽喉要道,素有之称。 本合同段横跨泸定县烹坝乡喇嘛寺村与黄草坪村、康定县姑咱镇大杠村与上瓦斯村,涉及2县2乡镇4村,起讫桩号为 K108+450~K118+370,线路全长9.92km。本标段工程主要包括路基工程:1段长283.5米;桥梁工程:3座总长522.5米;隧道工程:3座隧道,其中大坪隧道长3021米,最大埋深863m;大杠山隧道长

4799米,最大埋深669米,龙进隧道长1287.5米,最大埋深 328m;涵洞工程:钢筋混凝土盖板涵,33m+12.52m两处。 四、监控量测管理 1、成立隧道现场监控量测小组,受项目总工领导并配齐必须的检测仪器、设备、用品,明确工作职责和标准,承担量测任务。 2、量测组负责测点埋设、日常量测、数据处理和仪器设备的保养维修工作,并及时将量测信息反馈于施工和设计。 3、现场监控量测按制定的量测工作计划认真组织实施,并与其它施工环节紧密配合,不间断的贯穿于整个施工过程中。 4、各预埋测点埋设要牢固可靠,易于识别并妥善保护,不能任意撤换和避免破坏。 5、按现场监控量测计划,在做好现场量测工作的同时,及时分析整理内业资料并分类归档,按规范要求做好量测竣工文件。 6、监控量测组织机构框图 图一监控量测组织机构图 五、监控量测技术要求 1.量测数据必须准确可靠。

桥梁转体监控方案

附件 2:利川至万州高速公路跨沪蓉铁路立交桥T 构梁转体施工 监 测 方 案 衡阳市恒德工程质量检测有限公司 2015 年 6 月 1 日

利川至万州高速公路跨沪蓉铁路立交桥T 构梁转体施工 监测技术方案 编制:复核:审核: 批准: 衡阳市恒德工程质量检测有限公司 2015年6月1日 目录

1、工程概况. (4) 1.1 项目概况. (4) 1.2 设计相关技术标准. (4) 1.3 桥址自然条件 (5) 1.3.1 工程地质构造 (5) 1.3.2 水文地质条件 (5) 1.3.3. 地震区划. (5) 2、施工监控方案编制依据. (6) 3、施工监控的目的. (6) 4、施工监控的原理 (7) 5、施工监控的内容 (7) 6、施工监测控制目标. (8) 7、施工过程的结构分析. (9) 8、线形监控的实施方案. (10) 8.1 承台沉降观测测量 (10) 8.2 线形高程监测. (10) 8.3 结构内力监测 (11) 8.4 施工过程温度变化影响观测 (15) 8.5 几何形态挠度监控 (16) 9、项目人员组织及仪器设备. (16) 9.1 监测人员配备 (16) 9.2 仪器设备. (17) 10、监测工作质量保证措施. (18) 11、施工监测安全措施. (20) 12、应急措施. (20) 13、监测数据整理和信息反馈. (22)

1、工程概况 1.1项目概况 利万高速利川西枢纽互通 A 匝道和B 匝道并行,在公路里程AK1+186.894处 与 沪渝高速交叉,在公路里程 AK1+270.26处与沪蓉铁路交叉,顺设计线方向沪 渝高速公路边至铁路下行线距离为 72m 桥位处公路路线为直线,与铁路的交角 为73度。A 匝道跨铁路立交桥的起点为 AK1+218.894,终点为AK1+328.894,桥 长110m; B 匝道跨铁路立交桥的起点为 BK0+248.315,终点为BK0+358.315,桥 长110m 两个匝道均为33+43+33mi 连续箱梁。 A 、 B 匝道跨铁路主跨采用42+30mT 型刚构,连续梁T 构部分为预应力混凝 土变 高度箱梁,箱梁采用单箱双室直腹板箱型截面,根部高 4.5m,端部高2.5m , 梁底线形按二次抛物线变化。箱梁顶板宽 15.1m,底板宽10m,两侧悬臂板长各 2.55m,悬臂板端部厚0.2m ,根部厚0.6m ;箱梁体顶、底板倾斜形成桥面横坡。 采用支架现浇后转体施工。 # L' 卜 r -1-】-卜■ 万州 1 利川 ——」1 T L- ~~- I I 匝道 T 构梁段划分图 1.2设计相关技术标准 1、公路等级:高速公路 利川 L F 1: 7 L 弓■ || r — -—斗1 一」 #左 #左 #左 # #右 #右 #右 -匝道

桥梁监控测量

6 主要分项工程项目施工方法 6.1 施工测量 为了适应不利的环境和达到规定的精度,本项目拟采用GPS测量和常规测量相结合的方法建立施工控制网和进行各工序的细部放样。在整个施工测量过程中,优选采用各种新技术、新仪器和在其他大桥施工测量的成熟经验,按照“先整体后局部”、“分阶段分部位”、“边放样边校核”的基本原则,确保测量成果的准确可靠。 6.1.1测量技术规范 《公路桥涵施工技术规范》JTJ T F50-2011; 《工程测量规范》GB50026-2007; 《公路全球定位系统(GPS)测量规范》JTJ/T006-98; 《全球定位系统(GPS)测量规范》GB/T 18314-2009; 《国家一、二等水准测量规范》(GB12897-2006); 《水运工程测量规范》JTJ203-2001; 业主、设计、监理、质检单位的技术要求和管理规定。 6.1.2施工测量坐标系统 B级GPS控制网:主要用于GPS测量; 工程坐标系统:用于测量控制和放样; 高程系统:国家高程系统; 局部坐标系统:为了现场放样简洁直观、操作方便,施工单位自己建立的各部位的“轴线坐标系统”。

6.1.3桥梁工程测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采

桥梁施工监控

桥梁施工监控 第一节桥梁施工监控的定义 桥梁监控是新桥施工过程中,按照实际施工工况,对桥梁结构的内力和线型进行量测,经过误差分析,继而修正调整以尽可能达到设计目标。桥梁监控,也称桥梁施工监控或桥梁施工控制。在大跨径悬索桥、斜拉桥、拱桥和连续刚构桥的平衡悬臂浇筑施工中,其后一块件是通过预应力筋及砼及前一块件相接而成,因此,每一施工阶段都是密切相关的。为使结构达到或接近设计的几何线形和受力状态,施工各阶段需对结构的几何位置和受力状态进行监测,根据测试值对下一阶段控制变量进行预测和制定调整方案,实现对结构施工控制。由于建桥材料的特性、施工误差等是随机变化的,因而施工条件不可能是理想状态。因此,决定上部结构每一待浇块件的预拱度具有头等的重要性。 虽然可采用各种施工计算方法算出各施工阶段的预抛高值、位移值、挠度,但当按这些理论值进行施工时,结构的实际变形却未必能达到预期的结果。 这主要是由于设计时所采用的诸如材料的弹性模量、构件自重、砼的收缩徐变系数、施工临时荷载的条件等设计参数,及实际工程中所表现出来的参数不完全一致而引起的;或者是由于施工中的立模误差、测量误差、观测误差、悬拼梁段的预制误差等;或者两者兼而有之。

这种偏差随着悬臂的不断加伸,逐渐累积,如不加以有效的控制和调整,主梁标高最终将显著地偏离设计目标,造成合龙困难,并影响成桥后的内力和线形。所以,桥梁施工监控就是一个施工→量测→识别→修正→预告→施工的循环过程。 其最基本的目的是确保施工中结构的安全,保证结构的外形和内力在规定的误差范围之内符合设计要求。 第二节桥梁施工监控监控的主要内容 桥梁施工监控的内容主要包括成桥理想状态确定,理想施工状态确定和施工适时控制分析。 成桥理想状态是指在恒载作用下,结构达到设计线形和理想受力状态;施工理想状态以成桥理想状态为初始条件,按实际施工相逆的步骤,逐步拆去每一个施工项对结构的影响,从而确定结构在施工各阶段的状态参数(轴线高程和应力),一般由倒退分析法确定;施工适时控制是在施工时,根据施工理想状态,按一定的准则调整,通过对影响结构变形和内力主要设计参数的识别进行修正,使结构性能、内力达到目标状态。 在建立了正确的模型和性能指标之后,就要依据设计参数和控制参数,结合桥梁结构的结构状态、施工工况、施工荷载、二期恒载、活载等,输入前进分析系统中,从前进分析系统中可获得结构按施工阶段进行的每阶段的内力和挠度及最终成桥状态的内力和挠度。接

桥梁沉降观测方案(成文版)

连镇铁路LZZQ-5标沉降观测方案 1、编制依据 (1)《国家一、二等水准测量规范》(GB12897—2006); (2)《建筑沉降变形测量规程》(JGJ/T8-2007); (3)《铁路客运专线竣工验收暂行办法》(铁建设[2007]183号);(4)《客运专线铁路有碴轨道铺设条件评估技术指南》(铁建设[2006]158号) (5)《全球定位系统(GPS)测量规范》(GB/T18314-2009);(6)《高速铁路工程测量规范》(TB 10601-2009); (7)《高速铁路桥涵工程施工质量验收标准》(TB 10752-2010);(8)《高速铁路设计规范》(TB 10621-2014); (9)客运专线铁路变形观测评估技术手册(修订版); (10)高邮特大桥、路基等相关图纸文件; (11)铁路总公司有关规定。 (12)连镇铁路沉降变形观测评估实施细则。 2、工程概况 新建连云港至镇江铁路地处我国东部沿海地带,位于江苏省南北纵向中轴线上。线路北起苏北连云港市,沿宁连高速公路引入淮安市,与京杭运河、京沪高速公路并行,向南经苏中扬州市,跨长江后止于苏南镇江市,正线全长304.883km。 连镇5标地处扬州境内,起讫里程为DK177+218.46-DK205+504.97,全长28.287km。其中,DK177+218.46-DK179+282.375为界首站和区

间路基段,高邮特大桥(DK179+282.375~DK203+866.39)全长 24.584km。本标段桥梁占比87.85%。 本标段共有9联连续梁,1孔现浇简支箱梁,3座刚构-连续梁桥,桥梁其余部分采用721片32m和24m后张法预应力混凝土简支箱梁通过。一分部管段内包含路基和2座刚构-连续梁桥,二分部管段内包含5联连续梁,三分部管段内包含4联连续梁和1联刚构-连续梁桥。 桥梁基础采用打入法PHC-800-130管桩基础和钻孔灌注桩,桩基直径采用1.0m、1.25m、1.5m、2.0m。桥梁墩身采用圆端形实心桥墩,桥台采用矩形桥台。 涵洞孔径采用1.5-6.0m,采用圆涵、框架涵结构,兼顾排水、交通等功能。 3、沉降观测的意义 有碴轨道对桥梁等线下工程的工后沉降要求非常严格,工程在设计中虽然对每个桥墩进行了沉降量的计算,但是沉降变形是一个很复杂的过程,单靠理论计算很难满足轨道对工后沉降的要求。施工期间必须按设计要求进行沉降观测,通过对沉降观测数据的分析处理和评估,验证或调整沉降设计参数,必要时进行地质复查并采取沉降控制措施使结构物达到规定的变形控制要求。通过对设计沉降的验证和修改,分析、预测出最终沉降量和工后沉降量,合理确定轨道的铺设时间,确保设计目标顺利实现。 4、沉降观测的范围和内容 (1)沉降观测范围:DK171+218.46-DK179+100段站场路基(其中,DK177+527.15-DK177+604.85为子婴干渠中桥、DK178+713.15-DK178

隧道监控量测实施方案

目录 1、编制依据 (1) 2、工程概况及工程地质条件 (1) 2.1、工程概况 (1) 2.2、地质概况 (2) 3、监控量测的目的 (8) 3.1、隧道施工监控量测的目的 (8) 4、监控量测的意义 (8) 5、监控量测管理机构、人员及设备要求 (9) 5.1、管理机构、人员配置 (9) 5.2、职责 (10) 5.3、监控量测设备管理 (12) 6、监控量测项目和频率 (12) 6.1、监测项目 (12) 6.2、量测频率 (12) 7、监控量测方案 (13) 7.1、监控量测的基本要求 (13) 7.2、监控量测的主要内容 (14) 7.3、洞口段地表沉降监测 (15) 7.4、隧道净空位移及拱顶下沉量测 (17) 7.5、隧道排水及受纳水体流量及水位观测 (20) 7.6、洞内、外观察 (21) 7.7、必测项目的测点布置 (23) 7.8、必测项目的量测频率及数据分析 (27) 7.9、部分选测项目的监控量测 (30) 8、监控量测实施及要求 (32) 8.1、净空变化量测 (33) 8.2、拱顶下沉量测 (37)

8.3、地表下沉量测 (37) 9、监控量测控制和结束基准 (39) 9.1、监控量测控制基准 (39) 9.2、位移控制基准 (40) 9.3、量测结束标准 (42) 10、监测数据的处理、分析与信息反馈 (42) 10.1、监测数据的处理方法 (42) 10.2、监控量测资料的整理分析 (42) 10.3、量测数据信息化处理与分析 (45) 10.4、监控量测信息反馈 (61) 11、提交的监测成果资料 (65) 11.1、日报 (65) 11.2、月(周)报 (65) 11.3、专题报告 (66) 11.4、监测总报告 (66) 12、工程安全性管理及应对措施 (67) 12.1、工程安全性管理内容 (67) 12.2、监测管理质量保证措施 (69) 13、监控量测质量保证措施 (70) 13.1、监控量测质量保证措施 (70) 13.2、监测点保护措施 (71) 13.3、安全文明作业 (71) 附表 (72)

悬浇梁桥施工监控

施工监控的意义、原则、方法和依据 2.1 施工监控的意义 桥梁悬臂施工中,由于施工荷载的变化、新浇筑混凝土重量的误差、结构弹性模量的变化、挂篮的重量和移动的位置、温度的变化、结构体系调整以及混凝土的收缩与徐变等均会影响结构的变形和内力,而这众多的因素在设计阶段是无法准确确定的,这些因素的改变均可能引起桥梁结构线形与内力的改变,影响施工质量,甚至危及桥梁安全。为了使施工能按照设计意图进行,确保施工安全并最终达到设计的理想状态,通过对箱梁实施施工全过程的跟踪监控监测,对控制参数进行实时调整,以确保施工中结构的安全、箱梁最终线形平顺、内力分布合理,使成桥状态的外形和内力符合设计要求,确保桥梁施工安全和正常运营。 对于悬臂施工的预应力混凝土连续梁结构来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段的结构仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测下一节段立模标高及进行相应的调整,以此来保证成桥后桥面线形、合龙段两悬臂端标高的相对偏差不大于规定值。同时监测平面线形是否满足有关规范的要求,并在施工过程中监测结构应变是否在设计及规范允许的范围内,保证结构安全。 施工监控的意义主要体现在以下几个方面: 1)设计图纸的要求是施工的目标,在为实现设计目标而必须经历的施工过程中,通过施工监控,可对施工状态进行实时识别(监测)、调整(纠偏)、预测,使施工处于有效的控制之中,确保设计目标安全、顺利实现是至关重要的。 2)通过对桥梁施工过程中的结构受力、变形及稳定进行监测控制,使施工中的结构处于最优状态。施工监控是施工质量控制体系的重要组成部分,是保证桥梁建设质量的重要手段,是对桥梁建设质量的宏观调控,是桥梁施工质量控制的补充与前提。 3)监控单位配合监理,辅助业主,指导施工,解决桥梁施工质量控制过程中的关键技术问题。 4)通过施工监控,可取得在成桥后无法得到的桥梁部分“参数”,建立档案,为后期桥梁的管理与养护,提供依据。 5)将施工监控与桥梁荷载试验结合起来,可以得到仅靠荷载试验无法取得的桥梁恒

相关文档
最新文档