电力变压器绝缘故障综合诊断方法探究

电力变压器绝缘故障综合诊断方法探究
电力变压器绝缘故障综合诊断方法探究

电力变压器绝缘故障综合诊断方法探究

发表时间:2018-08-01T11:09:50.910Z 来源:《电力设备》2018年第10期作者:赵勇刘滨升周蜜

[导读] 摘要:新时期,我国的经济迅猛发展,在国际发展道路上不断地突破创新。

(国网湖南省电力有限公司岳阳供电分公司湖南省岳阳市 414000)

摘要:新时期,我国的经济迅猛发展,在国际发展道路上不断地突破创新。然而,随着各行各业的规模日益扩大,我们国家也面临着电能消耗大幅增长的严峻问题。为了满足社会对于电能的更多需求,电力企业正在逐步完善电能传输系统。电力变压器作为电能传输过程中至关重要的设备,保障其良好的性能也成为了当下改善输电过程的首要任务。本文简单分析了电力变压器绝缘故障的产生原因,并提供了一些绝缘故障的诊断方法,望对我国电能问题改善有些许帮助。

关键词:电力变压器;绝缘故障;诊断方法

一、电力变压器绝缘故障诊断的现实意义

在科技的带动下,当今社会各行各业都在蓬勃发展。为应对电能快速消耗的问题,电力企业服务者正在致力于研究如何提高输电电压,并且对电力变压器进行全面的升级,增大其内部容量,满足社会对于电能的需求。因此,对电力变压器的检测和维修是改善电能传输的重要工作。与此同时,在工作人员进行电力变压器状态检测工作时,绝缘故障是最常被发现的问题。由此可见,绝缘故障在电力变压器故障问题中占有相当部分的比重,必须予以高度重视。只有解决了基本的绝缘故障问题,才能使下一步提升电力变压器综合性能的工作顺利开展。

二、引发电力变压器绝缘故障的因素

(一)绝缘材料设计的不足

部分电力变压器在初期设计的时候,所选用的绝缘材料较薄,里面的油道也相对较少。因为设计的纰漏,较薄的绝缘材料一般使用年限都不会太长,在正式使用过一段时间之后,绝缘材料本身就会发生不同程度的损坏,需要对其进行维修或更换,极大地影响了电力变压器的工作效率。因此,还是要选取厚度适中的绝缘材料,保证材料的质量,延长使用期限,提升变压器的相关绝缘性能[1]。

(二)内部清洁度不达标

如果电力变压器内部清洁度不达标,含有少量的金属杂质,那么在输电过程中就极有可能引发局部放电问题,存在安全问题。所以进行电力变压器管理的工作人员一定要对设备状态进行科学合理的检测,及时发现问题,做好自身安全的防护工作,并严格按照标准定期对电力变压器进行清洁工作,清除内部金属杂质,消除安全隐患,杜绝问题故障的发生。

(三)绝缘裕度不达标

在电力变压器的运行期间,要在各相之间设置绝缘板,确保绝缘裕度的足够宽度,如此能够有效的避免电力变压器相间短路。如果真的存在相间短路故障,也可以通过改变相间电场强原本的方向,来阻止绝缘隔板之间树状放电安全问题的出现。因此,管理电力变压器的技术人员一定要有扎实专业知识的积累,才能对故障做出准确无误的判断,并能够采取针对有效的措施。

(四)绝缘构件收到导电质污染

在对电力变压器绝缘材料进行安装加工的过程中,稍有不慎,就会内部的绝缘构建遭受导电质的污染,引发局部放电或者是漏电现象。由此,技术人员在进行绝缘材料加工的时候,一定要保证工作的认真细致,避免让绝缘材料收到污染,严控安全问题。

(五)油道设计不合理

由于电力变压器相关的技术人员缺乏工作经验,在对变压器进行设计时,没有结合具体的生活实际,对变压器的设计存在诸多不合理的地方需要进行改进。油道设计的不合理就会导致流油的速度无法掌控,较快或者较慢都会引发相关的电力变压器绝缘故障。所以,在对变压器进行设计时,设计人员必须查阅相关资料,结合具体的实际,对工作进行修改完善,保证设计方案安全可靠[2]。

(六)绝缘油被污染

如果电力变压器中的绝缘油受到污染,那么就必定会影响到绝缘效果。绝缘效果得不到相应程度的保障,那么变压器的整体性能就会收到影响,从而降低输电过程的效率。因此在工作过程中,工作人员要细心谨慎确保绝缘油的干净清洁,无污染性,这对于改善电力变压器的整体性能也有积极的推动作用。

三、电力变压器绝缘故障诊断方法

(一)利用电气试验数据的绝缘诊断方法

利用电气试验数据来进行电力变压器绝缘故障问题的诊断,是比较直观有效的诊断方法。通过对阈值取值的分析,来判断变压器是否存在绝缘方面故障。在电气试验数据结果中,如果发现了某项电气试验的数值比标准的取值要高,就基本上可以判定该变压器确实存在一定的故障。这种诊断方法对于故障问题的判断比较直观,使技术人员能够很容易的就可以根据此方法开展工作。然而这种方法也存在着一定的不足,它处理边界工作太过于精细。正确的处理方法应该是利用数学模糊方法对边界进行一定的模糊处理,然后再根据相关的科学知识,得出综合性的判断结果,这种模糊处理改善了单单凭借电气试验数据方法判断的一些不足,具有很好的应用意义。

(二)在DGN基础上的绝缘故障诊断方法

(1)特征空间矢量诊断方法

特征空间矢量方法判断原理是求出电力变压器故障征兆量与所有出现故障类型的最为合适的特征矢量夹角,最小的夹角则对应着最终的故障类型。该种方法对于工作人员专业知识水平的要求相当高,因此工作人员必须不断提升自己的专业水平,以应对不同的工作需求[3]。

(2)建立完整的DGA综合数据诊断模型

建立完整的DGA综合数据诊断模型为得出更为准确的故障分子提供了必要的前提。其基本理论依据是加权平均法,如果在当前所得出的故障分析中,绝大部分的数据都标明同一种数据类型,则这种故障类型极有可能是当前电力变压器中的绝缘故障。反之,如果所有得出的数据故障类型均不相同,那么诊断时所采用最为优良的方法得出的诊断数据最具可信性,它所对应的故障类型即是最终的判断结果。

(三)信息技术绝缘故障诊断方法

21世纪人们已经全速迈进了信息社会,科技在不断地更新换代。现今,互联网技术已经广泛的应用于人们生活的各个方面。电力企业

电力变压器固体绝缘故障的诊断

电力变压器固体绝缘故障的诊断 发表时间:2008-12-11T13:50:28.780Z 来源:《中小企业管理与科技》供稿作者:南俊彪[导读] 摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。关键词:固体绝缘变压器绝缘故障故障气体摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。 关键词:固体绝缘变压器绝缘故障故障气体中图分类号:TM4 文献标识码:B 文章编号:1673-1069(2008)10-0000-00 引言 为了使设备的外形尺寸保持在可接受的水平,现代变压器的设计采用了更为紧凑的绝缘方式。这就要求显著升高其运行中内部各组件间的绝缘所承受的热和电应力水平。110kV及以上等级的大型电力变压器主要采用油纸绝缘结构,其主要绝缘材料是绝缘油和绝缘纸、纸板。当变压器内部故障涉及固体绝缘时,无论故障的性质如何,通常认为是相当严重的。因为,一旦固体材料的绝缘性能受到破坏,很可能进一步发展成主绝缘或纵绝缘的击穿事故,所以,纤维材料劣化引起的影响在故障诊断中格外受重视。但是,如能确定变压器发生异常或故障时是否涉及固体绝缘,也就初步确定了故障的部位,对设备检修工作很有帮助。 1 判断固体绝缘故障的常规方法CO、CO2是纤维材料的老化产物。一般,在非故障情况下也有大量积累,往往很难判断经分析所得的CO、CO2含量是因纤维材料正常老化产生的,还是故障的分解产物。月岗淑郎研究了使用变压器单位质量纸分解并溶于油中碳的氧化物总量,即以(CO+CO2)mL/g(纸)来诊断固体绝缘故障。但是,已投运的变压器的绝缘结构、选用材料和油纸比例,随电压等级、容量、型号及生产工艺的不同而差别很大,不可能逐一计算每台变压器中绝缘纸的合计质量。该方法因实际操作困难而难以应用;并且,在分析整体老化时,考虑全部纸质量是较合理的。但是,在故障点仅涉及固体绝缘很小一部分时,比单独考虑CO、CO2含量相比,用这种方法很难更有效。IEC599推荐以CO/CO2的比值作为判据,来确定故障与固体绝缘间的关系。认为CO/CO2>0.33或<0.09时表示可能有纤维绝缘分解故障。在实践中,这种方法也有相当大的局限性。作者对59例过热性故障和69例放电性故障进行了统计。结果表明,应用CO/CO2比例的方法正判率仅为49.2%,这种方法对悬浮放电故障的识别正确率较高,可达74.5%;但对围屏放电的正判率仅为23.1%。 2 固体绝缘故障的动态分析方法新的预防性试验规程规定,运行中330kV及以上等级变压器每3个月进行一次油中溶解气体分析。但目前很多电业局为保证这些重要设备的安全,有的已将该时间间隔缩短为1个月,也有部分电业局已开展了油色谱在线监测的尝试。这为实现故障的连续追踪,提供了良好的技术基础。 电力变压器内部,涉及固体绝缘的故障包括:围屏放电、匝间短路、过负荷或冷却不良引起的绕组过热、绝缘浸渍不良等引起的局部放电等。无论是电性故障或过热故障,当故障点涉及固体绝缘时,在故障点释放能量作用下,油纸绝缘将发生裂解,释放出CO和CO2,但它们的产生不是孤立的,必然因绝缘油的分解产生各种低分子烃和氢气,并能通过各特征气体与CO和CO2间的伴生增长情况分析来判断故障原因。 判断故障的各特征气体与CO和CO2含量间是否是伴随增长的,需要一个定量标准。本文通过对变压器连续色谱监测结果的相关性分析,来获得对这一标准的统计性描述。这样可以克服溶解气体累积效应的影响,消除测量的随机误差干扰。本文采用Pearson积矩相关来衡量变量间的关联程度,被测变量序列对(xi,yi),i=1,…,相关系数γ的显著性选择两种检验水平:以α=1%作为变量是否显著相关的标准,而以α=5%作为变量间是否具有相关性的标准。即:当相关系数γ>γ0.01时,认为变量间是显著相关的;γ<γ0.05时,二者没有明确的关联。γ0.01、γ0.05的取值与抽样个数N有关,可通过查相关系数检验表获得。由于CO为纤维素劣化的中间产物,更能反映故障的发展过程,故通过对故障的主要特征气体与CO的连续监测值进行相关性分析可进一步判断故障是否涉及固体绝缘。当通过其它分析方法确定设备内部存在放电性故障时,可以CO与H2的相关程度作为判断电性故障是否与固体绝缘有关的标准;而过热性故障则以CO与CH4的相关性作为判断标准。通过对59例过热性故障和69例放电性故障实例的分析,表明该方法在一定程度上可以反映故障的严重程度。在过热性故障情况下,如果CO不仅与CH4有较强的相关性,还与C2H4相关,表明故障点的温度较高;而在发生放电性故障时,如果CO与H2和C2H2都有较强的相关性,说明故障的性质可能是火花放电或电弧放电。 3 故障的发展趋势确认故障类型后,如能进一步了解故障的发展趋势,将有助于维修计划的合理安排。而产气速率作为判断充油设备中产气性故障危害程度的重要参数,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)都很有价值。通过回归分析,可将这3种典型模式归纳整理。 3.1 正二次型总烃随时间的变化规律大致为Ci=a.t2+b.t+c(a>0),即产气速率γ=a.t+b不断增大,与时间成正比。这常与突发性故障相对应,故障功率及所涉及的面积不断变大,这种故障增长模式往往非常危险。 3.2 负二次型总烃和产气速率的变化规律与(a)相同,只是a<0,即总烃Ci增高到一定程度后,在该值附近波动而不再发生显著变化。多与逐渐减弱的或暂时性的故障形式相对应,如在系统短路情况下的绕组过热及系统过电压情况下发生的局部放电等。 3.3 一次型即线性增长模型,是一种与稳定存在的故障点相对应的产气形式。总烃的变化规律为Ci=k.t+j,产气速率为固定的常数k,通常只有当故障产气率k或总烃Ci大于注意值时才认为故障严重。 4 实例分析

变压器故障检测系统毕业论文

变压器故障检测系统 摘要 大型电力变压器是电力系统中重要的和昂贵的设备之一,其运行状态直接影响系统的安全性。目前,电力系统的检修体制正由定期检修向状态检修转变,而状态检修是以了解设备的运行状态为基础的。要了解设备状态,就需要对设备信息进行分析诊断。本文的工作就是在这一背景下开展的,其意义在于为电力变压器的检修提供技术支持。本文是从变压器的故障原因、类型以及分析入手,介绍了现今国外主要研究的基于变压器油中气体的故障诊断方法。 在系统的硬件部分,本文以ATmega8单片机为核心,将采集来的电压、电流、温度和气体等模拟量信号经过A/D转换器转换为数字量信号后送入单片机系统中进行处理,通过处理的结果来判断变压器是否含有故障以及故障的类型等。同时本系统也设置了电流保护、差动保护和气体保护等继电保护来防止因短路故障或不正常运行状态照成变压器的损坏,提高供电可靠性。在系统的软件部分,本文运用C语言编写软件程序,使之能够识别并处理从传感器传来的电信号,然后通过人机交互界面显示出来,近而使人能够很轻易判断故障类型。 关键词:变压器故障油气体分析单片机继电保护

Transformer malfunction detection system Abstract In the electrical power system, the large-scale power transformer is one of the important and expensive equipment, it’s running status direct influence system security. At present, the electrical power system overhaul system is transforming by the preventive maintenance to the condition overhaul, but the condition overhaul is take understands the equipment the running status as the foundation.Must understand the equipment condition, needs to carry on the analysis diagnosis to the equipment information. This article work is develops under this background, its significance lies in for the power transformer condition overhaul provides the technical support.This article is from the transformer breakdown reason, the type and the analysis obtains, introduced the nowadays domestic and foreign main research based on the transformer oil in the gas breakdown diagnosis method. Are partial in the system hardware, this article take the ATmega8 MCU as a core, use the gather simulation signal likes voltage, electric current, temperature, gas and so on, to transform after ADC for the digital quantity, and then signal sends in the MCU system to process,

电力变压器的故障诊断分析

电力变压器的故障诊断分析

————————————————————————————————作者:————————————————————————————————日期:

学号________________ 密级________________ 大学本科毕业论文 电力变压器的故障诊断分析 院(系)名称: 专业名称: 学生姓名: 指导教师: 二○一一年十月

郑重申明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名:日期:

BACHELOR'S DEGREE THESIS OF WUHAN UNIVERSITY Power transformer fault diagnosis and analysis College : Subject : Name : Director : Oct 2011

目录 摘要 (7) 第一章电力变压器故障检测绪论 (9) 1.1造成变压器故障的原因 .................... 7错误!未定义书签。 1.2变压器故障的种类 (8) 第二章电力变压器故障检测的现状 (9) 第三章目前电力变压器故障检测存在的问题. (11) 第四章电力变压器故障诊断的方法 (12) 4.1油中溶解气体分析法 (12) 4.1.1单项成分超标分析法 (13) 4.1.2特征气体色谱的分析和判断 (13) 4.2 在线检测技术 (14) 4.2.1 局部放电在线监测 (15) 4.2.1油中气体含量的在线监测 (16) 4.4.3绕组故障的在线监测 (17) 4.3 建立完备的变压器历史资料库 (18) 结束语 (20) 参考文献 (21) 致 谢 (22)

变压器绝缘、铁芯试题答案

铁芯及绝缘材料部分 一、填空题: 1.硅钢片质量的好坏是由其单位损耗决定的。 2.硅钢片毛刺大,叠插的不好会影响铁芯的噪声、空载损耗和空载电流。 3.叠好的铁心表面必须及时刷(涂)漆,否则容易生锈。 4.中小型变压器铁芯接地片插入铁心深度为50~70mm。 5.变压器油的主要作用得绝缘、冷却和息弧(灭弧)。 6.铁心硅钢片的漆膜厚度是 0.015~0.02 mm。 7.国标规定变压器空载损耗的偏差不能超过+15% 8.硅钢片的剪切毛刺应该控制在0.03㎜以内 9.变压器的空载损耗主要是磁滞和涡流损耗及附加损耗。 10.变压器所用的硅钢片一般是冷轧的。 二、判断对错 1.铁心叠积时,铁心大级厚度允许负偏差。(×) 2.铁心的叠片系数越大越好(√) 3.铁心叠好起立后不允许有多点接地。(√) 4.油浸变压器不允许使用环氧材料。(×) 5.铁芯夹紧力越大越好。(×) 6.硅钢片运输过程中应该轻拿轻放,避免受力。(√) 7. 武钢生产的27Q130的硅钢片片厚为0.3mm。(×) 8.硅钢片的质量好坏会直接影响变压器的负载损耗.。(×) 9.正常情况下变压器的寿命可以认为是绝缘材料的寿命。(√) 10.绝缘材料不会产生局部放电。(×) 三.问答题 1、铁心的作用是什么? 答:1).构成变压器的磁路,传递电能的媒体; 2).支撑作用:作为器身的骨架,支撑线圈、引线等组件。 2、铁心多点接地有什么危害性? 答:铁心多点接地通常会使铁心产生环流,出现局部过热,同时变压器的空载损耗增加,由于环流会通过接地片短路,造成接地片过热,也会导致变压器发生故障。 3.油浸变压器的主要绝缘材料有哪些(至少答出4种以上)? 电缆纸、电话纸、皱纹纸、纸板、层压纸板、层压木、变压器油、白布带、紧缩带等。 4.变压器油中含有的气体主要是指哪些? 主要是指CH4(甲烷)、C2H6(乙烷)、C2H2(乙炔)、C2H4(乙烯)、H2(氢气)、CO2(二氧化碳)、CO(一氧化碳)。 5.带填料的环氧浇注干变树脂中包含的6种绝缘材料是什么?

电力变压器故障诊断方法

电力变压器故障诊断方法概述 传统的电力变压器故障诊断方法存在各自的局限性:中性点电流法所依据的参数模型理论是一种理想情况,实际试验中,冲击电压发生器放电离散性(导致冲击波波形和持续时间差异性)、变压器复杂的内部结构(表现为绕组间的局部放电)、电磁和噪声强干扰都严重影响示伤电流波形;传递函数法虽然解决了上述问题,但其单一的频域判断技术在很大程度依赖试验人员的经验,对于细微的差别,是变压器内部绕组的局部放电还是击穿会有不同解释,更无法实现故障的识别。 本文提出了一种新的基于联合时频分析的故障判别方法,其判别步骤是: 1)根据试验数据,计算在50%冲击电压下变压器的传递函数,即建立该被试变压器在冲击电压下的输入输出模型; 2)基于该模型计算100%冲击电压下基准示伤电流,这是一个理论值; 3)计算基准示伤电流与实测示伤电流的差异示伤电流信号; 4)应用联合时频理论分析差异示伤电流信号,得到与故障类型对应的三维时频分布图,试验人员可查询时频分布图对故障类型作识别或者由计算机自动识别。 图1反映了上述三种方法的不同框架。 2 基于联合时频技术的电力变压器诊断方法理论分析 传统的信号分析方法一般从时域或频域分析中确定或随机信号的参数,这些参数没有充分的描述信号的物理情况,如信号的频谱含量在时间上的演变。联合时频分析正是这种描述并研究信号的时变频谱的分析理论,可以从信号对应的时频分布图中捕获常规分析方法中不能发现的特征。 联合时频分析算法的任务是对信号ε(t)构造一个联合时频函数,能够同时在时域和频域上描述信号的各类密度,如能量密度。为了实现上述目标,首先寻找一个联合密度函数P(t,f)来表示信号在时间t和频率f上的强度,在理想的情况下它应该满足时间与频率的边缘条件: 上式表明把某一特定时间的所有频率的能量分布加起来,可以得到瞬时能量;如果把某一特定频率的能量分布在全部时间加起来,得到能量密度频谱。由此可以满足总能量要求:

集成电路故障诊断

本文的主要工作是基于集成电路的电流信息和模式识别理论对电路进行静态 电流检测、动态电流检测、以及故障定位等方面的基础性研究。具体包括静态电 流的检测方法及仿真实验,动态电流的检测方法及仿真实验,基于近邻法和连接 的模式识别法的故障定位法,基于神经网络的故障诊断方法四个方面: 在静态电流检测方面:通过查阅和学习大量的国内外文献和资料,分析了静 态电流检测的基本原理,分析了COMS 电路的特点,并用PSPICE 对CMOS 或非 门和与门电路做了故障注入的仿真实验,给出了仿真试验结果,由于采用静态电 流测试产生了测试逃逸,故引入了动态电流测试方法增加故障覆盖率。 在动态电流检测方面:通过分析IDDT 的波形,用动态电流尖锋值的方法对 CMOS 电路作了故障注入和故障诊断。通过对CMOS 电路的桥接故障、参数改变、 短路故障等的检测,说明了采用动态电流对故障检测的可行性。 在故障定位方面:由于静态电流检测方法对CMOS 电路的桥接故障不能准确 定位,我们利用小波分析对故障电路的IDDT 电流信息进行特征提取,然后分别采 用基于近邻法和连接的模式识别法对电路进行了故障定位实验,实验结果证实了 两种算法在故障定位应用上的可行性。最后通过比较两种算法的仿真结果,说明 了用连接的模式识别方法的定位更加可靠。 在神经网络的故障诊断方面:通过采用小波变换,对电路正常模式和故障模式 的IDDT 采样信号进行故障特征提取,建立样本集;然后利用神经网络对各种状态 下的特征向量进行分类决策,实现电路的故障诊断。 论文的具体安排如下: 第一章介绍本课题的研究意义以及集成电路故障诊断的发展概述。 第二章集成电路故障诊断的基础理论介绍 第三章利用静态电流方法对CMOS 电路的故障进行仿真实验 第四章利用动态电流方法对CMOS 电路的故障进行仿真实验 第五章分别利用基于近邻法和连接的模式识别法进行故障定位仿真实验及 利用基于神经网络的故障诊断算法进行仿真实验 第六章给出全文工作的总结和今后的展望 本章主要介绍了集成电路故障诊断的基础理论和方法。首先我们介绍了传统 电路的检测方法,然后详细介绍了软故障及硬故障模型,并讨论了本文将用到的 近邻法,小波分解,神经网络等模式识别相关理论知识,最后针对后续故障诊断 实验中将使用的PSPICE 和MA TLAB 仿真工具进行了相关介绍。 静态电流(IDDQ)检测与电压检测不一样, 本章首先对IDDQ 的基本原理和检测方法进行了简单介绍,然后为了验证 IDDQ 检测方法的可行性,我们在已有研究成果的基础上,针对集成电路常见的桥 接故障、漏电流故障模型,进行了仿真实验。实验结果表明本文方法能充分利用静态电流中的故障信息对故障进行检测。但该方法的有效性受测试向量诊断能力 的影响,今后研究的重点应是如何为这种故障诊断算法提供有效的测试生成向量。 并且从本实验可以看出,IDDQ 的测试覆盖率有限,所以在故障检测中,需要采用 的动态电流检测法(IDDT)对IDDQ 法进行补充。

什么是干式变压器绝缘材料

什么是干式变压器绝缘材料 随着城市电网供电要求的不断提高和变压器绝缘材料的进步,干式变压器绝缘材料在我国得到了广泛的应用。 短短20年或30年,干式变压器技术得到了快速发展,除了熟悉环氧树脂干式变压器类型最近出现了一些不需要的SG型环氧树脂真空浇注或绕组技术敞开式干式变压器和诺梅克斯?(迈克)绝缘材料,环 氧树脂真空铸造或新品真空加压浸渗过程的可控硅涂层型干式变压器。 20世纪60年代以前的干式变压器主要是B类绝缘的敞开式干式变压器,产品型号为SG。当一开始没有箔片线圈时,低压多为多根缠绕的层状线圈或螺旋线圈,高压多为饼状线圈。电线是双玻璃线或单玻璃线搪瓷线。其他保温材料主要为酚醛玻璃纤维材料。常温和常压浸渍工艺分别用乙级浸渍漆和高低压线圈浸渍漆,并在烘干温度(烘干温度不超过130℃)。尽管与油浸式变压器相比,这种干式变压器在耐火性方面取得了很大的进步,但其防潮、防污染性能令人担忧。它不再生产了。但其成功的电、磁、热计算和结构设计为新型h级绝缘开式变压器的研制奠定了良好的基础。 美国的一些变压器厂(如位于弗吉尼亚州FPT)研究采用美国杜邦NOMEX?芳烃聚酰胺为主要绝缘干式变压器。FPT产品有两种类型:FB 型是180℃(H)保温系统。FH型为220℃(C级)绝缘系统,国内线圈温升分别为115 k (125 k)和150 k,低压线圈为箔型或多根绕层,匝间与层间绝缘为NOMEX。高压线圈呈饼状,导线也用NOMEX纸包裹。

普通支撑的结构和垫块不使用线之间的蛋糕,但采用梳状支撑,减少 之间的最大电压蛋糕的一半,大大提高了高压线圈的轴向抗短路能力,但增加了线圈的绕组困难和生产时间。采用高、低压线圈缠绕,提高机械强度。还有NOMEX绝缘板为垫块加支撑结构。高压和低压之间的绝缘管由0.76mm厚的NOMEX纸板制成。浸渍过程中多次采用VPI真空、压力浸渍、高温干燥(干燥温度为180-190℃)。 在FPT,变压器的最大电压为34.5kV,最大容量为10,000 kva。该技术在美国UL认证的变压器厂是否使用了NOMEX?绝缘材料相关的美国杜邦制造规范(或HV HV - 1-2)和Reliatran?Leilitong TM变压器制造技术标准和其他要求h级绝缘SG型干式变压器和把FB变压器有相似之处,但国内产品的线圈新品浸渍过程是把公司的不同,它 没有把整个变压器的身体,但只有线圈浸渍。全身浸渍包装完整性好,但不仅不美观,而且在处理前一定要做相关产品的检测。浸渍漆也容易产生污垢,这在中国是比较合理的。

故障诊断技术发展历史(最新版)

故障诊断技术发展历史 故障诊断(FD)始于(机械)设备故障诊断,其全名是状态监测与故障诊断(CMFD)。它包含两方面内容:一是对设备的运行状态进行监测;二是在发现异常情况后对设备的故障进行分析、诊断。设备故障诊断是随设备管理和设备维修发展起来的。欧洲各国在欧洲维修团体联盟(FENMS)推动下,主要以英国倡导的设备综合工程学为指导;美国以后勤学(Logistics)为指导;日本吸收二者特点,提出了全员生产维修(TPM)的观点。美国自1961年开始执行阿波罗计划后,出现一系列因设备故障造成的事故,导致1967年在美国宇航局(NASA)倡导下,由美国海军研究室(ONR)主持成立了美国机械故障预防小组(MFPG),并积极从事技术诊断的开发。 美国诊断技术在航空、航天、军事、核能等尖端部门仍处于世界领先地位。英国在60~70年代,以Collacott为首的英国机器保健和状态监测协会(MHMG & CMA)最先开始研究故障诊断技术。英国在摩擦磨损、汽车和飞机发电机监测和诊断方面具领先地位。日本的新日铁自1971年开发诊断技术,1976年达到实用化。日本诊断技术在钢铁、化工和铁路等部门处领先地位。我国在故障诊断技术方面起步较晚,1979年才初步接触设备诊断技术。目前我国诊断技术在化工、冶金、电力等行业应用较好。故障诊断技术经过30多年的研究与发展,已应用于飞机自动驾驶、人造卫星、航天飞机、核反应堆、汽轮发电机组、大型电网系统、石油化工过程和设备、飞机和船舶发动机、汽车、冶金设备、矿山设备和机床等领域。 故障诊断的主要理论和方法 故障诊断技术已有30多年的发展历史,但作为一门综合性新学科——故障诊断学——还是近些年发展起来的。从不同的角度出发有多种故障诊断分类方法,这些方法各有特点。从学科整体可归纳以下理论和方法。 (1)基于机理研究的诊断理论和方法从动力学角度出发研究故障原因及其状态效应。针对不同机械设备进行的故障敏感参数及特征提取是重点。 (2)基于信号处理及特征提取的故障诊断方法主要有时域特征参数及波形特征诊断法、时差域特征法、幅值域特征法、信息特征法、频谱分析及频谱特征再分析法、时间序列特征提取法、滤波及自适应除噪法等。今后应注重实时性、自动化性、故障凝聚性、相位信息和引入人工智能方法,并相互结合。 (3)模糊诊断理论和方法模糊诊断是根据模糊集合论征兆空间与故障状态空间的某种映射关系,由征兆来诊断故障。由于模糊集合论尚未成熟,诸如模糊集合论中元素隶属度的确定和两模糊集合之间的映射关系规律的确定都还没有统一的方法可循,通常只能凭经验和大量试验来确定。另外因系统本身不确定的和模糊的信息(如相关性大且复杂),以及要对每一个征兆和特征参数确定其上下限和合适的隶属度函数,而使其应用有局限性。但随着模糊集合论的完善,相信该方法有较光明的前景。 (4)振动信号诊断方法该方法研究较早,理论和方法较多且比较完善。它是依据设备运行或激振时的振动信息,通过某种信息处理和特征提取方法来进行故障诊断。在这方面应注重引入非线性理论、新的信息处理理论和方法。

基于DGA的变压器绝缘故障判断

基于DGA的变压器绝缘故障判断 摘要油中溶解气体分析(DGA)是一种有效的充油电力设备异常检测的方法,广泛应用于油浸变压器故障的检测和判断。本文介绍了油中溶解气体分析的原理以及实操程序,以及如何应用分析结果通过三比值法判断变压器故障类型。 关键词DGA;变压器;故障 0 引言 电力变压器作为电力系统中的重要组成部分,其安全稳定的工作是保障电力系统安全运行的基础。随着运行时间的增加,有机固体绝缘材料和绝缘油会因为电压以及温度的作用逐渐的分解化合从而产生微量气体溶解于油中。当变压器内部发生故障如局部放电或匝间短路时,油中溶解气体含量则会发生剧烈变化。这是由于变绝缘油或有机固体绝缘材料被放电部位产生的电弧分解而产生大量气体,当产生的气体无法完全溶解于油中时成游离为气态形成气泡散布在变压器油箱内部。 经过长期的变压器运行维护实践和大量的故障调查分析,我们发现变压器如果存在潜在故障或者在故障形成的初步阶段时,变压器油中溶解的各种气体就会反映出早期征兆。油中溶解气体分析(Dissolved Gas Analysis,简称DGA)正是为检测这些故障特征气体组分及含量,以便于分析判断变压器运行状况和故障隐患。 1 油中溶解气体的成分及来源 1.1 变压器油的分解 变压器绝缘油是矿物油的一种,主要成分为含有碳碳双键或三键的不饱和烃和其他碳氢化合物。变压器内部放电故障或发热故障中会使一些油分子中某些碳氢键或碳碳键断裂,从而产生微量的活泼氢原子和碳氢化合物自由基,这些游离的氢原子和自由基又通过化学反应再次化合,最终可以形成H2、CH4、C2H6、C2H4、C2H2等烃类气体化合物。 1.2 有机固体绝缘材料的分解 有机固体绝缘材料如绝缘纸、木质绝缘件则含有大量的碳氧双键,其热稳定性比碳氢键要弱,在热环境下裂解并新化合生成水同时又生成大量CO、CO2 ,绝缘油也会被氧化导致油质劣化。 1.3 其他来源 另外在某些情况下也会导致油中溶解气体含量变化,如变压器呼吸器损坏或采用非真空注油方式使绝缘油与空气接触,油中溶解气体中氧气和氮气含量可能增高,又如变压器有载调压开关行进切换动作也会产生某些与变压器本体内部低能量放电故障相似的烃类气体化合物。 2 故障特征气体种类和与其关联的故障类型 不同的故障类型及程度导致变压器油所产生的气体成分及含量不同,因此这些气体又被称为故障特征气体。根据中华人民共和国国家标准《变压器油中溶解气体分析和判断导则》GB/T 7252-2001规定,定义一氧化碳(CO)、二氧化碳(CO2)、氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)这7种气体为判别充油变压器设备的内部故障的特征气体。 大量实践研究发现,不同的故障类型与故障特征气体是有关联的。根据取样试品中溶解气体组分不同,并结合其他判断依据可以初步判断出故障程度,如下

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

电力变压器故障检测方法的选择与日常维护

电力变压器故障检测方法的选择与日常维护 摘要:通常来说,电力变压器在运行中可能出现的问题有很多,但主要发生在变压器的声音异常、油温、油位以及外表异常等事故现象,因此在运行维护过程中要多加注意、留心,同时在日常运行检查的过程中也有可能会出现异常的现象,及早提出防范措施与方案。 关键词:电力变压器;运行;异常;维护;检查 1.引言 我们知道,由于变压器的重要性,如果电力变压器在运行过程中出现故障,将会影响到电力系统整体上运行安全。电力变压器主要是由围绕在同一铁芯上的两个绕组组成,有些变压器绕组不止两个。通过绕组之间的交变磁场,从而实现将某一等级中的电流和电压转为另一等级的电力和电压。由于变压器的重要性,因此在实际运行过程中需要值班人员对运行参数进行严格的监视,不定期或者定期的进行检查,对运行中出现的故障及时发现、诊断和解决,在对变压器运行状况保持随时掌握的同时,保证电力变压器的正常运行。 2.变压器运行中的检查环节 主要是:(1)检查变压器上层油温是否超过允许范围。由于每台变压器负荷大小,冷却条件及季节不同,运行中的变压器不能以上层油温不超过允许值为依据,还应根据以往运行经验及在上述情况下与上次的油温比较,如油温突然增高,则应检查冷却装置是否正常,油循环是否破坏等,来判断变压器内部是否有故障。(2)检查油质,应为透明、微带黄色,由引可判断油质的好坏,油面应符合周围温度的标准线,如油面过低应检查变压器是否漏油等,油面过高应检查冷却装置的使用情况,是否有内部故障。(3)检查套管是否清洁。有无裂纹和放电痕迹,冷却装置应正常,工作、备用电源及油泵应符合运行要求等。(4)运行声

音的判断。在正常运行时一般有均匀的嗡嗡电磁声,如声音有所改变,应细心检查。检查油枕油面。油面均应正常,无渗漏现象,高低压套管应清洁,无裂纹,无破损及放电烧伤痕迹,螺丝是否紧固。一、二次引线不应过紧或过松,接头接触良好,呼吸器应畅通,硅胶吸潮不应达到饱和,无变色,变压器外壳和零线接地应良好。 3.变压器故障检测方法的选择 变压器故障的检测技术,是准确诊断故障的主要手段,根据DL/T596—1996电力设备预防性试验规程规定的试验项目及试验顺序,主要包括油中气体的色谱分析、直流电阻检测、绝缘电阻及吸收比、极化指数检测、绝缘介质损失角正切检测、油质检测、局部放电检测及绝缘耐压试验等。 在变压器故障诊断中,应综合各种有效的检测手段和方法,对得到的各种检测结果要进行综合分析和评判。因为不可能具有一种包罗万象的检测方法,也不可能存在一种面面俱到的检测仪器,只有通过各种有效的途径和利用各种有效的技术手段,包括离线检测的方法、在线检测的方法;包括电气检测、化学检测、甚至超声波检测、红外成像检测等等,只要是有效的,在可能条件下都应该进行相互补充、验证和综合分析判断,才能取得较好的故障诊断效果。 通常,变压器的故障检测诊断方法,建议选择: (1)油浸变压器的外观检查 1)漏油:变压器外面沾粘着黑色的液体或者闪闪发光的时候,首先应该怀疑是漏油。大中型变压器装有油位计,可以通过油面水平线的降低而发现漏油。2)变压器油温度。3)呼吸器的吸湿剂严重变色。吸湿剂严重变色的原因是过度的吸潮、垫圈损坏、呼吸器破损、进入油杯的油太多等。通常用的吸湿剂是活性氧化铝(矾士)、硅胶等,并着色成蓝色。然后当吸湿量达到吸湿剂重量的20%~25%以上时,吸湿剂就从蓝色变为粉红色,此时,就应

电力变压器故障诊断及检修 张伟

电力变压器故障诊断及检修张伟 发表时间:2019-06-18T16:08:10.563Z 来源:《基层建设》2019年第8期作者:张伟[导读] 摘要:近年来随着我国社会主义市场经济的不断发展和城市化建设进程的不断加快,电力变压器作为电力系统的重要输变电设备,其运行状态受到了社会各界及人们的广泛关注和高度重视,但是实际应用过程中,各类变压器故障屡见不鲜,故此为有效地提高电力企业的经济效益和社会效益,电力企业需全面了解和掌握变压器的故障形态,并且当变压器出现故障时,检修人员在判断变压器故障的过程 中,能对故障进行全面分析,以便制定出最为合理科学国网长子县供电公司山西长子 046600摘要:近年来随着我国社会主义市场经济的不断发展和城市化建设进程的不断加快,电力变压器作为电力系统的重要输变电设备,其运行状态受到了社会各界及人们的广泛关注和高度重视,但是实际应用过程中,各类变压器故障屡见不鲜,故此为有效地提高电力企业的经济效益和社会效益,电力企业需全面了解和掌握变压器的故障形态,并且当变压器出现故障时,检修人员在判断变压器故障的过程中,能对故障进行全面分析,以便制定出最为合理科学的应对方案,从而保证电力系统的正常运行。 关键词:电力变压器;故障诊断;检修 1引起变压器出现故障的原因 1.1短路故障 电力变压器短路故障的发生主要是因为电力系统在运行过程中,变压器温度过高所引起的,而对于电力变压器来讲,短路故障主要包含了绝缘过热故障和绕组变形故障两种情况。当发生绝缘过热故障时,电力系统会出现极高的电流,进而产生极高的热量,故此由于受到高温的影响,将导致电力变压器短路故障的出现,降低电力企业经济效益的同时,倘若变压器本身不能承受短路电流的容量,变压器的绝缘材料将会受到严重破坏,火灾或人员伤亡问题的发生频率急剧增加;当发生绕组变形故障时,在短路的冲击下小短路电流不会影响继电保护装置的正常动作,变压器的绕组变形现象也不明显,但也会给社会经济带来重大损失。 1.2线路出现过热故障 电力变压器在使用中,最常出现的问题便是线路过热,具体原因是在电运行时,电流出现异常引起电路过热导致故障,例如环流、涡流。在电路回路的过程中,若电阻不断增大也将导致电路出现过热问题,如果电路不能及时散热,电路的整体温度将会急速升高。在工作人员计算变压器抗短路能力时,没有充分考虑到电磁线的抗弯能力和抗压能力,此类变压器中的电磁线虽具有一定的抗短路能力,但其处于变压器内部后,一旦进行通电,电磁线的抗弯能力和抗拉能力将会由于电磁线温度的上升而随之降低,从而导致电力变压器出现故障。 1.3自动跳闸故障 电力变压器在使用过程中,人为因素或电力变压器内部破坏是造成跳闸故障发生的两大主要原因,因此为有效地降低故障所带来的损失程度,电力企业的工作人员需及时安排专业人员进行故障分析,并采取科学合理的检修策略,以保障电力系统的安全正常运转。一般来说,倘若是因为人为因素导致电力变压器的跳闸故障,当检修工作人员排除故障后,可讲电力变压器继续投入使用,无须对变压器内部进行检查,可当是由于另一种原因导致的电力变压器跳闸故障,电力企业的工作人员不仅要对电力变压器保护范围内的全部设备进行详细的检查,逐一排除故障,同时还要采取恰当的检修技术,及时地对诱导处进行修理,以避免电力变压器爆炸现象的发生。 2电力变压器的检修 2.1监察巡视 相关工作人员在电力变压器处于运行状态时,应定时对其进行检查和巡视,以保证电力变压器可以一直处于安全稳定的工作状态。工作人员在电力检查时,理应着重对电力变压器的辅助设备、温度、油箱以及油料质量等予以检查。现阶段技术水平发展较快,红外成像仪的出现节省了许多工作人员的检测时间,较以往检查方式而言能够有效提高检测准确率。红外成像仪多用于电力变压器的巡视中,工作人员利用红外成像仪的传感器来测试电力变压器的信号强弱,以此对电力变压器在运行时内部的使用情况作出判断,同时还可对电力变压器内部是否存在过热问题进行观察。 2.2安装检测设备 部分电力变压器的体型过于庞大并且内部的结构又十分复杂,一定程度上加大相关工作人员在检修过程中的难度,安装检测设备将有效降低工作人员的工作负担,而且检测系统能够更细致的检测出变压器内部出现了何种故障,减小故障发生的概率。在技术人员对中型电力变压器进行检修的过程中,常出现绕组变形的情况,针对此情况技术人员应及时采用吊罩检查方法,将有效避免绕组出现变形。而面对体积相对庞大的电力变压器,其本身的结构较为复杂,技术人员在检查过程中,应将其内部储存的油排出,而后再进行变压器罩内的检查工作。此类检测设备的安装能够保障在人力难以检查的条件下电力变压器能够较长阶段地处于稳定运行状态中,实现自动化检测。 2.3变压器红外诊断 所谓的红外诊断其实简单来说,主要指的是在进行电力变压器的故障诊断过程中,一种相关工作人员非接触变压器而进行的检测及诊断技术,即与变压器油中溶解气体的分析技术相比,此项技术的应用范围较广,且它主要是通过研究和分析变压器温度分布场,定位出缺陷部位,准确找到故障点,与其它技术相比,红外诊断技术不会受到外界高压电场的影响,在检测时变压器依然能够正常运行,不用停机,具有安全、经济和高可靠性的特点。 2.4不断提高检修人员的技术水平 变压器在使用过程中出现任何问题,都需要及时对其进行检修。检修过程对工作人员的操作技术要求较高,只有不断提高检测技术才能提高维修时的效率。电力企业若想持续稳定发展,应针对检修人员的技术水平进行不断提高,定期对检修人员培训关于检测方面的技术。在电力企业中,建立起一支综合素质强的优秀人才队伍,此队伍的工作人员必须具备良好的职业道德作风以及较高的专业技术水平。电力企业可向企业外部扩招,招聘掌握高新技术且具备高学历的人才,对选拔出的人才进行实地考核,通过考核后才可上岗工作。与此同时,检修部门应积极组织工作人员进行检修工作经验的分享,积极交流与切磋,传递实际经验,通过经验探讨总结出更适用于现代电力变压器的故障诊断以及检修工作。电力企业领导应及时建立相应的奖惩制度,针对能较高并且工作态度积极的员工予以奖励,对工作态度消极、工作不到位的员工予以处罚,进而打造出积极进取的电力企业工作氛围,奖惩有度的手段能够使员工切实感受到单位所给予的机会,从而更为努力地投入到工作中去。

论分解法在变压器绝缘故障诊断中的应用_龙立

SCI -TECH INNOVATION &PRODUCTIVITY No.12Dec.2012,Total No.227 分解法是指站在逻辑的角度上进行具体事物的分析,分解法的客观基础其实就是客观事物整体和部分之间的关系。也可以说成是分析整体到局部的一种方法,它主要是将重点放在事物的内部结构上,把一个整体事物分解为多个有机组成部分,然后在针对分解之后的每一部分进行分析和研究,这样一来,就可以全面地掌握事物的发展变化。在对电力设备进行故障诊断时,一旦发现其中出现故障,但是又不知道发生故障的具体部位的时候,“分解法”在这种情况下就能够发挥作用,逐一检查每一个部分,在最短的时间内找出故障,诊断效率也因此得到了很大地提升,人力物力在一定程度上也得到了节约。 1影响变压器绝缘故障的主要因素1.1 突发短路 短路是变压器出现绝缘故障比较常见的一种原因,当变压器的外部出口处发生短路现象时,电动力出现在铁心、绕组、引线、套管上的压力要比正常情况下大很多,如果变压器的承受力不够充分,就会出现变压器绕组的变形现象,或者引线移位的现象,在这种情况下,本身的绝缘距离也会出现相应的变化,绝缘的发热现象也会出现,同时,会加快变压器的老化速度,放电、拉弧以及短路故障的出现是必然的。1.2 温度的影响 油纸绝缘是电力变压器中的主要结构,而在变压器中,纸是主要的绝缘材质。如果温度不同,含 水量在油和纸中都存在着不同的关系。通常情况下,温度不断升高,纸中本身含有的水分会逐渐在油的作用下被析出,因此,在高温度的情况下,变压器的含水量在油中较多,相反则没有足够的含水量[1]。 变压器在运行的过程中,最容易出现老化的现象。例如,当油浸变压器规定一定负载的时候,绕组的平均温度会达到65℃,当温度达到极点的时 候,会有78℃的高温出现,如果环境温度平均达到20℃,温度的最高值将达到98℃;在这样的温度前提下,变压器运行20~30a 是完全有可能的,如果变压器的运行一直都处于超载的状态,其温度必然会升高,那么寿命一定不会很长。 国际电工委员会对A 级绝缘变压器的温度规定,不应超过80℃~1400℃的范围,每当温度增加6℃,变压器绝缘的寿命就会出现一定的降低,6℃法则就是通过这样的验证得到的,这样一来,热的限制范围要比之前的8℃法则更加严格。1.3 湿度的影响 纤维素会在水分的影响下出现降解的现象。因此,CO 和CO 2的产生也在很大程度上取决于纤维材料的含水量。当湿度达到一定程度,含水量就会越高,这样的话,CO 2就会获得更多地分解。相反的话,含水量不是很高,CO 就会获得更多地分解。 绝缘油中如果没有很多的水分,绝缘介质的电气特性和理化性也有可能受到严重影响和损害,因为绝缘油会因为一定水分的存在,使火花放电电压 文章编号:1674-9146(2012)12-0084-03 论分解法在变压器绝缘故障诊断中的应用 龙 立,袁 志 摘要:针对变压器结构的复杂性及发生的故障,运用分解法及时准确地找出故障发生的原因和具体部位,并提出相应的解决对策和方法。 关键词:分解法;变压器;绝缘故障诊断中图分类号:TM 407 文献标志码:A DOI:10.3969/j.issn.1674-9146.2012.12.084 收稿日期:2012-10-17;修回日期:2012-11-17 作者简介:龙立(1974-),男,湖南长沙人,经济师,主要从事变压器检修与维护研究,E-mail:31838116@qq .com 。 (湖南省电力公司检修公司检修基地,湖南 长沙 410015) 应用技术 AppliedTechnology -084-

相关文档
最新文档