中南大学生物科学与技术学院分子生物学研究

中南大学生物科学与技术学院分子生物学研究
中南大学生物科学与技术学院分子生物学研究

中南大学生物科学与技术学院

分子生物学研究中心

教案

授课科目: 医学分子生物学

授课容:疾病产生的分子基础

授课对象:临床医学七年制、八年制

授课时数:4 学时

授课教师:

授课地点:湘雅医学院新教学区

授课时间:

授课教材:医学分子生物学(21世纪高等院校教材),胡维新主编,:

科学,2007年2月,第一版;

医学分子生物学(卫生部8年制规划教材),作化主编,:人民卫

生,2005,第一版

第十一章疾病产生的分子基础

一、目的求:

掌握:基因突变的概念、类型及特点。

熟悉:基因突变的发生机制;疾病相关基因的研究策略。

了解:基因突变与疾病发生;血红蛋白病等常见单基因病的发病分子机制。

二、讲授重点:

基因突变的类型及特点。

三、讲授难点:

基因突变的分子机制。

四、教学方法:多媒体教学、板书

五、教具:多媒体课件、多媒体设备、电子光标笔、粉笔、黑板、教材

六、讲授容:

第一节基因结构改变引起疾病

一、基因结构改变:在基因的特定DNA序列中,其碱基组成及排列顺序可因机体外因素的作用发生改变,导致DNA一级结构发生改变,改变基因结构,形成基因突变(mutation)。如果基因突变使蛋白质发生了质的改变,即理化性质、生物化学性质、免疫学性质及生物学功能的改变,或使蛋白质量的改变超过了生理围,就会导致疾病的发生。

基因突变的多种类型:

点突变是单个碱基的改变;可分为转换(transition)和颠换(transversion)两种。转换指同类

型碱基之间的取代,即一种嘧啶碱基被另一种嘧啶碱基取代或一种嘌呤碱基被另一种嘌呤碱基取代形成的点突变。颠换指不同类型碱基之间的取代,即一种嘧啶碱基被一种嘌呤碱基取代或一种嘌呤碱基被一种嘧啶碱基取代形成的点突变。

缺失(deletion)是一个或多个核苷酸的丢失;插入(insertion)是一个或多个核苷酸的增加;

倒位是一段核苷酸序列方向倒转:基因部的DNA序列可发生重组,使一段DNA序列的方向反置,如由原来的5ˊ→3ˊ方向排列整段倒置为3ˊ→5ˊ方向排列,或一段DNA序列在基因部位置迁移,使基因结构发生改变,形成的突变称为倒位。

基因突变还分为配子突变与体细胞突变;动态突变指串联重复拷贝数随世代的传递而改变。

二、基因突变的遗传效应

不同的基因突变引起不同的遗传效应。

(1)碱基置换突变(substitution mutation)

a. 同义突变(consense mutation or silent mutation)

b. 错义突变(missense mutation)

c. 无义突变(nonsense mutation)

d. 终止密码子突变或延长突变

(terminator codon mutation or elongation mutation)

e. 起始密码子突变(initiation codon mutation)

f. 非编码序列点突变(point mutation in noncoding sequence)

例如:无义突变是突变后产生缩短的多肽键使它所编码的蛋白质发生改变;错义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错义突变。这种基因突变有可能使它所编码的蛋白质部分或完全失活,例如人血红蛋白β链的基因如果将决定第6位氨基酸(谷氨酸)的密码子由CTT变为CAT,就会使它合成出的β链多肽的第6位氨基酸由谷氨酸变为缬氨酸,从而引起镰刀形细胞贫血病。

(2) 缺失或插入突变(deletion or insertion mutation)

a. 密码子缺失或插入(codon deletion or codon insertion)

b. 移码突变(frame-shift mutation)

c. 整基因或大片段缺失

(deletion of a whole gene or a large segment)

(3) 融合突变(fusion mutation)

细胞减数分裂时同源染色体不等交换而致基因间错位配对,

产生两种含不同等位基因的染色体。

(4) 基因突变影响 hnRNA 的剪接

基因突变发生在 hnRNA 的一级结构上特定的剪接位点上,导致 hnRNA 的剪接错误,产生异常的 mRNA,最终产生异常的蛋白表达产物,改变生物性状。

三、结构基因改变导致蛋白质变化引起疾病:

血红蛋白病的类型、特点与结构基因的变化关系、珠蛋白(globin)基因的时、空特异性表达。

血红蛋白结构:

1. 血红蛋白是由4条肽链(两个α和两个β链)组成的。每条肽链都类似于肌红蛋白的肽链,

都结合一个血红素。

2.血红蛋白的脱氧(T)和氧合(R)构象在氧的亲和性方面有很大区别。由于结构上的相互

作用是与它的三级和四级结构有关,所以血红蛋白在结合氧的过程中显示出别构效应和协同性。

3. 人类珠蛋白基因有典型的真核基因结构特点。珠蛋白基因包括已鉴定的8个功能基因、3

个假基因及一个新发现的基因。它们在染色体上成簇排列。珠蛋白基因的表达在时空上受到遗传因素的精确调控。

血红蛋白分子一级结构上的轻微差别就可能导致功能上的很大不同,正常成年人血红蛋白中的β链的第六位的谷氨酸残基被缬氨酸取代就会导致镰刀形细胞贫血病的异常血红蛋白HbS 的生成。

(1) 人α-珠蛋白基因簇及α珠蛋白基因结构

(2) 人β-珠蛋白基因簇及β珠蛋白基因结构(按图例讲解)

血红蛋白病类型:

异常血红蛋白: 珠蛋白结构(质)变异,导致贫血。

地中海贫血: 珠蛋白合成(量)减少,又称珠蛋白合成障碍性贫血。

镰状红细胞贫血症是一种常染色体退化遗传病。引起镰状红细胞贫血症的原因就是β珠蛋白基因的第6位密码子点突变,即编码血红蛋白β链上一个决定谷氨酸的密码子GAG变成了GTG,使得β链上的谷氨酸变成了缬氨酸,引起血红蛋白的结构和功能发生了根本的改变(图11-1)。与正常血红蛋白相比,该病患者的红细胞由正常的圆盘形变成了镰刀形。血红蛋白基因上单个核苷酸的替换(A→T),恰好使该基因片段丢失了可被限制性切酶Mst II酶切开的一个位点CCTNAGG序列(N代表四个碱基中的任意一个)。由于基因突变改变了限制性酶切的结果,可用Southern印迹杂交分析方法和限制性片段长度多态性(简称RFLP)分析方法,对镰状红细胞贫血症胎儿进行产前诊断,或对发病家族成员的基因型进行分析。

图11-1 镰状红细胞贫血症β珠蛋白基因突变方框突变的核苷酸

另常见单基因病如囊性纤维化病(cystic fibrosis, CF)举例。

囊性纤维化跨膜传导调节蛋白(CFTCR)的基因突变所致,产生缺陷型蛋白,致使使氯离子的转运障碍,黏液在呼吸道黏膜淤滞,黏膜形成囊性增生,造成呼吸道堵塞;因反复感染,导致患者呼吸衰竭而死亡。

发病频率(0.4 ‰),常染色体隐性遗传;致病基因CFTR;典型症状:进行性肺损伤及其他。

Gene therapy of CF:将重组CFTCR基因cDNA-病毒载体,用涂布鼻腔、或喷雾吸入气管及肺部等方法,转入患者呼吸道上皮细胞中,获得正常CFTCR基因的表达,纠正Cl+转运缺陷,减少黏液分泌。

病理生理变化过程:(如图)

四、调控序列变异导致基因表达水平变化

基因调控序列也称顺式作用元件,是基因的重要组成部分,虽然其遗传信息不会被表达传递到蛋白质的肽链中去,基因调控序列的突变也不会改变蛋白质的一级结构,但调控序列的突变会

改变基因的表达强度,引起蛋白质生物合成量的改变。这种量的改变超过一定的围,同样会导致蛋白质功能的紊乱,引起相应的疾病。

β珠蛋白基因转录起始位点上游30(-30)处有TATA盒、-90及-105处有CACACCC序列,它们都是β珠蛋白基因的转录调控序列,如TATA盒调控正常的转录起始及其效率。这些调控序列如果发生基因突变,就会使β珠蛋白基因的转录效率降低,β珠蛋白合成减少,引起β+-地贫。不仅是调控序列变异能影响基因的表达,使相应蛋白质的合成减少,一些含子的变异也会影响蛋白质的合成,使体相应蛋白质含量减少或缺失。

第二节细胞间异常信号导致基因表达异常

正常的细胞间信号,能保证基因表达的正常时间特异性、空间特异性以及正常的表达水平。相反,错误的细胞间信号,会破坏基因表达的时间特异性和空间特异性,使胚胎后细胞合成胚胎型蛋白质、或使一种细胞合成另一种细胞特有的蛋白质,还会使基因表达水平过高或过低,这些都会导致疾病的发生。

细胞间信号异常导致基因表达异常从而引起疾病:

人体各细胞间通过激素、神经递质、旁分泌信号等保持细胞间的联系,调节彼此的代。基因表达也受到细胞间信号的调控。

例如AFP接受异常的细胞增殖信号成为肝癌发生的重要因素。甲胎蛋白(AFP)是一种具有胚胎时间表达特异性的蛋白质,胚胎发育过程中,AFP的增强子始终处于激活状态,而沉寂子处于抑制状态,因此增强子的信号可以顺利到达启动子启动AFP基因,AFP基因大量表达。AFP具有免疫抑制作用,可以保护胎儿免受母体的免疫攻击。胎儿出生后,沉寂子活化,阻碍了增强子的启动效应,使AFP表达受到抑制。但在异常细胞增殖信号的作用下,c-myc、c-fos和c-jun等癌基因表达异常增加,其表达产物与AFP基因顺式作用元件相结合,激活AFP基因的表达,重新大量合成AFP。大量合成的AFP通过细胞膜上AFP受体介导,影响淋巴细胞或肝癌细胞的肿瘤坏死因子(TNF)家族及其受体的表达,导致肝癌细胞逃避机体免疫监视,同时又能促进癌基因表达,引起肝癌细胞大量生长。可见,由于肝细胞接受了异常的细胞增殖信号,破坏了AFP表达的时间特异性,使AFP 在胚胎后肝脏异常表达,在肝癌的发生发展中起着十分重要的作用。

再如粉尘刺激的细胞间信号异常导致基因表达异常引起矽肺发生:

粉尘刺激→肺支气管上皮、肺泡巨噬细胞→分泌TGF-β1→成纤维细胞→促细胞分裂和ECM 蛋白基因表达→ ECM 增加→矽肺发生

可见,矽肺发生的重要分子机制是成纤维细胞获得了异常的细胞间信号,使多种ECM蛋白质基因的表达增强,相应的蛋白质合成和分泌增加,造成ECM在肺组织病理性蓄积,最终形成矽肺。

第三节细胞因素导致基因表达异常引起的疾病

基因的表达不仅受基因本身结构和细胞间信号的影响,也受一些细胞因素的影响,这些影响达到一定的强度或超过一定的围,或破坏基因表达的时间特异性和空间特异性,或使基因表达水平过高或过低,均可导致疾病的发生。

细胞因素导致基因表达异常引起疾病:

①异常的细胞信号导致基因表达异常引起疾病

高血糖→ DAG↑→激活PKC →激活 ACE → AngⅡ↑

②异常的DNA甲基化导致基因表达异常引起疾病

DNA甲基化导致基因表达变化是肿瘤形成的重要原因。肿瘤细胞与正常细胞比较,DNA 甲基化模式显著不同。不同的DNA甲基化模式,会产生不同的基因表达谱。基因表达谱失去平衡,就会导致疾病发生,如原癌基因过度扩增、表达异常增强,或/和抑癌基因的“沉寂”,相应表达产物减少甚至消失,都会使细胞增殖平衡受到破坏而引起恶性肿瘤的发生。

hCG5' 转录起始区低甲基化→非滋养层细胞hCG ↑→受体结合→激活胞cAMP信号传导途径→调节肿瘤细胞的其他“生长因子、细胞因子”的产生,Tumor ↑

③病原生物基因的体表达导致疾病的三种方式

第四节翻译后加工运输障碍引起疾病

在机体细胞,通过mRNA指导的蛋白质生物合成将基因DNA序列中所含的遗传信息表达于蛋白质中,并通过蛋白质的生物功能体现机体的生命活动。但是,即使没有任何突变、所含遗传信息完全正确,刚刚合成的、未成熟的蛋白质没有生物活性,不能正确地完成其生物学功能。要使新合成的蛋白质具有完整的生物学活性,还需对其进行翻译后加工,其方式包括:除去信号肽、基团修饰、蛋白质的折叠、亚基聚合、运输至发挥功能的靶部位等。其中任何一个环节的障碍,都会使蛋白质功能紊乱,导致疾病的发生。

酪氨酸酶是黑色素细胞中催化黑色素生成的限速酶,在黑色素的生成过程中起着关键的作用。酪氨酸酶肽链合成后,需先在质网进行折叠,再从质网运输至高尔基体进行糖基化加工,然后由运转囊泡将其转运至黑色素体发挥作用。多种蛋白质(包括酶蛋白)参与了酪氨酸酶的这一成熟及转运过程。所以,不仅酪氨酸酶本身的基因变异会使酪氨酸酶功能紊乱,参与酪氨酸酶成熟和转运的蛋白质基因变异,也可以导致酪氨酸酶不能成熟或不能运输至靶部位,使酪氨酸酶功能紊乱,黑色素合成障碍,导致一些色素病的发生。

I型泛发性白化病就是一种色素病,主要表现为眼、毛发、皮肤的色素缺失,易发生皮肤及眼部的肿瘤,由先天性酪氨酸酶基因缺陷引起。变异的酪氨酸酶蛋白在质网的折叠障碍是I型泛发性白

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

(精选)分子生物学期末考试题目及答案

分子生物学复习提纲 一.名词解释 (1)Ori :原核生物基因质粒的复制起始位点,是四个高度保守的19bp组成的正向重复序列,只有ori能被宿主细胞复制蛋白质识别的质粒才能在该种细胞中复制。 ARS:自主复制序列,是真核生物DNA复制的起点,包括数个复制起始必须的保守区。不同的ARS序列的共同特征是一个被称为A区的11bp的保守序列。(2)Promoter:启动子,与基因表达启动有关的顺式作用元件,是结构基因的重要成分,它是位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA 聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。 (3)r-independent termination不依赖r因子的终止,指在不依赖r因子的终止反应中,没有任何其他因子的参与,核心酶也能在某些位点终止转录。(强终止子) (4)SD sequence:SD序列(核糖体小亚基识别位点),存在于原核生物起始密码AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可以将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 Kozak sequence:存在于真核生物mRNA的一段序列,核糖体能够识别mRNA 上的这段序列,并把它作为翻译起始位点。 (5)Operator:操纵基因,与一个或者一组结构基因相邻近,并且能够与一些特异的阻遏蛋白相互作用,从而控制邻近的结构基因表达的基因。 Operon:操纵子,是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。包括操纵基因、结构基因、启动基因。 (6)Enhancer:增强子,能强化转录起始的序列的为增强子或强化子Silencer:沉默子,可降低基因启动子转录活性的一段DNA顺式元件。与增强子作用相反。 (7)cis-acting element :顺式作用元件,存在于基因旁侧序列中能影响基因表达的序列,包括启动子、增强子、调控序列和可诱导元件,本身不编码任何蛋白质,仅仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控。 trans-acting factor:反式作用因子,是指直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。具有三个功能结构域,即DNA结合域、转录结合域、结合其他结合蛋白的结构域。 (8)Open reading frame (ORF):开放式阅读框架,是指一组连续的含有三联密码子的能够被翻译成为多肽链的DNA序列。它由起始密码子开始,到终止密码子结束。 (9)Gene:基因,产生一条多肽链或功能RNA所需的全部核苷酸序列。(能转录且具有生物学功能的DNA/RNA的序列。)

《分子生物学》期末试卷及答案(C)

《分子生物学》期末试卷(C) 一、术语解释(20分,每题2分) 1、操纵子 2、增强子 3、启动子 4、内含子 5、外显子 6、顺式作用元件 7、反式作用因子 8、转录因子 9、单顺反子mRNA 10、多顺反子mRNA 二、选择题(20分) 1.指导合成蛋白质的结构基因大多数为: ( ) A.单考贝顺序 B.回文顺序 C.高度重复顺序 D.中度重复顺序 2. 下列有关Shine-Dalgarno顺序(SD-顺序)的叙述中错误的是: ( ) A.在mRNA分子的起始密码子上游7-12个核苷酸处的顺序 B.在mRNA分子通过 SD序列与核糖体大亚基的16s rRNA结合 C.SD序列与16s rRNA 3'端的一段富含嘧啶的序列互补 D. SD序列是mRNA分子结合核糖体的序列 3.原核生物中起始氨基酰-tRNA是: ( ) A.fMet-tRNA B.Met-tRNA C.Arg-tRNA D.leu-tRNA 4.下列有关TATA盒 (Hognessbox)的叙述,哪个是错误的: ( ) A. 保守序列为TATAAT B.它能和RNA聚合酶紧密结合 C. 它参与形成开放转录起始复合体 D.它和提供了RNA聚合酶全酶识别的信号 5. 一个mRNA的部分顺序和密码的编号是 140 141 142 143 144 145 146 CAG CUC UAU CGG UAG AAC UGA 以此mRNA为模板,经翻译生成多肽链含有的氨基酸为: ( ) A.141 B.142 C.143 D.144 6. DNA双螺旋结构模型的描述中哪一条不正确:( ) A.腺嘌呤的克分子数等于胸腺嘧啶的克分子数 B.同种生物体不同组织中的DNA碱基组成极为相似 C.DNA双螺旋中碱基对位于外侧 D. 维持双螺旋稳定的主要因素是氢键和碱基堆集力。 7. DNA聚合酶III的描述中哪条不对:( ) A.需要四种三磷酸脱氧核苷酸作底物 B.具有5′→3′外切酶活性 C. 具有5′→3′聚合活性 D. 是DNA复制中链延长反应中的主导DNA聚合酶

期末考试分子生物学精彩试题

选择题 1.证明DNA 是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2 噬菌体感染大肠杆菌。这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA 作为疾病的致病剂 B.DNA 突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA 是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA 能相互混合并彼此替代 2.1953 年Watson 和Crick 提出(A )。 A.多核苷酸DNA 链通过氢键连接成一个双螺旋 B.DNA 的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA 而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA 双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA 的解链温度的正确描述?(C,D ) A.哺乳动物DNA 约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T 含量,因为A-T 含量越高则双链分开所需要的能量越少 C.是双链DNA 中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm 的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.Watson和Crick提出的经典DNA双螺旋结构属于(B) A.A型B.B型C.Z型 5.多种密码子编码一个氨基酸的现象,称为密码子的(B) A.连续性B.简并性C.通用性D.摆动性 6.真核基因经常被断开(B,D,E )。 A.反映了真核生物的mRNA 是多顺反子 B.因为编码序列外显子被非编码序列内含子所分隔 C.因为真核生物的DNA 为线性而且被分开在各个染色体上,所以同一个基因的不同部分可能分布于不同的染色体上 D. 表明初始转录产物必须被加工后才可被翻译 E.表明真核基因可能有多种表达产物,因为它有可能在mRNA 加工的过程中采用不同的外显子重组方式 7.选出下列所有正确的叙述。(A,C ) A.外显子以相同顺序存在于基因组和cDNA 中 B.内含子经常可以被翻译 C.人体内所有的细胞具有相同的一套基因 D.人体内所有的细胞表达相同的一套基因 E.人体内所有的细胞以相同的方式剪接每个基因的mRNA 8.下列哪些基因以典型的串联形式存在于真核生物 基因组?(B,C ) A.珠蛋白基因B.组蛋白基因 C.rRNA 基因D.肌动蛋白基因 9.细胞器基因组( A )。

分子生物学主要研究内容

分子生物学主要研究内容 1. 核酸的分子生物学。 核酸的分子生物学研究 核酸的结构及其功能。由于 核酸的主要作用是携带和传 递遗传信息,因此分子遗传 学是其主要组成部分。由于 50年代以来的迅速发展,该 领域已形成了比较完整的理 论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则是其理论体系的核心。 2. 蛋白质的分子生物学。 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.细胞信号转导的分子生物学。 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。 4.癌基因与抑癌基因、肽类生长因子、细胞周期及其调控的分子机理等。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。

分子生物学期末考试重点

1.定义重组DNA技术 将不同的DNA片段按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 2.说出分子生物学的主要研究内容 1.DNA重组技术 2.基因表达研究调控 3.生物大分子的结构功能研究 4.基因组、功能基因组与生物信息学研究 3.简述DNA的一、二、三级结构 一级:4种核苷酸的连接及排列顺序,表示了该DNA分子的化学成分 二级:2条多核苷酸连反向平行盘绕所形成的双螺旋结构 三级:DNA双螺旋进一步扭曲盘绕所形成的特定的空间结构 4.原核生物DNA具有哪些不同于真核生物DNA的特征? ①DNA双螺旋是由2条互相平行的脱氧核苷酸长链盘绕而成,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3---5②DNA双螺旋中脱氧核糖和磷酸交替连接,排在外侧构成基本骨架,碱基排在内侧③两条链上的碱基通过氢键相结合,形成碱基对 5.DNA双螺旋结构模型是由谁提出的?沃森和克里克 6.DNA以何种方式进行复制,如何保证DNA复制的准确性? 线性DNA的双链复制:将线性复制子转变为环状或者多聚分子,在DNA末端形成发卡式结构,使分子没有游离末端,在某种蛋白质的介入下在真正的末端上启动复制。环状DNA 复制:θ型、滚环型、D型 ①以亲代DNA分子为模板进行半保留复制,复制时严格按照碱基配对原则 ②DNA聚合酶I 非主要聚合酶,可确保DNA合成的准确性

③DNA修复系统:错配修复、切除修复、重组修复、DNA直接修复、SOS系统 7.简述原核生物DNA复制特点 只有一个复制起点,复制起始点上可以连续开始新的DNA复制,变现为虽只有一个复制单元,但可以有多个复制叉 8.真核生物DNA的复制在哪些水平上受到调控? 细胞生活周期水平调控;染色体水平调控;复制子水平调控 9.细胞通过哪几种修复系统对DNA损伤进行修复? 错配修复,恢复错配;切除修复,切除突变的碱基和核苷酸片段;重组修复,复制后的修复;DNA直接修复,修复嘧啶二聚体;SOS系统,DNA的修复,导致变异 10.什么是转座子?分为哪些种类? 是存在于染色体DNA上可自主复制和移动的基本单位。可分为插入序列和复合型转座子11.什么是编码链?什么是模板链? 与mRNA序列相同的那条DNA链称为编码链,另一条根据碱基互补配对原则指导mRNA 合成DNA链称为模板链 12.简述RNA的种类及其生物学作用 mRNA:编码了一个或多个多肽链序列。 tRNA:把mRNA上的遗传信息变为多肽中的氨基酸信息。 rRNA:是核糖体中的主要成分。 hnRNA:由DNA转录生成的原始转录产物。 snRNA:核小RNA,在前体mRNA加工中,参与去除内含子。 snoRNA:核仁小RNA,主要参与rRNA及其它RNA的修饰、加工、成熟等过程。scRNA:细胞质小RNA在蛋白质合成过程起作用。

分子生物学(题库二)

习题2 一、比较下列概念 2.转录和翻译 3.RNA聚合酶和引物酶 4.启动子和增强子 5.同源重组和位点特异性重组 6. 密码子和遗传密码 7. 基因内抑制突变和基因间抑制突变 8 SD序列和Kozak序列 9.密码子和反密码子 10.同义密码子和偏爱密码子

11.-10序列( Pribnow box )和TATA框(Goldberg-Hogness box) 二、填空 1.位点特异性重组的结果与重组位点的位置和方向有关。如果重组位点以相反方向存在于同一DNA分子上,重组结果发生;重组位点以相同方向存在于同一DNA分子上,重组发生。重组位点在不同DNA分子上,重组发生。 2. 1956年,Crick提出了遗传信息传递的途径,称为,其内容概括为 3.被转录的DNA链称为模板链,又称链, 它与转录出来的RNA序列,非模板的DNA链为编码链,又称链;它与转录生成的RNA序列,不过在RNA中含有U而不含T。 4. 大肠杆菌中DNA指导的RNA聚合酶全酶的亚基组成为,去掉因子后剩 下的部分称为核心酶,这个因子使全酶能辩认DNA上的位点。 5. 利福平抑制细菌中转录的起始,因为。 6. 原核细胞中各种RNA是催化生成的。而真核细胞核基因的转录分别由 种RNA聚合酶催化,其中rRNA基因由转录,hnRNA基因由转录,各类小分子量RNA则是的产物。 7.在真核生物中,转录mRNA基因的酶是_____;转录tRNA基因的酶是____;转录18S和28S rRNA基因的酶是__________。 8. 一个转录单位一般应包括序列、序列和序列。 9.真核细胞每个mRNA一般只带一种蛋白质编码信息,是 mRNA; 原核细胞每个mRNA 分子常带有多个功能相关蛋白质的编码信息,是 mRNA 。 10.真核细胞中编码蛋白质的基因多为。编码的序列被保留在成熟mRNA中的 是,编码的序列在前体分子转录后加工中被切除的是。 11在基因中 ______被_____分隔开,而成熟的mRNA中序列被拼接起来。

分子生物学期末复习(整理版)

1)分子生物学 从分子水平上研究生命现象物质基础的学科。研究细胞成分的物理、化学的性质和变化以及这些性质和变化与生命现象的关系,如遗传信息的传递,基因的结构、复制、转录、翻译、表达调控和表达产物的生理功能,以及细胞信号的转导等。 2)移动基因: 又称转座子。由于它可以从染色体基因组上的一个位置转移到另一个位置,是指在不同染色体之间跃迁,因此也称跳跃基因。 3)假基因: 有些基因核苷酸序列与相应的正常功能基因基本相同,但却不能合成出功能蛋白质,这些失活的基因称为假基因。 4)重叠基因: 所谓重叠基因是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。 5)基因家族: 是真核生物基因组中来源相同、结构相似、功能相关的一组基因。 6)基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位. 7)基因组:细胞或生物体的一套完整单倍体的遗传物质的总和. 8)端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒.该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在. 9)操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子. 10)顺式作用元件:是指那些与结构基因表达调控相关,能够被基因调控蛋白特异性识别和结合的特异DNA序列.包括启动子,上游启动子元件,增强子,加尾信号和一些反应元件等. 11)反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节 基因转录活性的蛋白质因子. 12)启动子:是RNA聚合酶特异性识别和结合的DNA序列. 13)增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列.它可位于被增强的转录基因的上游或下游,也可相距靶基因较远.

分子生物学期末复习试题及答案(可编辑修改word版)

一、名词解释 分子生物学:包括对蛋白质和核酸等生物大分子的结构与功能,以及从分子水平研究生命活动 RNA 组学:RNA 组学研究细胞中 snmRNAs 的种类、结构和 功能。同一生物体内不同种类的细胞、同一细胞在不同时间、不同状态下 snmRNAs 的表达具有时间和空间特异性。增色 效应: DNA 变性时其溶液 OD260增高的现象。 减色效应: DNA 复性时其溶液 OD260降低的现象。 T m:变性是在一个相当窄的温度范围内完成,在这一范围内,紫外光吸收值达到最大值的50%时的温度称为 DNA 的 解链温度,又称融解温度(melting temperature, Tm)。其 大小与 G+C 含量成正比。 解链曲线:如果在连续加热 DNA 的过程中以温度对 A260 (absorbance,A,A260代表溶液在260nm 处的吸光率) 值作图,所得的曲线称为解链曲线。 DNA 复性:在适当条件下,变性 DNA 的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。 核酸分子杂交:在 DNA 变性后的复性过程中,如果将不同 种类的 DNA 单链分子或 RNA 分子放在同一溶液中,只要两 种单链分子之间存在着一定程度的碱基配对关系,在适宜 的条件(温度及离子强度)下,就可以在不同的分子间形 成杂化双链,这种现象称为核酸分子杂交。 基因:广义是指原核生物、真核生物以及病毒的 DNA 和RNA 分子中具有遗传效应的核苷酸序列,是遗传的基本单位。狭义指能产生一个特定蛋白质的 DNA 序列。 断裂基因:不连续的基因称为断裂基因,指基因的编码序列在 DNA 上不连续排列而被不编码的序列所隔开。 重叠基因:核苷酸序列彼此重叠的2个基因为重叠基因, 或称嵌套基因。 致死基因:删除后可导致机体死亡的基因。 基因冗余:由于一基因在个体中有若干份拷贝,当删除其中一个时,个体的表型不发生明显变化。 DNA 重组:DNA 分子内或分子间发生遗传信息的重新组合,又称为遗传重组或基因重排。 同源重组:发生在同源序列间的重组称为同源重组,又称基本重组。 接合作用:当细胞与细胞、或细菌通过菌毛相互接触时,质粒 DNA 从一个细胞(细菌)转移至另一细胞(细菌) 的DNA 转移称为接合作用(conjugation)。 转化作用:通过自动获取或人为地供给外源 DNA,使细胞或培养的受体细胞获得新的遗传表型,称为转化作用(transformation)。 转导作用:当病毒从被感染的(供体)细胞释放出来、再次感染另一(供体)细胞时,发生在供体细胞与受体细胞之间的 DNA 转移及基因重组即为转导作用 位点特异重组:位点特异重组(site-specific recombination) 是由整合酶催化,在两个 DNA 序列的特异位点间发生的整合。 12-23规则:重组发生在间隔为12bp 到23bp 的不同信号序列之间,称为12-23规则。 转座子:(transposon)在基因中可以移动的一段 DNA 序列。 转座:由插入序列和转座子介导的基因移位或重排称为转座(transposition)。 克隆:来自同一始祖的相同副本或拷贝的集合。 DNA 克隆:应用酶学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA 接合成一具有自我复制能力的DNA 分子——复制子(replicon),继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一 DNA 分子,也称基因克隆或重组 DNA (recombinant DNA)。 基因工程:(genetic engineering)实现基因克隆所用的方法及相关的工作称基因工程,又称重组DNA 工艺学。限制性核酸内切酶:(restriction endonuclease, RE) 是识别DNA 的特异序列, 并在识别位点或其周围切割双链 DNA 的一类内切酶。 同功异源酶:来源不同的限制酶,但能识别和切割同一位点,这些酶称同功异源酶。 同尾酶:有些限制性内切酶虽然识别序列不完全相同,但切割 DNA 后,产生相同的粘性末端,称为同尾酶。 载体:为携带目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些 DNA 分子。 复制:(replication)是指遗传物质的传代,以母链 DNA 为模板合成子链 DNA 的过程。 半保留复制:(semi-conservative replication)DNA 生物合成时,母链 DNA 解开为两股单链,各自作为模板(template)按碱基配对规律,合成与模板互补的子链。子代细胞的 DNA,一股单链从亲代完整地接受过来,另一股单链则完全从新合成。两个子细胞的 DNA 都和亲代 DNA 碱基序列一致。这种复制方式称为半保留复制。 复制子:(replicon)DNA 分子中能独立进行复制的单位称为复制子。习惯上把两个相邻起始点之间的距离定为一个复制子。 复制眼:(replication eye)DAN 正在复制的部分在电镜下观察起来犹如一只眼睛,称为复制眼。 复制叉:(replication fork)复制一开始,复制起始点要形成一个特殊的叉型结构,是复制有关的酶和蛋白质组

分子生物学考试复习题总结

1比较基因组学(comparative genomics):是基于基因组图谱和测序的基础上对已知的基因和基因组进行比较,用来了解基因的功能、表达机理和物种进化的科学。 2等位排斥:淋巴细胞中产生免疫球蛋白的基因位于两条同源染色体上,而免疫球蛋白的基因的表达只发生在一条染色体上,这样因为一条染色体上的基因表达而抑制另一条染色体上相同基因的表达的现象。 3同型排斥:指B淋巴细胞的轻链表达时,只生成一种链k链或入链,不会同时表达k链和入链的现象。 4组织相容性复合体(MHC):能引起强而迅速的排斥反应的抗原,其编码的基因是一组紧密连锁的基因群。 5癌(can cer):是一种无限向外周扩散、浸润的现象,不受机体控而繁殖的细胞,也称恶性肿瘤。 6操纵子(operon):是指原核生物中数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。 7顺式作用元件(cis-acting element):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 8反式作用因子(trans-acting fator):是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。9基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。10,信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。11受体:是存在于靶细胞膜上或细胞内能特异识别

分子生物学试题总结

04级分子生物学期末题目 一、选择题(20题) 1、tRNA的5端剪切所需的酶(RNase P) 2、人体全基因组大小(3,200,000,000 bp) 3、(5S rRNA)是基因内部启动子转录的 4、线虫反式剪接所占比例(10%-20%) 5、与分枝位点周围序列碱基配对的剪接体(U2 snRNP) 6、Holliday中间体是(同源重组)的模型 7、Pribnow box 是原核生物的(启动子) 8、TATA box binding protein 在下列哪个启动子里面存在(三类都有)[英文] 9、UCE是(I)类启动子的识别序列 10、mRNA的剪切跟(II)类内含子相似 11、tRNA基因是RNA聚合酶(III)启动的[英文] 12、噬菌体通过(位点专一重组)整合到宿主中 13、在细菌中,色氨酸操纵子的前导区转录后,(翻译)就开始 14、Promoters and (enhancers) are cis-acting elements. 15、G-protein needs ( GTP ) as energy. (原句不记得了) 16、RNA干涉又叫(转录后的基因沉默,PTGS) 17、转录因子包括通用转录因子和(基因特异转录因子)[英文] 18、激活子的两个功能域,一个是转录激活结构域,另一个是(DNA结合域)[英文] 19、内含子主要存在于(真核生物) 二、是非题(10题) 1、RNA干涉是通过gRNA引导。F 2、U5 snRNP是参与两段外显子连接的。T [英文] 3、抗终止转录的机制是RNA聚合酶忽略终止子。T 4、原核生物RNA聚合酶有三种。F [英文] 5、Operon is a group of contiguous, coordinately controlled genes. T 6、枯草杆菌芽孢形成的转录控制通过变化RNA聚合酶的σ因子达成。T 7、enhancers and silencers are position- and orientation- free elements. T 8、RNA聚合酶II结合到启动子上时,其亚基的羧基末端域(CTD)是磷酸化的。F 9、细胞质中的poly(A)往往比细胞核中的poly(A)短。T 三、问答题(5题) 1、比较原核生物和真核生物翻译起始的异同 2、启动子在基因内的基因如何进行转录 3、组蛋白乙酰化对基因转录的影响 4、什么是选择性剪接及其生物学意义是什么 5、RNA编辑的机制 03级试题 一选择题 1 Holliday中间体是(同源重组)的模型 2 Pribnow box是原核生物的(启动子的共同序列) 3原核生物RNA聚合酶在转录延伸时不需要的因子(rou因子) 4 TBP结合蛋白在下列哪个启动子里面存在(三类都是) 5 UCE是(I)类启动子识别的序列 6乳糖操纵子与阻遏蛋白结合的物质是异乳糖。阻遏物与操纵区结合。

分子生物学 期末考试复习题

一、判断题 1、原核细胞和真核细胞的差别之一是前者无染色体结构,后者有染色体结构。(√) 2、基因组是指某一种生物所具有的全部基因的总称。(×) 3、真核生物基因的大小通常是外显子的数目和长度决定的。(×) 4、在所有的真核生物中,内含子的长度和序列是高度保守的。(×) 5、酵母的基因普遍要比人的基因小,因此,酵母基因组编码的蛋白质普遍要比人基因组编码的蛋白质要小。(×) 6、在自由的四种核苷酸混合溶液中,任何碱基之间都可以形成氢键而发生配对。× 7、PCR只能扩增双链DNA,不能扩增单链DNA。(×) 8、富含GC的DNA双螺旋比富含AT的DNA双螺旋稳定的主要原因是GC碱基对比AT碱基对多一个氢键。(√) 9、用氯化铯梯度超离心纯化质粒DNA时,蛋白质在离心管的最上部,RNA悬浮在中间,而DNA沉在底部。(×) 10、mRNA的剪接总是产生套索结构。(×) 11、冈崎片段只由DNA组成。(×) 12、端粒酶带有自己的DNA模板。(×) 13、细胞内的DNA复制既需要DNA聚合酶,也需要RNA聚合酶。(×) 14、同源重组和位点特异性重组都形成Holliday中间体结构。(√) 15、与tRNA相连的氨基酸本身在决定何种氨基酸参入到正在延伸的肽链上不起任何作用。(√) 16、转座重组既可以导致基因的失活,也可以导致基因的激活。(√) 17、只有用相同的限制性酶获得的DNA片段末端才能用DNA连接酶连接起来。× 18、在一个基因的编码区内发生的核苷酸的插入或缺失总是导致移码突变。× 19、PCR和末端终止法测序都需要RNA引物。(×) 20、只有用相同的限制性酶获得的DNA片段末端才能用DNA连接酶连接起来。×

分子生物学期末试卷及答案

福建农林大学期末考试试卷 2008——2009学年第学期 课程名称:分子生物学考试时间120 分钟 专业年级班学号姓名 一、填空题(每空0.5分,共10分) 1、The enzymes needed in the bacterial DNA replication are topoisomerase, helicase, _____________, DNA polymerase and ______________.(引物酶;DNA连接酶) 2、There are five families of histones:________, ________, ________ and ________, known as the core histones, and H1.(H2A;H2B;H3;H4) 3、The holoenzyme of E.coli RNA polymerase is_______________,the core enzyme is made up of _______________,while the___________ factor has the ability to recognize specific binding sites.(α2ββ’σ;α2ββ’;σ) 4、There are two kinds of mutagens, one is physical mutagens, such as_____________,the other is chemical mutagens, such as_____________.(各种射线;碱基类似物/烷化剂/亚硝酸/EB) 5、The two-dimensional structure of tRNA is . And the three-dimensional structure of tRNA is . (三叶草型、L型) 6、was suggseted by Crick to explain the redundancy of the genetic code.(摆动假说) 7、The start codon is . There are three stop codons: , , .

大学分子生物学期末考试大题

1.试比较原核生物和真核生物启动子结构的差别。 答:原核生物启动子:Pribnow box(-10序列):共同序列TATAAT,-4~-13bp之间。决定转录的方向,是RNA pol的牢固结合位点,称为结合位点。Sexfama box(-35序列):共同序列TTGACA,TTG十分保守,RNA pol全酶依靠σ因子的起始识别位点,也称识别位点。  真核生物启动子:TATA box:TATAAAA,两侧富含GC,位于-26~-34,-30左右,决定转录起始的选择。CAAT box:GGC/TCAATCT,位于-75,-70~-80,开头两个G的重要性等于CAAT部分,非常保守,可能是真核生物RNA pol II的结合部位,决定转录起始的频率。GC box:GGGCGG,位于-80~-110,GC区与sp1等转录因子结合,可提高转录起始的频率。 2.试比较原核生物和真核生物基因转录的差异 ①RNA pol的差别:原核生物只有一种DNA pol负责转录所有类型的RNA;而真核生物有三种RNA pol(RNA polⅠⅡⅢ),负责不同类型基因的转录,合成不同类型的RNA。 ②转录产物的差别:原核生物的初始产物与Pr序列成线性关系。真核生物的初始产物包含内含子序列,因此转录产物需经过剪切,连接等过程除去内含子。 ③转录产物的加工:真核生物转录产物要经过修饰作用,即与5ˊ端帽化和3ˊ端聚合化。 ④与基因结构相吻合,原核生物mRNA是多顺反子,而真核生物mRNA是单顺反子。 ⑤时空差异:原核生物的转录和翻译在细胞的同一部位进行。真核生物成熟的mRNA转移到细胞质内参与Pr的生物合成,转录和翻译相对独立。 3.什么是基因表达?可用哪些技术来检测一个基因是否表达? 基因表达,指生物基因组中结构基因所携带的遗传信息经转录和翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。 转录水平上的表达检测:Northern杂交、RT-PCR、荧光定量PCR 蛋白水平上的表达检测:Western杂交、含量、酶活等。 4.mRNA前体加工中加尾和加帽的生物学功能有哪些?

分子生物学技术

分子生物学技术 近年来,心血管疾病的发病率和死亡率急剧增加,已成为危害我国人民群众生命和健康的重大疾病。人们逐渐认识到,包括心血管疾病在内的许多疾病的生理、病理机制的本质问题是相关基因的表达及其调控。随着研究的深入, 心血管疾病的研究已深入到分子生物学水平。人们寻找疾病相关基因, 研究其表达调控机制, 希望在分子水平阐明疾病发生机制, 以期更有效地进行疾病的诊断、治疗。相应地, 很多分子生物学研究技术也应用到对心血管疾病的研究中来, 成为不可或缺的基本手段, 如分子杂交技术、聚合酶链式反应(Polymerase Chain Reaction,PCR)技术、反义核酸技术、DNA微阵列、转基因技术等等。分子诊断学是以分子生物学理论为基础,利用分子生物学的技术和方法研究人体内源性或外源性生物大分子和大分子体系的存在、结构或表达调控的变化,为疾病的预防、预测、诊断、治疗和转归提供信息和决策依据的一门学科。1953年Watson & Crich发现DNA 双螺旋结构, 标志着分子生物学时代的到来。随着研究的进展, 人们对心血管疾病的研究也逐步深入到分子水平, 很多分子生物学的研究技术也在疾病机理、药物机理的研究中广泛应用, 成为基本的研究手段。人类基因组计划完成后, 生命科学研究进入后基因组时代, 进行功能基因组学、蛋白质组学的研究, 相应的实验技术也广泛应用并不断发展。 在过去的短短的10余年中,检验医学发展日新月异、发展迅猛,临床实验室的实验设备已高度自动化及网络化,“实验室全自动化”(Total Laboratory Automation,TLA)、分子诊断(MolecularDiagnostics)、床旁检验(Point of Care Tests,POCT)、循证检验医学(Evidence basedlaboratory medicine,EBLM)的兴起为心血管疾病的诊疗提供了极大帮助。 一、分子生物学技术 由于分子生物学技术的快速发展,以及人类基因组序列认识的逐渐完善,以PCR为代表的体外核酸扩增技术已在临床基因诊断中得以较为广泛的应用,如病毒、细菌的基因快速检测,遗传性疾病的诊断,肿瘤的基因诊断等。实时荧光定量PCR技术的应用,不仅使临床基因检测更加快速,而且使基因检测进入定量阶段,这特别有利于某些疾病治疗效果的评价。免疫检验中的放射免疫分析(Radioimmunoassay,RIA),酶免疫分析(Enzyme Iimrrmnoassay,EIA),金标记免疫分析,荧光免疫分析(Fluoroimmunoassay,FIA),时间分辨荧光免疫分析(Time-resolved Fluoroimmunoassay,TRFIA),化学发光免疫分析(Chemiluminescence Immunoassay,CLI A),电化学发光免疫分析(Electro-Chemiluminescence Immunoassay ,ECLI)技术的临床应用不仅拓宽了免疫学检测的领域,同时提高了免疫学检测的灵敏度,促进了免疫检测的自动化。特别是化学发光免疫分析、电化学发光免疫分析技术的诞生,使得免疫学检验进入了一个新的时代,检测灵敏度可达pg水平,其检测速度、分析自动化程度及分

分子生物学试题库汇总复习课程

第2章染色体与DNA 名词解释 原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。 半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA 中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。 染色体:染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。 核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题 1.真核细胞核小体的组成是DNA和蛋白 2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色体末端存在端粒结构。 3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。 4.引起DNA损伤的因素有自发因素、物理因素、化学因素。 5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。 6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。 8.端粒酶是端粒酶是含一段RNA的逆转录酶。 9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题 1.真核生物复制起点的特征包括(B) A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A) A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D) A.碱基替换 B.磷酸脂键断裂C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C) A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A) A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D) A.为中性蛋白 B.为酸性蛋白 C.进化上不具保守性 D.染色体结合蛋白 7.DNA聚合酶Ⅰ(C) A.是复制酶,但不是修复酶 B.没有模板依赖性 C.有5′→3′外切酶活性 D. 5′→3′聚合酶活性极强

分子生物学期末考试试题

分子生物学期末考试试题 一、名词解释 1、反式作用因子:能直接或间接地识别或结合各类顺式作用元件核心序列,参与调控靶基因转录效率的蛋白质。 2、基因家族: 3、C值矛盾:C值是指真核生物单倍体的DNA含量,一般的,真核生物的进化程度越高,C值越大,但在一些两栖类生物中,其C值却比哺乳动物大的现象。原因是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。 4、核型:指一个物种所特有的染色体数目和每一条染色体所特有的形态特征。 5、RNA editing:转录后的RNA在编码区发生碱基的突变、加入或丢失等现象。 二、判断: 1、真核生物所有的mRNA都有polyA结构。(X ) 组蛋白的mRNA没有 2、由于密码子存在摇摆性,使得一种tRNA分子常常能够识别一种以上同一种氨基酸的密码子。(√) 3、大肠杆菌的连接酶以A TP作为能量来源。(X ) 以NAD作为能量来源 4、tRNA只在蛋白质合成中起作用。(X ) tRNA还有其它的生物学功能,如可作为逆转录酶的引物 5、DNA聚合酶和RNA聚合酶的催化反应都需要引物。(X ) RNA聚合酶的催化反应不需要引物 6、真核生物蛋白质合成的起始氨基酸是甲酰甲硫氨酸(X ) 真核生物蛋白质合成的起始氨基酸是甲硫氨酸 7、质粒不能在宿主细胞中独立自主地进行复制(X ) 质粒具有复制起始原点,能在宿主细胞中独立自主地进行复制 8、RNA因为不含有DNA基因组,所以根据分子遗传的中心法则,它必须先进行反转录,才能复制和增殖。(X ) 不一定,有的RNA病毒可直接进行RNA复制和翻译 9、细菌的RNA聚合酶全酶由核心酶和ρ因子组成。(X ) 细菌的RNA聚合酶全酶由核心酶和σ因子组成 10、核小体在复制时组蛋白八聚体以全保留的方式传递给子代。(√) 11、色氨酸操纵子中含有衰减子序列(√) 12、SOS框是所有din基因(SOS基因)的操纵子都含有的20bp的lexA结合位点。(√) 三、填空: 1、原核生物的启动子的四个保守区域为转录起始点、-10区、-35区、-10区与-35区的距离。 2、根据对DNA序列和蛋白质因子的要求,可以把重组分为同源重组、位点专一性重组/特异位点重组、转座重组、异常重组四类。 3、研究启动子功能的主要方法是启动子的突变,研究酶与启动子间识别与结合的方法有足迹法和碱基修饰法。 4、真核生物中反式作用因子的DNA结合结构域有螺旋-转角-螺旋(HTH) 、碱性-螺旋-环-螺旋(bHLH) 、锌指(zinc finger) 、碱性-亮氨酸拉链(bZIP)。 5、根据DNA复性动力学,DNA序列可以分成哪四种类型? 单一序列、轻度重复序列、中度重复序列、高度重复序列

相关文档
最新文档