智能与新型功能高分子材料

智能与新型功能高分子材料
智能与新型功能高分子材料

智能生物医用功能高分子材料

摘要:智能高分子材料能够响应外界环境的微小刺激,引起自身构象,极性,相结构,组成结构等物理化学变化,表现出“智能”的特性,已被广泛应用于生物医学和纳米技术领域。文中将以智能水凝胶体系,智能载药体系和智能识别体系为例,综述智能高分子材料在生物医学上的研究进展,以及我国近年来的研究情况和存在的问题,并展望其应用前景,了解智能生物医用功能高分子材料。

关键词:功能高分子材料、智能、生物医用高分子材料。

1.引言

智能高分子材料又称智能聚合物、机敏性聚合物、刺激响应型聚合物、环境敏感型聚合物,所以被定义为“能感知环境变化并随外部条件的变化,通过自我判断和结论,进行相应动作的高分子材料”。为了实现这样的高分子材料的合成,高分子材料必须具备感知特定的外界刺激和自身内部状态变化并坐车响应的功能以及响应速度快,外界刺激撤除后恢复自我的能力,其特性决定于分子结果的复杂性与多样性,以此决定了智能化[1]。

由蛋白质,多糖,核酸等生物高分子所构筑的生物体系,能够精确地响应外界环境微小的变化,而行使其相应的生物学功能(如单个细胞的生命活动)。许多合成高分子也具有类似的外界刺激响应性质,而且已经被广泛研究用于智能或仿生体系,特别是在生物医学方面,可用于药物控制释放,生物分离,生物分子诊断,生物传感器和组织工程等领域。常见的刺激敏感型高分子材料有温度敏感,pH 敏感,光敏感,电敏感,生物活性分子敏感等,以及混合敏感型。本文将着重介绍智能水凝胶体系,智能纳米载药体系,以及智能识别体系。含智能响应高分子的水凝胶,能够响应外界环境的刺激,呈现收缩-溶胀的体积变化,或者Sol-Gel 的相转变,能够用于组织工程,生物传感器和药物控制释放等[2]。智能载药体系以载药高分子纳米粒子(包括胶束, 微囊等)为例,在外界刺激下,能够使纳米粒子形变、分散(胶束,微囊),或溶胀、收缩(微凝胶,核/壳交联的粒子),从而实现在病灶部位定点,持续性的控制释放[3,4]。将智能高分子和具有分子识别功能的生物活性分子结合而成的智能识别体系,不但能够识别相应的靶分子,而且在外界刺激后,体系会发生相分离等,可用于生物分离,生物传感器,癌症分子诊断等[5]。

2.生物医用功能高分子材料研究现状

生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚-氨) 酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947年美国已发表了展望性论文。随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。

2.1 天然生物材料

天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等[6-10]。这些纤维都具有很高的生物功能,具有很好的生物适应性,在保护伤口、加速创面愈合方面具有强大的优势,已引起国内外医务界广泛的关注。

2.2合成高分子材料

合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官,因此在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料[11]。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。

目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶、硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道和膀胱)等。

2.3可降解高分子材料

随着环保概念的提出,环保意识的增强使人们对生态可降解一词已不再陌生,材料的生态可降解,性能要求逐渐被提上日程,生态可降解高分子材料的开发和应用也随之日益受到政府、企业和科研机构的重视。目前为止,开发的具有生态可降解性的高分子材料主要以国外产品为主,国内这方面还远远不能满足需要,尚处于国外产品的复制和仿制阶段。

3.智能生物医用高分子材料发展应用现状

对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。

3.1智能水凝胶体系

水凝胶根据其来源,可分为天然凝胶和合成凝胶。天然凝胶主要来源于胶原、透明质酸、纤维蛋白、海藻酸、琼脂糖和壳聚糖等。合成凝胶则主要是由聚甲基丙烯酸羟乙

酯(PHEMA)、聚乙烯醇(PV A)、聚乙二醇(PEG)、聚丙烯酸(PAA)、聚丙烯酰胺(PAAm)、聚N-异丙基丙烯酰胺(PNIPAM)等一系列水溶性聚合物通过物理或化学交联而成,在水中溶胀而不溶解的三维凝胶[2]。智能凝胶是由于其组成的聚合物主链或侧链上含有离子解离性、极性或疏水性基团,能够对外界环境溶剂组分、温度、pH 值、电场、光、磁场等的变化能产生可逆的、不连续(或连续)的体积变化,因此通过控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激做出响应,表现出智能的特性。智能水凝胶按照响应环境的不同可分为温度敏感水凝胶、pH 敏感水凝胶、电场敏感水凝胶、光敏感水凝胶、压力敏感水凝胶和复合敏感水凝胶等。

3.1.1温度敏感水凝胶

温度敏感性聚合物都存在有一临界溶解温度。常见的聚丙烯酰胺类聚合物在某一特定温度以上,其水溶液发生相分离,这一温度称为低临界溶解温度(lower critical solution temperature, LCST)。聚(N-异丙基丙烯酰胺)(PNIPAM)是其中研究最广泛的温敏性聚合物之一,它的水溶液在32℃(LCST)左右发生迅速的可逆相转变[5]。PNIPAM水凝胶是一种典型的热缩型水凝胶,在LCST以上,溶胀的凝胶失水收缩;而在LCST 以下,凝胶则会再度吸水溶胀。虽然PNIPAM的温度响应性非常灵敏,但是单纯的PNIPAM水凝胶的响应性却并不明显,从而限制了其在实际中的应用。Yoshida等[12]合成了对温度变化具有快速的去溶胀响应的梳型接枝水凝胶(PNIPAM接枝PNIPAM)。这些接枝的梳型侧链可以自由运动,当升高温度时接枝链的疏水相互作用产生多个疏水核,大大增强了交联链的聚集,从而使去溶胀过程由传统的一个多月缩短为大约20 min。最近, Xu等[13]合成了接枝链为两亲性聚合物的梳形接枝水凝胶,在室温下它比传统的水凝胶具有更高的溶胀度,去溶胀速率也有很大的提高。

除了响应不灵敏外,传统的PNIPAM 水凝胶的另一缺点就是机械性能差,这在很大程度上影响了它的应用。Gil等[14]合成了丝素蛋白和PNIPAM互穿网络水凝胶。实验结果表明丝素蛋白的β折叠结构加强了PNIPAM水凝胶的粘弹性,并且加快了水凝胶的去溶胀速度。另一种提高机械强度的方法是合成有机/无机杂化水凝胶。Haraguchi等[15]合成了PNIPAM/黏土杂化水凝胶,实验表明杂化凝胶的机械性能大大优于传统的PNIPAM水凝胶。杂化水凝胶可以经受住大幅度的拉伸、弯曲和压缩而不被破坏,可以被拉长10倍,甚至可以打结,而这些性能是传统水凝胶所不具备的。

3.1.2 pH敏感水凝胶

pH 敏感水凝胶是另一类广泛研究的刺激响应敏感型水凝胶,此类水凝胶的溶胀或去溶胀是随着pH值的改变而变化的。在pH 敏感型水凝胶的大分子网络结构中,一般含有大量易水解和可质子化的酸性或碱性基团,随着介质pH 值的改变,这些基团会发生解离,造成凝胶内外离子强度的差异,并导致网络内大分子链段间氢键的破坏,使交

联点减少或静电斥力增加,从而在宏观上引起凝胶溶胀,显示出pH敏感性。Kad1ubowski 等[16]通过光引发交联的方法合成了聚乙烯基吡咯烷酮和聚丙烯酸组成的水凝胶体系。在低pH 值环境下,羧基质子化引起凝胶收缩, 变为混浊状,发生相分离,而单纯含聚丙烯酸的水凝胶则没有这种性能。Khalid等[17]合成了一种包含壳聚糖(CS)和PEO的半互穿网络水凝胶并与纯粹用CS交联而成的凝胶作对比,证明前者的溶胀对pH 有高度的依赖性,溶胀性能、机械性能都比后者强。

3.1.3压力敏感水凝胶

压敏水凝胶是指随外界压力的变化而出现的体积相转变现象的凝胶。水凝胶的压力依赖性最早是由Marchetti[18]通过理论计算提出的,其计算结果表明:凝胶在低压下出现坍塌,在高压下出现膨胀. 该预测后来被Lee 等[19]通过实验方法证实。他们利12%的亚甲基双丙烯酰胺作交联剂制备出了聚N-异丙基丙烯酰胺(PNIPAM)凝胶,该凝胶的体积随压力变化而变化,并认为凝胶体积随压力的变化是由于压力对该体系自由能有贡献所致。

3.1.4复合敏感水凝胶

单一敏感的水凝胶往往不能满足实际应用的需求,如在复杂的外界环境变化以及多智能体系要求下,复合敏感能够同时响应不同的外界刺激,将具有更加广阔的应用前景。例如,Shim 等[20]合成了可注射型的温度和pH 双敏感凝胶。他们把具有pH 敏感功能的磺胺二甲嘧啶齐聚物接到了具有温度敏感性的聚(己内酯-co-丙交酯)-聚乙二醇-聚(己内酯-co-丙交酯)(PCLA-PEG-PCLA)的两端,使该聚合物既对温度敏感又对pH 敏感。该聚合物可以在很窄的人体pH范围内发生凝胶-溶胶转变,它在pH=7.4,37℃时形成凝胶,但当pH=8.0 时在室温下它依然呈溶胶状态。

3.2 智能载药体系

20世纪70年代以前,大多数药物都是采用药片,滴剂,注射液等传统的给药方式。但药物无论是作用于人体的某个器官还是整个系统,大多数药物都有其疗效窗口,即药物在活性部位产生疗效浓度范围,这就要求新的载药体系能够更好的控制药物在活性部位的浓度。同时,有些药物只能作用于身体的某一特定部位而对邻近部位具有副作用,这时我们就必须采用一定的手段来控制药物在进入体液系统和组织后的分布。为了满足药物治疗新的要求,智能载药体系应运而生,所谓的智能载药体系就是这些药物载体能够按病灶信号如pH、温度或生物分子的变化定时定量定点地释放药物以达到治疗的效果。

近年来,具有pH 敏感导致电荷反转的聚合物纳米粒子载药体系成为了研究的热点。Lee 等[21]合成了PEG 和聚天冬氨酸苄酯的嵌段共聚物,并用乙二胺胺解使得聚天

冬氨酸侧链带有正电性的氨基,再与柠康酸酐反应,侧链转变为带有负电性的羧基,同时具有可在酸性条件下水解的柠康酰胺键。该聚合物能够与带正电的模型蛋白形成聚离子复合物(PIC)胶束。在内含体的酸性条件下,柠康酰胺键水解,侧链由带有负电的羧基回复到带正电的氨基,使得PIC 胶束解体,释放复合的蛋白质。因此,该pH 敏感的嵌段共聚物有望用于蛋白质药物的传输和控制释放。

3.3 智能识别体系

分子识别在自然界的生命过程中广泛存在,例如酶/底物结合,抗原/抗体相互作用,受体/配体相互作用,互补的RNA或DNA之间的杂交等。具有分子识别功能的高分子材料,能够很好地模拟这种生命过程,并通过对高分子组成和结构的设计,实现识别特异靶向目标的目的,作为智能的生物医用材料已被广泛应用于药物传递,疾病分子诊断, 生物分离等领域[5]。

制备具有分子识别功能的高分子最直接的方法就是把官能化的智能高分子和生物活性分子通过化学键键合,形成生物键合/杂化体系。能够用于生物键合的生物分子包括有:蛋白质和多肽,糖和多糖,单/双链寡聚核苷酸和质粒DNA,简单脂类和磷脂,以及一些广谱的识别受体和药物分子。同时, 官能化的智能高分子又具有外界刺激响应性(温度, pH 和光响应等),两者的结合,形成的“双智能”(“doublysmart”)体系,整合了两种组成的性质,使其在生物医用领域有着诱人的应用前景。

4.智能医用生物高分子材料发展的展望

由于智能凝胶在环境刺激下的独特响应性,在细胞培养基质、药物控释载体、组织工程、分子诊断等生物医学方面具有良好的应用前景,因此设计和合成具有刺激响应性的新型水凝胶将被不断开发用于生物医学和纳米技术领域。新型的智能水凝胶必需同时拥有符合要求的化学,力学和生物学功能。由合成聚合物与天然蛋白或多糖通过复合制作的生物杂化水凝胶以及有机/无机杂化水凝胶正是以其优良的力学和生物学功能而引起越来越多的关注。

如何简单、高效、副作用小的将药物传输到特定的治疗部位,并实现智能的释放是智能载药体系的最终要求。因此,制备多功能化的响应体系,将是智能载药体系的首要任务。然而,目前为止,对于物理化学敏感(如pH,温度等)的智能载药体系研究较多。但随着材料学和生物学的日益结合,生物敏感的载药体系已经变得越来越重要,如由于多糖,蛋白质等可以作为观测生理变化的标识,故对于多糖,蛋白质敏感的体系便有了实现在特定部位或组织释放药物的可能。从研究结果来看,分子间的相互作用如血凝素和葡萄糖,抗原和抗体的相互作用为智能载药体系提供了有利的工具。结合生物分子和pH,温度敏感的聚合物载药体系以其特有的性质必将在生物学和生物医学领域拥有更多的应用,同时对于这些载药体系的基础研究也将对我们了解生物大分子的生物功能具有很大的贡献。

将具有生物识别功能的生物分子引入到高分子材料,使所得的聚合物具有生物识别功能,同时可以通过对聚合物结构和形态的调整,使其能够满足在不同的生物医学领域中应用, 如生物亲和分离和疾病分子诊断等。虽然通过基因工程获得的具有特定官能化和已知结构的蛋白质,以及通过可控聚合获得的具有可控结构的聚合物, 为制备高性能的具有分子识别功能的智能高分子提供了可能。但是,目前制备具有分子识别功能的方法及应用种类仍然有限,制备具有可控和精确结构的生物结合高分子仍旧充满挑战. 这里还值得一提的是,近年来随着糖组学的快速发展,更深入地了解到了糖类分子在细菌﹑病毒等病原体感染,以及细胞相互作用和细胞信息传递等生命过程中的重要作用。但是,由于糖单元的多官能性(一般含有多个羟基)以及寡糖的空间结构多样性,给人工制备多糖分子带来了很大的困难。因此,通过简单的聚合方法制备含糖聚合物,能够在一定程度上模拟多糖的结构,并期望拥有相类似的生物学功能,将是制备具有分子识别功能高分子材料的重点发展的领域之一。

5.结束语

当我学完吴维教授的智能与新型功能高分子这门课程,我受益颇多。吴老师的知识渊博、教态大方,课堂氛围宽轻松,对学生的态度和蔼可亲,与学生融为一体,成为学生的良师益友等等方面,无处不是我所值得学习的。吴老师有着神奇的想象,创新的启发,真是不愧于——人类灵魂的工程师。教育家第斯多惠说:“教育的艺术不在于传授知识,而在于激励、唤醒、鼓舞”。

总之,通过这门课的学习,我不仅在知识上收获丰富,而且在成长为一名优秀的科研工作者的道路上受到莫大的启发,非常感谢吴维教授给我们提供如此美好的课程。

参考文献

[1] 陈莉. 智能高分子材料. 北京:化学工业出版社. 2005,5~6.

[2] Peppas N A, Hilt J Z, Khademhosseini A, Langer R. Hydrogels in biology and medicine:

From molecular principles to bionanotechnology. Adv Mater, 2006, 18(11): 1345~1360 [3] Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive

nanocarriers for drug and gene delivery. J Control Release, 2008, 126(3): 187~204 [4] Rijcken C J F, Soga O, Hennink W E, van Nostrum C F. Triggered destabilisation of

polymeric micelles and vesicles by changing polymers polarity: An attractive tool for

drug delivery. J Control Release, 2007, 120(3): 131~148

[5] Hoffman A S. Bioconjugates of intelligent polymers and recognition proteins for use in

diagnostics and affinity separations. Clin Chem, 2000, 46(9): 1478~1486

[6] 汤顺, 周长忍, 邹翰.生物材料的发展现状与展望[J]. 暨南大学学报(自然科学版),

2000, 21(5) : 122~125.

[7] 钱清. 甲壳质纤维的制备及应用[J]. 合成技术及应用, 2001, 16(3) :29~32.

[8] 日本功能纺织材料新进展[J]. 徐鹏译. 国外纺织技术, 2002, 202: 1~9.

[9] 张幼珠, 吴徽宇, 田保中, 等. 药物丝素膜的性能及在烧伤感染创面上的应用[J]. 纺

织学报, 2001, 22(3) : 40~42.

[10] 李明忠, 卢神州, 张练. 丝素/明胶共混膜的结构和性能[J]. 纺织学报, 2001, 22(6) :

60~62.

[11] 翁雨来, 商庆新, 曹谊林. 生命科学的新增长点—组织工程[J]. 牙体牙髓牙周病学

杂志, 2000, 10(5) : 249~252.

[12] Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type

grafted hydrogels with rapid De-swelling response to temperature-changes. Nature, 1995, 374(6519): 240~242

[13] Xu X D, Zhang X Z, Yang J, Cheng S X, Zhuo R X, Huang Y Q. Strategy to introduce a

pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir, 2007, 23(8): 4231~4236

[14] Gil E S, Hudson S M. Effect of silk fibroin interpenetrating networks on

swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Biomacromolecules, 2007, 8(1): 258~264

[15] Haraguchi K, Takehisa T, Ebato M. Control of cell cultivation and cell sheet detachment

on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 2006,

7(11): 3267~3275

[16] Kadlubowski S, Henke A, Ulanski P, Rosiak J M, Bromberg L, Hatton T A. Hydrogels

of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by

photoinduced crosslinking of homopolymers. Polymer, 2007, 48(17): 4974~4981 [17] Khalid M N, Agnely F, Yagoubi N, Grossiord J L, Couarraze G. Water state

characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci, 2002, 15(5): 425~432

[18] Marchetti M. Thermodynamics of temperature sensitive gels. Ph. D. thesis, University of

Minnesota, 1989

[19] Lee K K, Cussler E L. Pressure-dependent phase transitions in hydrogels. Chem Eng Sci,

1990, 45(3): 766~767

[20] Shim W S, Yoo J S, Bae Y H, Lee D S. Novel injectable pH and temperature sensitive

block copolymer hydrogel. Biomacromolecules, 2005, 6(6): 2930~2934

[21] Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K. A protein nanocarrier from

charge-conversion polymer in response to endosomal pH. J Am Chem Soc, 2007, 129(17): 5362~5363

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

智能高分子材料 刘心悦20420092201280

智能高分子凝胶简介 班级:09化学2班姓名:刘心悦学号:20420092201280 摘要:智能高分子凝胶可以通过控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。 关键词:智能高分子材料高分子凝胶 智能高分子材料 智能高分子材料属于智能材料(intelligentmaterial)的范畴。智能材料是指对环境可感知、响应,并且具有发现能力的新材料[1]。智能材料的研究与开发正孕育着新一代的技术革新。 智能材料包括金属智能材料、无机非金属智能材料和高分子智能材料,其中高分子智能材料包括智能高分子凝胶、智能高分子复合材料和智能高分子膜材料等,目前研究最广的是智能高分子凝胶。 智能高分子凝胶 高分子凝胶是由具有三维交联网络结构的聚合物与低分子介质共同组成的多元体系,其大分子主链或侧链上含有离子解离性、极性或疏水性基团,对溶剂组分、温度、pH值、光、电场、磁场等的变化能产生可逆的、不连续(或连续)的体积变化,所以可以控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。 智能凝胶的体积相变原理 根据高分子凝胶溶胀及退溶胀的渗透压公式,渗透压由高分子链与溶剂的相互作用、高分子链的橡胶弹性和高分子凝胶内外离子浓度差构成。当这三者之间达到平衡时,高分子凝胶呈平衡状态。温度、pH值、无机盐的浓度、溶剂的性质对溶胀平衡都有影响,在一定的外界刺激下,凝胶会因为溶液性质的微小变化而引起极大的体积变化,即所谓的凝胶体积相变,这就是智能高分子凝胶对外界

刺激作出响应的依据。 智能高分子凝胶对各种外界刺激的响应性 1 溶剂组成 体积变化。也就是说,当pH值发生变化时,水凝胶体积随之变化。考虑到国外智能高分子材料均集中在合成聚合物(由均聚物、接枝或嵌段共聚物到共混物、互穿聚合物网络及高分子微球等),他将智能材料的研究开拓到具有凝胶相转变的天然高分子材料,特别是生物相容性良好而且可以生物降解的壳聚糖(chitosan,CS ) 3 温敏性凝胶 利用高分子与溶剂之何的相互作用力的变化、溶胀高分子凝胶的大分子链的线团一球的转变,使凝胶由溶胀状态急剧地转化为退溶胀状态,从而高分子凝胶表现出对溶剂组分变化的响应,这类材料可由聚乙烯醇、聚丙烯酞胺等制成川。如:聚丙烯酞胺(PAAM)纤维经环化处理后除去未环化的部分以及未参加反应的物质,干燥后即得到P八AM凝胶纤维。这种纤维在水中伸长,在丙酮中收缩,而且其体积随溶剂体系中丙酮含量的增加发生连续的收缩。如果在凝胶网络中引人电解质离子成部分离子化凝胶,则在某一溶剂组成时产生不连续的体积变化。 2 pH值响应凝胶 具有pH值响应性的凝胶,一般均是通过交联形成大分子网络。凝胶中含有弱酸和碱基团,这些基团在不同的pH值及离子强度的溶液中,响应的离子化,使凝胶带电荷,并使网络中氢键断裂,导致凝胶发生不连续的 温敏性凝胶,当温度升高时,疏水相相互作用增强,使凝胶收缩,而降低温度,疏水相间作用减弱使凝胶溶胀,既所谓的热缩凝胶。例如,轻微交联的N一异丙基丙烯酞胺(NIPA )与丙烯酸钠的共聚体。其中丙烯酸钠是阴离子单体,其加量对凝胶的溶胀比和热收缩敏感温度有明显影响。阴离子单体含量增加,溶胀比增加,热收缩温度提高。所以可以从阴离子单体的加量来调节溶胀比和热收缩温度。NIPA与甲基丙烯酸钠共聚交联体亦是一种性能优良的阴离子型热缩温敏性水凝胶。最近报道的以NIPA,丙烯酞胺一2一甲基丙磺酸钠、N-(3- 甲基胺)丙基丙烯酞胺制得的两性水凝胶,其敏感温度随组成的变化在等物质的量比时最低,约为3590,而只要正离子或负离子的量增加,均会使敏感温度上升。

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

浅谈智能高分子材料现状与前景

浅谈智能高分子材料现状与前景 班级:料085 姓名:季承玺 学号:089024463 选课时间:周三7-8节,周五5-6节

浅谈智能高分子材料现状与前景 料085 季承玺 089024463 选课时间:周三7-8节,周五5-6节 摘要:功能与智能高分子材料是近代发展较快的交叉学科。它不仅在轻工、化工、纺织、石油化工、国防科技、医疗保健中应用相当广泛,而且在生物科学、信息科学、材料科学以及新能源等高新技术领域也有广泛的应用前景。 关键字:智能高分子,应用,材料,前景 引言:材料的智能性是指材料的作用和功能可随外界条件的变化而有意识地调节、修饰和修复。智能高分子材料的品种多,范围广,智能凝胶、智能膜、智能纤维和智能粘合剂等均属于智能高分子材料的范畴。由于高分子材料与具有传感、处理和执行功能的生物体有着极其相似的化学结构,较适合制造智能材料并组成系统, 向生物体功能逼近, 因此其研究和开发尤其受到关注。 前景:高分子材料由于在结构上的复杂性和多样性,可以在分子结构(包括支链结构)、聚集态结构、共混、复合、界面和表面甚至外观结构等方面进行或单一或多种结构的利用,以达到材料的某种智能化。智能材料的发展是建立在人类需要的基础上的,因此它必将朝着对人们活动起分担作用的社会活动对应型方向发展。材料特殊的结构决定了它的智能价值。目前对结构的设计和控制还局限于一次结构。所以,聚合物的高次结构以及与之相关的分子间的相互作用必将成为今后智能高分子研究的重要课题。 一、智能高分子材料概念 “智能材料”这一概念是由日本的高木俊宜教授于1989年提出来的。所谓智能材料,就是具有自我感知能力,集累积传感、驱动和控制功能于一体的材料,也是具有感知功能即识别功能、信息处理功能以及执行功能的材料,具备感知、反馈、响应三大基本要素。它不但可以判断环境,而且可以顺应环境,通过感知周围环境的变化,适时做出相应措施,达到自适应的目的。智能材料可用图1作出描述。迄今为止,人们已开发出许多种智能高分子材料[2]。 由于高分子材料与具有传感、处理和执行功能的生物体有着极其相似的化学结构,较适合制造智能材料并组成系统,向生物体功能逼近,因此其研究和开发尤其受到关注[10]。 智能高分子材料又称智能聚合物、机敏性聚合物、刺激响应型聚合物、环境敏感型聚合物,是一种能感觉周围环境变化,而且针对环境的变化能采取响应对策的高分子材料。

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

生活中的材料课题5几种高分子材料的应用练习1鲁科版选修10921142

1 解析:真毛皮含有蛋白质,焚烧时有烧焦羽毛的味道,而人造皮毛不含蛋白质,焚烧时 则没有烧焦羽毛的味道,所以 B 选项错误。 答案:B 解析:尿不湿之所以具有强的吸水性,是因为其中添加了高吸水性树脂。 答案:D 4.高吸水性树脂中含有羧基和羟基等基团,这些基团属于 B .强憎水基团 D.不属于任何基团 解析:羧基和羟基等基团属于强亲水基团。 答案:A 5.牛筋底鞋底耐磨性好而且坚固耐用富有弹性。而牛筋底一般用两种材料制成,这两 种材料是( ) 主题4认识生活中的材料 课题5几种高分子材料的应用 课堂演练当堂达标 1.下列物质不属于高分子化合物的是 ( ) A. G0H22 A .纤维素 B.蛋白质 C.聚乙烯 答案:A 2. 人造毛皮越来越以假乱真,下列关于真假毛皮的说法不正确的是 A. 真毛皮的主要成分是蛋白质 B . 焚烧人造毛皮和真毛皮都有烧焦羽毛的味道 C . 人造毛皮和真毛皮的成分不同 D . 聚氨酯树脂可用于生产人造毛皮 3. 尿不湿之所以具有强的吸水性是因为 ( ) A. 其成分是滤纸 B. 其中有烧碱等易潮解物质 C. 其中有氯化钙等吸水剂 D. 其中添加了高吸水性树脂 A 强亲水基团 C.酸根 A. 聚四氟乙烯和玻璃钢 B. 热塑性丁苯橡胶和聚氨酯塑料 C. 乙丙橡胶和聚四氟乙烯 D. 聚甲基丙烯酸甲酯和顺丁橡胶

2 解析:电脑中的光盘盘片原料采用聚甲基丙烯酸甲酯或透明的聚酯; 高分子材料等制成;尿素不属于高分子材料;橡胶属于高分子材料,故选择 答案:C 3.为配合“限塑令”的有效推行,许多地区采取了免费发放无纺布袋的措施,已知生 产无纺布的主要原料为:聚丙烯、聚酯和粘胶等。下列有关说法不正确的是 解析:生产无纺布的原料中聚丙烯、聚酯属于合成材料。A. 大部分塑料在自然环境中很难降解 B . 使用无纺布袋有利于减少“白色污染” C . 生产无纺布与棉布的原料都是天然纤维 D . 聚丙烯、聚酯都属于合成材料 答案:B 6. 丁苯橡胶是以丁二烯和另一种材料为单体发生聚合反应而制得的, 这种材料是( ) A.苯乙烯 B .丙烯 C.乙烯 D.甲醛 解析:丁苯橡胶的结构为: —CH>—C H=CH —C H 少一(H —「H i 可知其单体为1, 3 丁二烯CH 2===C — CH===C 和苯乙烯。 答案:A 课后作业知能强化 1.与聚乙烯的制作工艺类似,可以将四氟乙烯进行加聚反应而得到一种特别好的高分 子材料,这种材料的性质特别稳定,所以被称为 ( ) A.国防金属 B .尿不湿 C.橡胶王 D.塑料王 解析:由于聚四氟乙烯具有特殊的化学稳定性, 能够耐强酸、强碱甚至“王水”的腐蚀, 既耐高温又耐低温,绝缘性好而且在水中也不会浸湿或膨胀,所以被称作是塑料王。 答案:D 2. 下列用途中与高分子材料无关的是 ( ) A. 电脑中的光盘 B. 录音机中的磁带 C. 庄稼施加尿素以补充氮肥 D. 氟橡胶制造火箭衬里 录音机中的磁带用 C 项。

智能化高分子的研究进展

智能化高分子的研究进展 摘要:近年来,在新材料领域中正在兴起一门新的分支学科——智能高分子材料。本文对一些智能高分子材料在各个领域的研究及应用做出综述性的阐述,并对该领域的发展做出一些展望。 关键字:智能高分子材料(Intelligent Polymer Materials)特征应用发展智能高分子材料 智能高分子材料(Intelligent Polymer Materials)又称智能聚合物,机敏性聚合物,刺激相应型聚合物,环境敏感型聚合物。智能高分子材料是一种能够通过对周围的环境变化的感觉,针对这个变化采取一定反应的高分子材料。智能高分子材料它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料。目前智能高分子材料主要研究,记忆功能高分子材料、智能高分子凝胶、智能药物释放系统、聚合物电流变流体、智能高分子膜、智能纺织品、智能橡塑材料、生物材料的仿生化、智能化等等。 表1智能材料的分类 分类方法智能材料种类 按材料的种类 金属类智能材料非金属类智能材料高分子类智能材料智能复合材料 按材料的来源 天然智能材料合成智能材料建筑用智能材料工业用智能材料

按材料的应用领域军用智能材料 医用智能材料 航天用智能材料 按材料的功能半导体;压电体;电致流变体按电子结构和化学键金属;陶瓷;聚合物;复合材料 20世纪80年代,人们提出智能材料的概念,20世纪90年代以来,美国、日本、意大利、英国等国家都在大力加强对智能材料的基础研究和应用研究。智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料。其概念设计可以从以下观点构思:(1)材料开发的历史——由结构材料、功能材料进而到智能材料;(2)人工智能在材料的水平反映——生物计算机的未来模式;(3)从材料设汁的立场制造智能材料;(4}软件功能引入材料;(5)人们对材料的期望;(6)能量传递;(7)材料具有时间轴,要求材料有寿命预告、自修复、自分解,甚至自学习、自增殖、自净化功能和可对应外部刺激时间轴积极自变的动态功能。智能高分子材料在信息、电子、宇宙、海洋科学、生命科学等领域得到了大力的发展和应用。 记忆功能高分子材料 形状记忆高分子材料(shape memory polymer,SMP)就是运用现代高分子物理学理论和高分子合成及改性技术,对通过高分子材料进行分子组合和改性获得的一类高分子材料。例如:聚乙烯,聚酰胺等高分子材料进行分子设计及分子结构的调整,使他们在一定的条件下,被赋予一定的形状初始态(initial state)当外部的环境发生变化之后,他可以相应地改变形状并将其固定变形态(varrable morphology)。如果环境以特定的方式和规律再次发生变化,它便可逆的恢复到初始态。形状记忆过程可简单表达为:初始形状的制品→2次形变→形变固定→形变恢复。 根据实现记忆功能的条件的不同,可以将SMP分为以下四种。 (1)热致SMP。(2)电致SMP。(3)光致SMP。(4)化学感应型SMP。目前研究最多,并投

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

功能高分子材料讲课教案

功能高分子材料 ▲1、什么是功能高分子?什么是特种高分子?两者的区别和关系如何? (1)功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应输出的高分子材料。 功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。 (2)特种高分子材料:是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料的范畴。 (3)功能高分子属于特种高分子材料的范畴。特种高分子材料可细分为功能高分子和高性能高分子两类。 ▲2、功能和性能有什么区别?功能高分子和高性能高分子有什么不同? (1)性能:材料对外部作用的抵抗特性。(2)功能:指从外部向材料输入信号时,材料内部发生质和量的变化而产生输出的特性。 (3)功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应输出的高分子材料。 (4)高性能高分子:是对外力有特别强的抵抗能力的高分子材料。 (从实用的角度看,对功能材料来说,人们着眼于它们所具有的独特的功能; 而对高性能材料,人们关心的是它与通用材料在性能上的差异。) 3B、功能高分子材料的类型 (1)力学功能材料:①强化功能材料,②弹性功能材料。 (2)化学功能材料:①分离功能材料,②反应功能材料,③生物功能材料。 (3)物理化学功能材料:①耐高温高分子,②电学功能材料,③光学功能材料,④能量转换功能材料。 (4)生物化学功能材料:①人工脏器用材料,②高分子药物,③生物分解材料。 这一分类,实际上包括了所有特种高分子材料。国内一般采用按其性质、功能或实际用途划分为8种类型。 (1)反应性高分子材料,(2)光敏型高分子,(3)电性能高分子材料,(4)高分子分 离材料,(5)高分子吸附材料,(6)高分子 智能材料,(7)医药用高分子材料,(8)高 性能工程材料。 ▲1、什么是活性聚合?阴离子活性聚合的 特征是什么? (1)活性聚合:是指引发速度远远大于增 长速度,并且在特定条件下不存在链终止反 应和链转移反应,亦即活性中心不会自己消 失的反应。二氯乙基氯/乙酸乙酯引发 (2)阴离子活性聚合的基本特点:①聚合 反应速度极快;②单体对引发剂有强烈的选 择性;③无链终止反应;④多种活性种共存; ⑤相对分子质量分布很窄。 ▲2、通过哪些途径可实现阳离子活性聚 合?哪些单体适合进行阳离子活性聚合? (1)途径①设计匹配性亲核反离子,如 采用HI/I2引发体系引发烷基乙烯基醚进行 阴离子活性聚合②适当的lewis酸碱配对 引发,如采用二氯乙基铝/乙酸乙酯引发 (2)目前,烷基乙烯基醚、异丁烯、苯乙 烯及其衍生物、1, 3 —戊二烯、茚和α-蒎烯 等都已经实现了阳离子活性聚合。 ▲3、为什么基团转移聚合也属于活性聚合 范畴? 基团转移聚合与阴离子型聚合一样,属“活 性聚合”范畴。基团转移聚合是以不饱和酯、 酮、酰胺和腈类等化合物为单体,以带有硅、 锗、锡烷基等基团的化合物为引发剂,用阴 离子型或路易士酸型化合物作催化剂,选用 适当的有机物为溶剂,通过催化剂与引发剂 之间的配位,激发硅、锗、锡等原子与单体 羰基上的氧原子结合成共价键,单体中的双 键与引发剂中的双键完成加成反应,硅、锗、 锡烷基团移至末端形成“活性”化合物的过 程。 包括①链引发反应,②链增长反应,③链终 止反应。 ▲4、自由基活性可控聚合有哪几类? 阴离子活性聚合、阳离子可控聚合、基团转 移聚合、原子转移自由基聚合、活性开环聚 合、活性开环歧化聚合等 ▲5、什么是高分子的化学反应?他们与小 分子的化学反应有什么异同点?影响高分 子化学反应的因素有哪些? (1)高分子的化学反应:可以将天然和合 成的通用高分子转变为具有新型结构与功 能的聚合物的化学反应。 (2)与小分子的化学反应的相同点: 高分子可以进行与低分子同系物相同的化 学反应。例如含羟基高分子的乙酰化反应和 乙醇的乙酰化反应相同;聚乙烯的氯化反应 和己烷的氯化反应类似。 (3)与小分子的化学反应的不同点: ①在低分子化学中,副反应仅使主产物产率 降低。而在高分子反应中,副反应却在同一 分子上发生,主产物和副产物无法分离,因 此形成的产物实际上具有类似于共聚物的 结构。 (4)高分子的反应活性的影响因素: ①聚集态结构因素:结晶和无定形聚集态结 构、交联结构与线性结构、均相溶液与非均 向溶液等结构因素均会对高分子的化学反 应造成影响。 ②化学结构因素:a)几率效应:当高分子 的化学反应涉及分子中相邻基团作无规成 对反映时,某些基团由于反应几率的关系而 不能参与反应,结果在高分子的分子链上留 下孤立的单个基团,使转化程度受到限制。 b)邻近结构效应:分子链上邻近结构的某 些作用,如静电作用和位阻效应,均可使基 团的反应能力降低或增加。 6、有哪些制备特种与功能高分子的制备方 法?各有什么优缺点? (1)功能高分子的制备方法主要有以下四 种类型: ①功能性小分子的高分子化;②已有高分子 材料的功能化;③多功能材料的复合;④已 有功能高分子的功能扩展。 (2)制备方法各自的优缺点: ①功能性小分子的高分子化:对功能性小分 子进行高分子化反应,赋予其高分子的功能 特点。 包括:a)带有功能性基团的单体的聚合,b) 带有功能性基团的小分子与高分子骨架的 结合,c)功能性小分子通过聚合包埋与高 分子材料结合。 主要优点是可以使生成的功能高分子功能 基分布均匀,聚合物结构可以通过聚合机理 预先设计,产物的稳定性较好。 精品文档

智能高分子材料的应用与进展 论文

智能高分子材料的应用与进展 (华北科技学院化工B082班卫星红 200801034207) 摘要智能材料已成为当今借界高度关注的热点和焦点 ,它有着广阔的应用前景 ,取得了丰富的研究成果。从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,并展望了其发展前景。 关键词高分子材料智能高分子材料响应速率进展 0 引言 20世纪80年代中期,人们提出了智能材料的概念,智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料[ l ]。智能材料在目前文献中的提法大都为机敏材料( Smart Material )、机敏结构( Smarts Structure)、自适应结构 (A daptive Strueture)、智能材料( Intelligent Material )、智能结构( Intelligent Strueture),这些概念国内外至今尚无统一的定论。关于“机敏”(Smart)和“智能”( Intelligent)的讨论,不少文献资料进行了说明[2~5]。 智能材料的基础是功能材料功能材料通常可分为 2 大类一类被称为驱动材料,它可以根据温度、电场或磁场的变化来改变自身的形状、尺寸、位置、刚性、阻尼、内耗或结构等 ,因而对环境具有自适应功能,可用来制成各种执行器;另一类被称为感知材料,它是指材料对于来自外界或内部的刺激强度及变化(如应力、应变、热、光、电、磁、化学和辐射等)具有感知,可以用来做成各种传感器.同时具有敏感材料与驱动材料特征的材料,被称为机敏材料。智能材料通常不是一种单一的材料,而是一个由多种材料系统组元通过有机的紧密或严格的科学组装而构成的一体化系统 ,是敏感材料、驱动材料和控制材料(系统)的有机合成。智能材料是材料科学不断向前发展的必然结果,是信息技术溶入材料科学的自然产物,它的问世,标志和宣告第 5 代新材料的诞生,也预示着在 2 1 世纪将轰生一次划时代的材料革命。近年来,智能材料的研究在世界范围内已成为材料科学与工程领域的热点之一 ,甚至有人把21世纪称之为智能材料世纪。智能材料可用1作出描述。迄今为止, 人们已开发出很多种智能高分子材料。 图1 智能 材料示意图

07370420功能高分子材料盛维琛

功能高分子材料 Fun cti onal Polymer Materials 课程编号:07370420 学分:2 学时:45 (其中:讲课学时:30自学学时:15 实验学时:0上机学时:0)先修课程:有机化学、无机化学、分析化学、物理化学、高分子物理、高分子化学适用专业:高分子材料与工程、金属材料工程、无机非金属材料工程、复合材料与工程、化学工程与工艺、化学等专业本科四年级学生选修课 教材:王国建.功能高分子材料?北京:化学工业出版社,2010年第一版开课学院:材料科学与工程学院 一、课程的性质与任务: 功能高分子课程是一门高分子材料专业的专业选修课。它是建立在高分子物理,高分子化学和高分子结构与性能基础上,并与物理学、医学、甚至生物学密切联系的一门学科。它是研究功能高分子材料化学规律的一门科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域,对于设计和制备高性能高分子材料起着指导作用。 功能高分子课程的基本任务: 通过课堂讲授和研究进展介绍,使学生能了解几种重要的功能高分子材料的制备方法、性能与结构的一般关系等,对功能高分子材料科学有一个概括性认识,能理解功能的产生机理,并可根据所需功能设计出一些简单的具有相应功能基团的高分子材料。 本课程主要介绍功能高分子材料的发展状况,功能高分子的种类与功能,功能高分子材料的结构与性能的关系,功能高分子材料的制备策略,并结合近年来国际,国内在功能高分子材料方面的研究成果详细介绍常用的物理化学功能高分子(高吸水性树脂、离子交换树脂、高分子试剂及催化剂等)、电功能高分子(复合导电型、电子导电型、离子导电型等导电高分子材料、电致发光、电致变色等电活性高分子材料)、光功能高分子(感光性树脂、光致变色高分子、光降解、光转换高分子材料等)、生物医用高分子(生物惰性、生物降解、组织工程、药物高分子材料等)、高分子助剂(高分子絮凝剂、高分子电解质、高分子染料、高分子食品添加剂等)其它一些类型功能高分子材料制备方法,机理,应用。 二、课程的基本内容及要求:第一章功能高分子材料概述 1. 教学内容 1)功能高分子材料的研究对象和研究内容 2)功能高分子材料的发展历程

高分子材料按应用分类

高分子材料按应用分类 高分子材料按特性分为橡胶、纤维、塑料、、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和两种。②高分子纤维分为天然和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为和热塑性塑料;按用途又分为通用塑料和。④高分子胶粘剂是以合成为主体制成的。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加和各种添加剂制得。根据成膜物质不同,分为涂料、天然树脂涂料和。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子和医用、等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚、聚酯③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 新型高分子材料 高分子材料包括塑料、橡胶、纤维、薄膜、和涂料等。其中,被称为现代高分子的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或差为动力,使混合物、液体混合物或、无机物的等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用交换膜电解可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用从中富集氧可大大提高回收率等。

高分子材料未来与发展前景

高分子材料相对于传统材料如玻璃、陶瓷、水泥、金属而言是后起之秀,但其发展的速度及应用的广泛性却远远超过了许多传统材料,在当今世界乃至未来的世纪都充当着举足重轻的角色,已成为工业、农业、国防和科技等领域的重要材料,尤其是在开发新型替代能源、节约资源和保护生态环境方面更是发挥着不可替代的作用。新时代的高分子材料已成为现代工程材料的主要支柱,与信息技术、生物技术一起,推动着社会的进步,今天,我将就高分子材料的发展历程及未来趋势做一个简单的概述。 说起高分子材料的发展历程,可能会比我们想象中要长远的多,最早关于高 分子材料的应用要追溯到几万年前人类或者类似人类的远古智能生物最先使用的树枝,兽皮,稻草等天然高分子材料。在历史的长河中,纸,树胶,丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起,奏响了一首久远流长的高分子之歌。 然而随着社会的发展,人类已经不满足于对这些材料的简单利用,相应的天 然高分子材料的改性和加工工艺应运而生,这其中比较具有代表性的是19 世纪中叶,德国人用硝酸溶解纤维素,然后纺织成丝或制成膜,并利用其易燃的特性制成炸药,但是硝化纤维素难于加工成型,因此人们在其中加入樟脑,使其易于加工成型,做成了之后闻名遐迩的“赛璐珞” 的塑料材料。再比如,橡胶的改性,早在11 世纪美洲的劳动人民已经在长期的生产实践中开始利用橡胶了,但当时橡胶制品遇冷就变硬,加热则发粘受温度的影响比较大。1839 年美国科学家发现了橡胶与硫磺一起加热可以消除上述变硬发粘的缺点,并可以大大增加橡胶的弹性和强度。通过硫化改性,有力的推动了橡胶工业的发展,因为硫化胶的性能比生胶优异很多,从而开辟了橡胶制品广泛应用的前景。同时,橡胶的加工方法也在逐渐完善,形成了塑炼、混炼、压延、压出、成型这一完整的加工过程,使得橡胶工业蓬勃兴起,一日千里的突飞猛进。 从二十世纪初开始,高分子材料进入了工业合成高分子的重要阶段,而合成 高分子的诞生和发展则是从酚醛树脂开始的。化学家们研究了苯酚与甲醛的反应,发现在不同的反应条件下可以得到两类树脂,一种是在酸催化下生成可融化可溶解的线型酚醛树脂,另一种则是在碱催化下生成的不溶解不熔化的体型酚醛树脂,这种酚醛树脂是人类历史上第一个完全靠化学合成方法生产出来的合成树

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

相关文档
最新文档