高中化学 化学平衡常数及其计算

高中化学  化学平衡常数及其计算
高中化学  化学平衡常数及其计算

化学平衡常数及其计算

1.O 3是一种很好的消毒剂,具有高效、洁净、方便、经济等优点。O 3可溶于水,在水中易分解,产生的[O]为游离氧原子,有很强的杀菌消毒能力。常温常压下发生的反应如下:

反应① O 3

O 2+[O] ΔH >0 平衡常数为K 1;

反应② [O]+O 32O 2 ΔH <0 平衡常数为K 2; 总反应:2O 3

3O 2 ΔH <0 平衡常数为K 。

下列叙述正确的是( ) A .降低温度,总反应K 减小 B .K =K 1+K 2

C .适当升温,可提高消毒效率

D .压强增大,K 2减小

解析:选C 降温,总反应平衡向右移动,K 增大,A 项错误;K 1=

c (O 2)·c ([O])

c (O 3)

、K 2

=c 2(O 2)c ([O])·c (O 3)、K =c 3(O 2)c 2(O 3)=K 1·K 2,B 项错误;升高温度,反应①平衡向右移动,反应②平衡向左移动,c ([O])增大,可提高消毒效率,C 项正确;对于给定的反应,平衡常数只与温度有关,D 项错误。

2.将一定量氨基甲酸铵(NH 2COONH 4)加入密闭容器中,发生反应NH 2COONH 4(s)

2NH 3(g)+CO 2(g)。该反应的平衡常

数的负对数(-lg K )值随温度(T )的变化曲线如图所示,下列说法中不正确的是( )

A .该反应的ΔH >0

B .NH 3的体积分数不变时,该反应一定达到平衡状态

C .A 点对应状态的平衡常数K (A)的值为10-2.294

D .30 ℃时,B 点对应状态的v 正

解析:选B 此题的关键是弄清-lg K 越小,K 越大,由图中数据可知随温度的升高,-lg K 逐渐减小,说明随温度的升高,化学平衡向右移动,正反应为吸热反应,A 项正确;由NH 2COONH 4(s)

2NH 3(g)+CO 2(g),可知氨气的体积分数始终为2

3

,B 项错误;A 点

时,-lg K =2.294,C 项正确;由B 点对应的数值可知此时Q >K ,反应向逆反应方向进行, v 正

3.工业上制备合成气的工艺主要是水蒸气重整甲烷:CH

4(g)+H 2O(g)

CO(g)+3H 2(g) ΔH >0,在一定条件下,向体积为1

L 的密闭容器中充入1 mol CH 4(g)和1 mol H 2O(g),测得H 2O(g)和H 2(g)的浓度随时间变化曲线如图所示,下列说法正确的是( )

A .达到平衡时,CH 4(g)的转化率为75%

B .0~10 min 内,v (CO)=0.075 mol·L -

1·min -

1

C .该反应的化学平衡常数K =0.187 5

D .当CH 4(g)的消耗速率与H 2(g)的消耗速率相等时,反应到达平衡

解析:选C 由图可知,10 min 时反应到达平衡,平衡时水蒸气、氢气的浓度均为0.75 mol·L -

1,则:

CH 4(g)+H 2O(g)

CO(g)+3H 2(g)

开始/(mol·L -

1) 1 1 0 0 转化/(mol·L -

1) 0.25 0.25 0.25 0.75

平衡/(mol·L -

1) 0.75 0.75 0.25 0.75

平衡时甲烷转化率=0.25 mol·L -

11 mol·L -

1

×100%=25%,故A 项错误;0~10 min 内,v (CO)=0.25 mol·L -

110 min =0.025 mol·L -1·min -1

,故B 项错误;平衡常数K =c (CO )·c 3(H 2)c (CH 4)·c (H 2O )

0.25×0.753

0.75×0.75

=0.187 5,故C 项正确;同一物质的消耗速率与其生成速率相等时,反应到达

平衡,由方程式可知当CH 4(g)的消耗速率与H 2(g)的消耗速率为1∶3时,反应到达平衡,故D 项错误。

4.(2015·天津高考)某温度下,在2 L 的密闭容器中,加入1 mol X(g)和 2 mol Y(g)发生反应:X(g)+m Y(g)

3Z(g)。平衡时,X 、Y 、Z 的体积分数分别为30%、60%、10%。

在此平衡体系中加入1 mol Z(g),再次达到平衡后,X 、Y 、Z 的体积分数不变。下列叙述不正确的是( )

A .m =2

B .两次平衡的平衡常数相同

C .X 与Y 的平衡转化率之比为1∶1

D .第二次平衡时,Z 的浓度为0.4 mol·L -

1

解析:选D A 项,根据再次加入1 mol Z(g),平衡后,X 、Y 、Z 的体积分数不变,可知该反应是一个反应前后气体分子数相等的反应,因此m =2。B 项,由于温度没有变化,故两次平衡的平衡常数相同。C 项,因为是按照化学方程式中化学计量数之比充入的反应物,因此二者的平衡转化率相等。D 项,该反应前后气体分子数不变,因此反应后气体的物质的量与反应前一样,都为4 mol ,而平衡后Z 的体积分数为10%,平衡时Z 的物质的量为4 mol ×10%=0.4 mol ,容器体积为2 L ,Z 的浓度为0.2 mol·L -

1。

5.N2O5是一种新型硝化剂,在一定温度下可发生下列反应:2N2O5(g)4NO2(g)+O2(g)ΔH>0,T1温度下的部分实验数据:

下列说法不正确的是()

A.500 s内N2O5分解速率为2.96×10-3 mol·L-1·s-1

B.T1温度下的平衡常数为K1=125,1 000 s时N2O5的转化率为50%

C.其他条件不变时,T2温度下反应到1 000 s时测得N2O5的浓度为2.98 mol·L-1,则T1

D.T1温度下的平衡常数为K1,T3温度下的平衡常数为K3,若K1>K3,则T1>T3

解析:选C v(N2O5)=(5.00-3.52)mol·L-1

500 s=2.96×10

-3 mol·L-1·s-1,A正确;1 000 s

后N2O5的浓度不再发生变化,即达到了化学平衡,列出三段式:

2N2O5(g)4NO2(g)+O2(g)

起始/(mol·L-1) 5.0000

转化/(mol·L-1) 2.50 5.00 1.25

平衡/(mol·L-1) 2.50 5.00 1.25

则K=c4(NO2)·c(O2)

c2(N2O5)

5.004×1.25

2.502=125,α(N2O5)=

2.50 mol·L-1

5.00 mol·L-1

×100%=50%,B正

确;1 000 s时,T2温度下的N2O5浓度大于T1温度下的N2O5浓度,则改变温度使平衡逆向移动了,逆向是放热反应,则降低温度平衡向放热反应方向移动,即T2K3,则T1>T3,D正确。

6.T1℃时,向容器为2 L的密闭容器中充入一定量的A(g)和B(g),发生如下反应A(g)+2B(g)C(g)。反应过程中测定的部分数据如下表:

下列说法错误的是()

A.前10 min内反应的平均速率为

v(C)=0.025 0 mol·L-1·min-1

B.其他条件不变,起始时向容器中充入0.50 mol A(g)和0.60 mol B(g),达到平衡时n(C)<0.25 mol

C .其他条件不变时,向平衡体系中再充入0.50 mol A ,与原平衡相比,达到平衡时B 的转化率增大,A 的体积分数增大

D .温度为T 2 ℃时(T 1>T 2),上述反应的平衡常数为20,则该反应的正反应为放热反应

解析:选D 前10 min 内消耗0.50 mol A ,同时生成0.50 mol C ,则有v (C)=

0.50 mol

2 L ×10 min

=0.025 0 mol·L -

1·min -

1,A 正确。10 min 时,反应的n (B)=2n (A)=2×(1.00 mol -0.50 mol)=1.00 mol ,则10 min 时,B 的物质的量为0.20 mol ,与30 min 时B 的物质的量相等,则反应10 min 时已达到平衡状态;其他条件不变,若起始时向容器中充入0.50 mol A(g)和0.60 mol B(g),将容积缩小为原来的1

2时与原平衡等效,达到平衡时n (C)=0.25 mol ,但扩大容

积,恢复到原体积,压强减小,平衡逆向移动,故达到平衡时n (C)<0.25 mol ,B 正确。其他条件不变时,向平衡体系中再充入0.50 mol A ,平衡正向移动,与原平衡相比,达到平衡时B 的转化率增大,A 的体积分数增大,C 正确。由上述分析可知,10 min 时n (A)=0.50 mol ,此时达到平衡状态,A 、B 、C 的浓度(mol·L -1)分别为0.25、0.10和0.25,则有K (T 1)=

c (C )c (A )·c 2(B )=0.25

0.102×0.25=100>K (T 2)=20,说明升高温度,平衡正向移动,则该反应的正反应为吸热反应,D 错误。

7.工业合成氨反应为N 2(g)+3H 2(g)催化剂

高温、高压2NH 3(g),对其研究如下:

(1)已知H —H 键的键能为436 kJ·mol -

1,N —H 键的键能为391 kJ·mol -

1,N ≡N 键的

键能是945.6 kJ·mol -

1,则上述反应的ΔH =________。

(2)上述反应的平衡常数K 的表达式为______________________________________。 若反应方程式改写为12N 2(g)+3

2H 2(g)

NH 3(g),在该温度下的平衡常数K 1=______

(用K 表示)。

(3)在773 K 时,分别将2 mol N 2和6 mol H 2充入一个固定容积为1 L 的密闭容器中,随着反应的进行,气体混合物中n (H 2)、n (NH 3)与反应时间t 的关系如下表:

①该温度下,若向同容积的另一容器中投入的N 2、H 2、NH 3的浓度分别为3 mol·L -

1、

3 mol·L -

1、3 mol·L -

1,则此时v 正________(填“大于”“小于”或“等于”)v 逆。

②由上表中的实验数据计算得到“浓度-时间”的关系可用下图中的曲线表示,表示c (N 2)-t 的曲线是___________________________________________________________。

在此温度下,若起始充入4 mol N 2和12 mol H 2,则反应刚达到平衡时,表示c (H 2)-t 的曲线上相应的点为____________________________________________________________。

解析:(1)根据ΔH =E (反应物的总键能)-E (生成物的总键能),知ΔH =945.6 kJ·mol -1

+436 kJ·mol -

1×3-391 kJ·mol -

1×6=-92.4 kJ·mol -

1。

(2)该反应的平衡常数K =c 2(NH 3)

c (N 2)·c 3(H 2),

K 1=

c (NH 3)

c 1

2

(N 2)·c 32

(H 2)

=????c 2(NH 3)c (N 2)·

c 3

(H 2)12

=K 1

2。 (3)①该温度下,25 min 时反应处于平衡状态,平衡时c (N 2)=1 mol·L -

1、c (H 2)=3 mol·L -

1、c (NH 3)=2 mol·L -1

,则K =221×33=4

27

。在该温度下,若向同容积的另一容器中投入的N 2、H 2和NH 3的浓度均为3 mol·L -1

,则Q =c 2(NH 3)c (N 2)·c 3(H 2)=323×33=19

<K ,反应向正反应方向进行,故v 正

大于v 逆;②起始充入4 mol N 2和12 mol H 2,相当于将充入2 mol N 2和6 mol H 2的两个容器“压

缩”为一个容器,假设平衡不移动,则平衡时c (H 2)=6 mol·L -

1,而“压缩”后压强增大,反应速率加快,平衡正向移动,故平衡时3 mol·L -

1<c (H 2)<6 mol·L -

1,且达到平衡的时间缩短,故

对应的点为B 。

答案:(1)-92.4 kJ·mol -1

(2)K =c 2(NH 3)

c (N 2)·c 3(H 2)

K 1

2(或K ) (3)①大于 ②乙 B

8.甲烷在日常生活及有机合成中用途广泛,某研究小组研究甲烷在高温下气相裂解反应的原理及其应用。

(1)已知:CH 4(g)+2O 2(g)===CO 2(g)+2H 2O(l) ΔH 1=-890.3 kJ·mol -

1

C 2H 2(g)+5

2O 2(g)===2CO 2(g)+H 2O(l)

ΔH 2=-1 299.6 kJ·mol -

1

2H 2(g)+O 2(g)===2H 2O(l) ΔH 3=-571.6 kJ·mol -

1

则甲烷气相裂解反应:2CH 4(g)C 2H 2(g)+3H 2(g)的ΔH =________。

(2)该研究小组在研究过程中得出当甲烷分解时,几种气体平衡时分压(Pa)与温度(℃)的关系如图所示。

①T1℃时,向2 L恒容密闭容器中充入0.3 mol CH4只发生反应2CH4(g)C2H4(g)+2H2(g),达到平衡时,测得c(C2H4)=c(CH4)。该反应达到平衡时,CH4的转化率为________。

②对上述平衡状态,若改变温度至T2℃,经10 s后再次达到平衡,c(CH4)=2c(C2H4),则10 s内C2H4的平均反应速率v(C2H4)=________,上述变化过程中T1________(填“>”或“<”)T2,判断理由是____________________________________________________。

(3)若容器中发生反应2CH4(g)C2H2(g)+3H2(g),列式计算该反应在图中A点温度时的平衡常数K=________(用平衡分压代替平衡浓度);若只改变一个反应条件使该反应的平衡常数K值变大,则该条件是________(填字母)。

A.可能减小了C2H2的浓度

B.一定是升高了温度

C.可能增大了反应体系的压强

D.可能使用了催化剂

解析:(1)将三个已知的热化学方程式依次编号为①②③,根据盖斯定律,由①×2-②

-③×3

2可得热化学方程式2CH4(g)C2H2(g)+3H2(g)ΔH=+376.4 kJ·mol

-1。(2)①设

达到平衡时,甲烷转化了x mol·L-1,根据“三段式”法进行计算:

2CH4(g)C2H4(g)+2H2(g)

起始/(mol·L-1)0.1500

转化/(mol·L-1) x0.5x x

平衡/(mol·L-1) 0.15-x0.5x x

则有0.15-x=0.5x,解得x=0.1,故CH4的转化率为0.1

0.15×100%≈66.7%。②由图像

判断出该反应为吸热反应,因重新达到平衡后甲烷的浓度增大,故反应逆向移动,则T1℃→T2℃为降温过程,即T1>T2。结合①的计算结果,设重新达到平衡时,甲烷的浓度变化了y mol·L-1,根据“三段式”法进行计算:

2CH4(g)C2H4(g)+2H2(g)

起始/(mol·L-1)0.050.050.1

转化/(mol·L -

1) y 0.5y y

平衡/(mol·L -

1) 0.05+y 0.05-0.5y 0.1-y

则有0.05+y =2×(0.05-0.5y ),解得y =0.025。则v (C 2H 4)=0.5×0.025 mol·L -

110 s

=0.001

25 mol·L -

1·s -

1。

(3)由题图中数据可知,平衡时各物质分压如下: 2CH 4(g)

C 2H 2(g)+3H 2(g)

1×103 1×10-

1 1×104

平衡常数K =(1×104)3×1×10-

1

(1×103)

2

=1×105。平衡常数只与温度有关,由题给图像可知该反应为吸热反应,则升高温度可使化学平衡常数增大。

答案:(1)+376.4 kJ·mol -

1

(2)①66.7% ②0.001 25 mol·L -

1·s -

1 > 从题给图像判断出该反应为吸热反应,对比

T 1 ℃和T 2 ℃两种平衡状态,由T 1 ℃到T 2 ℃,CH 4浓度增大,说明平衡逆向移动,则T 1>T 2

(3)1×105 B

9.Ⅰ.某压强下工业合成氨生产过程中,N 2与H 2按体积比为1∶3投料时,反应混合物中氨的体积分数随温度的变化曲线如图甲所示,其中一条是经过一定时间反应后的曲线,另一条是平衡时的曲线。

(1)图甲中表示该反应的平衡曲线的是________(填“Ⅰ”或“Ⅱ”);由图甲中曲线变化趋势可推知工业合成氨的反应是________(填“吸热”或“放热”)反应。

(2)图甲中a 点,容器内气体n (N 2)∶n (NH 3)=________,图甲中b 点,v (正)________v (逆)(填“>”“=”或“<”)。

Ⅱ.以工业合成氨为原料,进一步合成尿素的反应原理为2NH 3(g)+CO 2(g)

CO(NH 2)2(l)+H 2O(g)。

工业生产时,需要原料气带有水蒸气,图乙中曲线Ⅰ、Ⅱ、Ⅲ表示在不同水碳比????n (H 2O )n (CO 2)时,CO 2的平衡转化率与氨碳比????n (NH 3)n (CO 2)之间的关系。

(1)

________________________________________________________________________。

(2)曲线Ⅰ、Ⅱ、Ⅲ对应的水碳比最大的是________,判断依据是________________________________________________________________________。

(3)测得B 点氨气的平衡转化率为40%,则x 1=_______。

解析:Ⅰ.(1)曲线Ⅱ表示随着反应的进行,NH 3的体积分数逐渐增大,但反应达到平衡状态后继续升温,氨气的体积分数减小,这表明平衡后升高温度,平衡逆向移动,故合成氨是放热反应。因合成氨为放热反应,故随着温度的升高,平衡逆向移动,NH 3的体积分数会逐渐降低,故曲线Ⅰ表示该反应平衡时的曲线。

(2)设反应前N 2、H 2的物质的量分别为1 mol 、3 mol ,a 点时消耗N 2的物质的量为x mol 。 N 2+3H 2

2NH 3

n (初始)/mol 1 3 0 n (变化)/mol x 3x 2x n (平衡)/mol 1-x 3-3x 2x

2x 4-2x

=50%,解得x =2

3,此时n (N 2)∶n (NH 3)=????1-23∶43=1∶4。由图甲知,b 点后NH 3的体积分数仍在增大,说明反应仍在向正反应方向进行,此时v (正)>v (逆)。

Ⅱ.(2)当氨碳比一定时,水碳比越大,说明原料气中含水蒸气越多,故二氧化碳的转化率越小,则曲线Ⅰ、Ⅱ、Ⅲ中对应的水碳比最大的是曲线Ⅲ。

(3)B 点二氧化碳的平衡转化率为60%,氨气的平衡转化率是40%,设NH 3、CO 2的起始物质的量分别为x mol 、y mol ,则x mol ×40%×1

2

=y mol ×60%,解得x y =3,即x 1=3。

答案:Ⅰ.(1)Ⅰ 放热 (2)1∶4 > Ⅱ.(1)K =c (H 2O )

c 2(NH 3)·c (CO 2)

(2)Ⅲ 当氨碳比相同时,水碳比越大,CO 2的平衡转化率越小 (3)3

10.甲醚又称二甲醚,简称DME ,熔点-141.5 ℃,沸点-24.9 ℃,与石油液化气(LPG)相似,被誉为“21世纪的清洁燃料”。由合成气(CO 、H 2)制备二甲醚的反应原理如下:

①CO(g)+2H 2(g)

CH 3OH(g)

ΔH 1=-90.0 kJ·mol -

1 ②2CH 3OH(g)CH 3OCH 3(g)+H 2O(g) ΔH 2

回答下列问题:

(1)若由合成气(CO 、H 2)制备1 mol CH 3OCH 3(g),且生成H 2O(l),整个过程中放出的热量为244 kJ ,则ΔH 2=________kJ·mol -

1。[已知:H 2O(l)===H 2O(g) ΔH =+44.0 kJ·mol -1

]

(2)有人模拟该制备原理,500 K 时,在2 L 的密闭容器中充入2 mol CO 和6 mol H 2,5 min 达到平衡,平衡时CO 的转化率为60%,c (CH 3OCH 3)=0.2 mol·L -

1,用H 2表示反应①的

速率是________ mol·L-1·min-1,可逆反应②的平衡常数K2=________。若在500 K时,测得容器中n(CH3OCH3)=2n(CH3OH),此时反应②的v正______v逆(填“>”“<”或“=”)。

(3)在体积一定的密闭容器中发生反应②,如果该反应的平衡常数K2值变小,下列说法正确的是________。

A.在平衡移动过程中逆反应速率先增大后减小

B.容器中CH3OCH3的体积分数增大

C.容器中混合气体的平均相对分子质量减小

D.达到新平衡后体系的压强增大

(4)一定条件下在恒温恒容的密闭容器中,按不同投料比充入CO(g)和H2(g)进行反应①,平衡时CO(g)和H2(g)的转化率如图所示,则a=________(填数值)。

解析:(1)已知①CO(g)+2H2(g)CH3OH(g)ΔH1=-90.0 kJ·mol-1,②2CH3OH(g)CH3OCH3(g)+H2O(g)ΔH2,③H2O(l)===H2O(g)ΔH3=+44.0 kJ·mol-1。由合成气(CO、H2)制备1 mol CH3OCH3(g),且生成H2O(l),整个过程中放出的热量为244 kJ,可写出热化学方程式为④2CO(g)+4H2(g)CH3OCH3(g)+H2O(l)ΔH4=-244 kJ·mol-1。根据盖斯定律可知反应④=①×2+②-③,则ΔH4=2ΔH1+ΔH2-ΔH3,所以ΔH2=ΔH4+ΔH3-2ΔH1=-20.0 kJ·mol-1。

(2)CO(g)+2H2(g)CH3OH(g)

起始量/(mol·L-1) 1 3 0

转化量/(mol·L-1) 0.6 1.2 0.6

平衡量/(mol·L-1) 0.4 1.8 0.6

所以,用H2表示反应①的速率是v(H2)=Δc

Δt=

1.2 mol·L-1

5 min=0.24 mol·L

-1·min-1。

2CH3OH(g)CH3OCH3(g)+H2O(g) 起始量/(mol·L-1) 0.6 0 0

转化量/(mol·L-1) 0.4 0.2 0.2

平衡量/(mol·L-1) 0.2 0.2 0.2

所以,可逆反应②的平衡常数K2=0.2×0.2

0.22=1。

若500 K时,测得容器中n(CH3OCH3)=2n(CH3OH),n(CH3OCH3)=n(H2O),Q=

c (CH 3OCH 3)·c (H 2O )

c 2

(CH 3OH )

=4>K 2,此时反应②向逆反应方向进行,所以v 正<v 逆。 (3)在体积一定的密闭容器中发生反应②,如果该反应的平衡常数K 2值变小,由于平衡常数只受温度影响,正反应为放热反应,说明反应体系的温度升高了,正、逆反应速率都增大,化学平衡向逆反应方向移动,逆反应速率逐渐减小,正反应速率逐渐增大;由于反应前后气体分子数不变,容器中混合气体的平均相对分子质量不变;平衡逆向移动,所以容器中CH 3OCH 3的体积分数减小;虽然气体分子数不变,但是温度比原平衡升高使得达到新平衡后体系的压强增大。综上所述,A 、D 正确。

(4)转化率=反应物的变化量

反应物的起始量×100%,不同反应物的变化量之比等于化学计量数之比,

所以当反应物的起始量之比等于化学计量数之比时,不同反应物的转化率必然相等,所以 a =2。

答案:(1)-20.0 (2)0.24 1 < (3)AD (4)2

高中化学平衡图像专题Word版

化学平衡图像专题 基础知识: 对于反应mA(g) + nB(g) pC(g)+qD(g) △H<0 m+n>p+q 条件改变变化结果 K变化平衡移动反应A的浓度C(A)A转化率C的含量条件改变ν逆ν正变 化 1C(A)增大 2C(A)减小 3C(C)增大 4C(C)减小 5温度升高 6温度降低 7压强增大 8压强减小 9加催化剂 课时探究 探究一、图像绘制,读图解题 例题1:氨气有广泛用途,工业上利用反应3H2(g)+ N2(g)2NH3(g) 来合成 氨气;某小组为了探究外界条件对反应的影响,在a b两种条件下分别加入相同浓度 时间t/min02468 条件a c(H2)/10-2mol·L-1 2.00 1.50 1.100.800.80 条件b c(H2)/10-2mol·L-1 2.00 1.30 1.00 1.00 1.00 12 1 T2 下同),△H 0,根据表格数据请在下面画出c(H2)-t图: (2)a条件下,0~4min的反应速率为;平衡时,H2的转化率为 ; 平衡常数为; (3)在a条件下,8min末将容器体积压缩至原来的1/2,11min后达到新的平衡,画出 8min~12min时刻c(H2)的变化曲线。

探究二、图像解题方法 1、反应mA(g) + nB(g) pC(g)+qD(g) △H <0 m+n>p+q 反应速率和时间图如图所示 ,t 1时刻只改变一个影响因素 ①图1所示 ,t 1 时刻改变的因素是 ,平衡向 方向移动, ②图2所示, t 1 时刻改变的因素是 ,平衡向 方向移动, ③图3所示, t 1 时刻改变的因素是 ,平衡向 方向移动, ④图4所示 ,t 1 时刻改变的因素是 ,平衡向 方向移动, ⑤图5所示, t 1 时刻改变的因素是 ,平衡向 方向移动, 2、①对于反应mA(g)+nB(g) pC(g),右图所示, 请判断温度大小:T 1 T 2,△H 0 ②对于反应mA(g)+nB(g) pC(g),右图所示, 请判断温度大小:T 1 T 2,△H 0 P 1 P 2, m+n p 探究三、陌生图像的解题技能 1、解决的问题是什么?从图像可以得到什么信息?该信息与所学知识的关联?能用关联解决问题? △H 0 mA(g)+nB(g) pC(g) ①y 是A 的浓度,△H 0,m+n p ②y 是C 的含量, △H 0,m+n p

高考化学二轮复习专题十九化学平衡及其计算(含解析)

高考化学二轮复习专题十九化学平衡及其计算(含解析) 1、一定温度下,在2L的密闭容器中,X、Y、Z三种气体的物质的量随时间变化的曲线如下图 所示:下列描述正确的是( ) A.反应的化学方程式为: X(g)+Y(g)Z(g) B.反应开始到10s,X的物质的量浓度减少了0.79mol/L C.反应开始到10s时,Y的转化率为79.0% D.反应开始到10s,用Z表示的反应速率为0.158mol/(L·s) 2、(NH4)2S03氧化是氨法脱硫的重要过程。某小组在其他条件不变时,分别研究了一段时间 内温度和(NH4)2S03,初始浓度对空气氧化(NH4)2S03速率的影响,结果如下图。 下列说法不正确的是( ) A. 60℃之前,氧化速率增大与温度升高化学反应速率加快有关 B. 60℃之后,氧化速率降低可能与02的溶解度下降及(NH4)2SO3受热易分解有关 SO 水解程度增大有关 C. (NH4)2SO3初始浓度增大到一定程度,氧化速率变化不大,与2 3 D. (NH4)2SO3初始浓度增大到一定程度,氧化速率变化不大,可能与02的溶解速率有关 3、将1mol M和2mol N置于体积为2L的恒容密闭容器中,发生反应:M(s)+2N(g)P(g)+Q(g) △H 。反应过程中测得P的体积分数在不同温度下随时间的变化如图所示。下列说法正确的 是( )

A.若X、Y两点的平衡常数分别为K1、K2,则K1>K2 B.温度为T1时,N的平衡转化率为80%,平衡常数K =40 C.无论温度为T1还是T2,当容器中气体密度和压强不变时,反应达平衡状态 D.降低温度、增大压强、及时分离出产物均有利于提高反应物的平衡转化率 4、温度为一定温度下,向2.0L恒容密闭容器中充入1.0mol PCl 5,反应PCl5(g)PCl3(g)+ Cl2(g)经过一段时间后达到平衡。反应过程中测定的部分数据见下表。下列说法正确的是( ) t/s 0 50 150 250 350 n(PCl3)/mol 0 0.16 0.19 0.20 0.20 A.反应在前50s的平均速率v(PCl3) = 0.0032mol·L-1·s-1 B.保持其他条件不变,升高温度,平衡时c(PCl3) = 0.11mol·L-1,则反应的ΔH<0 C.相同温度下,起始时向容器中充入1.0mol PCl5、0.20mol PCl3和0.20mol Cl2,反应达到平衡前v(正)> v(逆) D.相同温度下,起始时向容器中充入2.0mol PCl3和2.0mol Cl2,达到平衡时,PCl3的转化率小于80% 5、T℃时,发生可逆反应A(g)+2B(g)2C(g)+D(g) ΔH<0。现将1mol A和2mol B加入甲容器中,将4mol C和2mol D加入乙容器中。起始时,两容器中的压强相等,t1时两容器内均达到平衡状态(如图所示,隔板K固定不动)。下列说法正确的是( )

化学平衡常数及其计算训练题

化学平衡常数及其计算训练题 1.O 3是一种很好的消毒剂,具有高效、洁净、方便、经济等优点。O 3可溶于水,在水中易分解,产生的[O]为游离氧原子,有很强的杀菌消毒能力。常温常压下发生的反应如下: 反应① O 3 2 +[O] ΔH >0 平衡常数为K 1; 反应② [O]+O 32 ΔH <0 平衡常数为K 2; 总反应:2O 3 2 ΔH <0 平衡常数为K 。 下列叙述正确的是( ) A .降低温度,总反应K 减小 B .K =K 1+K 2 C .适当升温,可提高消毒效率 D .压强增大,K 2减小 解析:选C 降温,总反应平衡向右移动,K 增大,A 项错误;K 1= c 2 c c 3 、 K 2= c 2 2 c c 3 、K =c 3 2c 2 3 =K 1·K 2,B 项错误;升高温度,反应①平衡向右移动, 反应②平衡向左移动,c ([O])增大,可提高消毒效率,C 项正确;对于给定的反应,平衡常数只与温度有关,D 项错误。 2.将一定量氨基甲酸铵(NH 2COONH 4)加入密闭容器中,发生反应NH 2COONH 4 3 (g)+CO 2(g)。该反应的平衡常数的负对 数(-lg K )值随温度(T )的变化曲线如图所示,下列说法中不正确的是( ) A .该反应的ΔH >0 B .NH 3的体积分数不变时,该反应一定达到平衡状态 C .A 点对应状态的平衡常数K (A)的值为10-2.294 D .30 ℃时,B 点对应状态的v 正K ,反应向逆反应方向进行, v 正

高中化学平衡知识点

高中化学平衡知识点 1、影像化学反应速率的因素 (1)内因(决定因素) 化学反应是由参加反应的物质的性质决定的。 (2)外因(影响因素) ①浓度:当其他条件不变时,增大反应物的浓度,反应速率加快。 注意:增加固体物质或纯液体的量,因其浓度是个定值,故不影响反应速率(不考虑表面积的影响) ②压强:对于有气体参加的反应,当其他条件不变时,增大压强,气体的体积减小,浓度增大,反应速率加快。 注意:由于压强对固体、液体的体积几乎无影响,因此,对无气体参加的反应,压强对反应速率的影响可以忽略不计。 ③温度:当其他条件不变时,升高温度,反应速率加快。 一般来说,温度每升高10℃,反应速率增大到原来的2~4倍。 ④催化剂:催化剂有正负之分。使用正催化剂,反应速率显著增大;使用负催化剂,反应速率显著减慢、不特别指明时,指的是正催化剂。 2、外界条件同时对V正、V逆的影响 (1)增大反应物浓度时,V正急剧增加,V逆逐渐增大;减小反应物的浓度,V正急剧减小,V逆逐渐减小

(2)加压对有气体参加或生成的可逆反应,V正、V逆均增大,气体分子数大的一侧增大的倍数大于气体分子数小的一侧增大的倍数;降压V正、V逆均减小,气体分子数大的一侧减小的倍数大于气体分子数小的一侧减小的倍数。 (3)升温,V正、V逆一般均加快,吸热反应增大的倍数大于放热反应增加的倍数;降温时,V正、V逆一般均减小,吸热反应减小的倍数大于放热反应减小的倍数。 3、可逆反应达到平衡状态的标志 (1)V正=V逆,如对反应mA(g)+nB(g)======pC(g) ①生成A的速率与消耗A的速率相等。 ②生成A的速率与消耗B的速率之比为m:n (2)各组成成分的量量保持不变 这些量包括:各组成成分的物质的量、体积、浓度、体积分数、物质的量分数、反应的转换率等。 (3)混合体系的某些总量保持不变 对于反应前后气体的体积发生变化的可逆反应,混合气体的总压强、总体积、总物质的量及体系平均相对分子质量、密度等不变。

高考化学复习 化学平衡常数及其计算习题含解析

高考化学复习 化学平衡常数及其计算 1.随着汽车数量的逐年增多,汽车尾气污染已成为突出的环境问题之一。反应:2NO(g)+2CO(g) 2CO 2(g)+N 2(g)可用于净化汽车尾气,已知该反应速率极慢,570 K 时平 衡常数为1×1059 。下列说法正确的是( ) A .提高尾气净化效率的最佳途径是研制高效催化剂 B .提高尾气净化效率的常用方法是升高温度 C .装有尾气净化装置的汽车排出的气体中不再含有NO 或CO D .570 K 时,及时抽走CO 2、N 2,平衡常数将会增大,尾气净化效率更佳 解析:提高尾气净化效率的最佳途径是研制高效催化剂,加快反应速率,A 正确,B 错误;题中反应为可逆反应,装有尾气净化装置的汽车排出的气体中仍然含有NO 或CO ,C 错误;改变浓度对平衡常数无影响,平衡常数只与温度有关,D 错误。 答案:A 2.在淀粉-KI 溶液中存在下列平衡:I 2(aq)+I - (aq)I - 3(aq)。测得不同温度下 该反应的平衡常数K 如表所示。下列说法正确的是( ) t /℃ 5 15 25 35 50 K 1 100 841 689 533 409 A.反应I 2(aq)+I - (aq) I - 3(aq)的ΔH >0 B .其他条件不变,升高温度,溶液中c (I - 3)减小 C .该反应的平衡常数表达式为K =c (I 2)·c (I -)c (I -3) D .25 ℃时,向溶液中加入少量KI 固体,平衡常数K 小于689 解析:A 项,温度升高,平衡常数减小,因此该反应是放热反应,ΔH <0,错误;B 项, 温度升高,平衡逆向移动,c (I -3 )减小,正确;C 项,K =c (I -3) c (I 2)· c (I -) ,错误;D 项, 平衡常数仅与温度有关,25 ℃时,向溶液中加入少量KI 固体,平衡正向移动,但平衡常数不变,仍然是689,错误。 答案:B 3.(2019·深圳质检)对反应:a A(g)+b B(g)c C(g)+d D(g) ΔH ,反应特点 与对应的图象的说法不正确的是( )

高中化学选修化学平衡习题及答案解析

第三节化学平衡练习题一、选择题 1.在一个密闭容器中进行反应:2SO 2(g)+O2(g) 2SO3(g) 已知反应过程中某一时刻,SO2、O2、SO3分别是L、L、L,当反应达到平衡时,可能存在的数据是() A.SO2为L,O2为L B.SO2为L C.SO2、SO3(g)均为L D.SO3(g)为L 2.在一定温度下,可逆反应A(g)+3B(g) 2C(g)达到平衡的标志是() A. C生成的速率与C分解的速率相等 B. A、B、C的浓度不再变化 C. 单位时间生成n molA,同时生成3n molB D. A、B、C的分子数之比为1:3:2 3.可逆反应H 2(g)+I2(g) 2HI(g)达到平衡时的标志是() A. 混合气体密度恒定不变 B. 混合气体的颜色不再改变 C. H2、I2、HI的浓度相等 D. I2在混合气体中体积分数不变 4.在一定温度下的定容密闭容器中,取一定量的A、B于反应容器中,当下列物理量不再改变时,表明反应:A(s)+2B(g)C(g)+D(g)已达平衡的是()A.混合气体的压强B.混合气体的密度 C.C、D的物质的量的比值D.气体的总物质的量 5.在一真空密闭容器中,通入一定量气体A.在一定条件下,发生如下反应:

2A(g) B(g) + x C(g),反应达平衡时,测得容器内压强增大为P %,若此时A 的转 化率为a %,下列关系正确的是( ) A .若x=1,则P >a B .若x=2,则P <a C .若x=3,则P=a D .若x=4,则P≥a 6.密闭容器中,用等物质的量A 和B 发生如下反应:A(g)+2B(g) 2C(g),反应 达到平衡时,若混合气体中A 和B 的物质的量之和与C 的物质的量相等,则这时A 的转化率为( ) A .40% B .50% C .60% D .70% 7.在1L 的密闭容器中通入2molNH 3,在一定温度下发生下列反应:2NH 3 N 2+3H 2, 达到平衡时,容器内N 2的百分含量为a%。若维持容器的体积和温度都不变,分别通入下列初始物质,达到平衡时,容器内N 2的百分含量也为a %的是( ) A .3molH 2+1molN 2 B .2molNH 3+1molN 2 C .2molN 2+3molH 2 D .++ 8.在密闭容器中发生反应2SO 2+O 2 2SO 3(g),起始时SO 2和O 2分别为20mol 和 10mol ,达到平衡时,SO 2的转化率为80%。若从SO 3开始进行反应,在相同的条件下,欲使平衡时各成分的体积分数与前者相同,则起始时SO 3的物质的量及SO 3的转化率分别为( ) A 10mol 10% B 20mol 20% C 20mol 40% D 30mol 80% 9.X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X+2Y 2Z 。达到平衡时,若它们的物质的量满足:n (X )+n (Y )=n (Z ),则Y 的转 化率为( ) A . %1005 ?+b a B .%1005) (2?+b b a C .%1005)(2?+b a D .%1005) (?+a b a

化学平衡常数和化学平衡计算练习题

化学平衡常数和化学平衡计算 1.在密闭容器中将CO和水蒸气的混合物加热到800℃时,有下列平衡:CO+H22+H2,且K=1。若用2molCO和10mol H2O相互混合并加热到800℃,则CO的转化率为 ( ) A.16.7% B.50% C.66.7% D.83.3% 2.在容积为1L的密闭容器里,装有4molNO2,在一定温度时进行下面的反应: 2NO22O4(g),该温度下反应的平衡常数K=0.25,则平衡时该容器中NO2的物质的量为A.0mol B.1mol C.2mol D.3mol 3.某温度下H2(g)+I2的平衡常数为50。开始时,c(H2)=1mol·L-1,达平衡时,c(HI)=1mol·L-1,则开始时I2(g)的物质的量浓度为 ( ) A.0.04mol·L-1 B.0.5mol·L-1 C.0.54mol·L-1D.1mol·L-1 4.在一个容积为 6 L的密闭容器中,放入 3 L X(g)和2 L Y(g),在一定条件下发生反应: 4X(g)+n+6R(g)反应达到平衡后,容器内温度不变,混合气体的压强比原来增 加了5%,X的浓度减小1/3,则该反应中的n值为( ) A.3 B.4 C.5 D.6 5.在一定条件下,可逆反应X(g)十达到平衡时,X的转化率与Y的转化率之比为1∶2,则起始充入容器中的X与Y的物质的量之比为( ) A.1∶1 B.1∶3 C.2∶3 D.3∶2 6.将等物质的量的CO和H2O(g)混合,在一定条件下发生反应:CO(g)+H22(g)+H2(g),反应至4min时,得知CO的转化率为31.23%,则这时混合气体对氢气的相对密度为A.11.5 B.23 C.25 D.28 7.在一固定容积的密闭容器中,加入 4 L X(g)和6 L Y(g),发生如下反应:X(g)+n +W(g),反应达到平衡时,测知X和Y的转化率分别为25%和50%,则化学方程式中的n值为A.4 B.3 C.2 D.1 8.将固体NH4I置于密闭容器中,在某温度下发生下列反应:NH43(g)+HI(g), 2(g)+I2(g)。当反应达到平衡时,c(H2)=0.5mol·L-1,c(HI)=4mol·L-1,则 NH3的浓度为( ) A.3.5mol·L-1 B.4mol·L-1 C.4.5mol·L-1D.5mol·L-1 9.体积可变的密闭容器,盛有适量的A和B的混合气体,在一定条件下发生反应A(g)+。若维持温度和压强不变,当达到平衡时,容器的体积为V L,其中C气体的体积占10%。下列判断中正确的是 ( ) A.原混合气体的体积为 1.2V L B.原混合气体的体积为 1.1V L C.反应达到平衡时气体A消耗掉0.05V L D.反应达到平衡时气体B消耗掉0.05V L 10.在n L密闭容器中,使1molX和2molY在一定条件下反应:a X(g)+b c Z(g)。达到平衡时,Y的转化率为20%,混合气体压强比原来下降20%,Z的浓度为Y的浓度的0.25倍,则a,c的值依次为( ) A.1,2 B.3,2 C.2,1 D.2,3 11.在一定条件下,1mol N2和3mol H2混合后反应,达到平衡时测得混合气体的密度是 同温同压下氢气的5倍,则氮气的转化率为( ) A.20% B.30% C.40% D.50% 12.已知CO(g)+H22(g)+H2(g)的正反应为放热反应,850℃时K=1。 (1)若温度升高到900°C,达平衡时K________1(填“大于”、“小于”或“等于”)。 (2)850℃时,固定容积的密闭容器中,放入混合物,起始浓度为c(CO)=0.01mol·L-1,c(H2O)=0.03mol·L-1,c(CO2)=0.01mol·L-1,c(H2)=0.05mol·L-1。则反应开始时,H2O消耗速率比生成速率________(填“大”、“小”或“不能确定”)。

(完整版)高中化学三大平衡

水溶液中的化学平衡 高中化学中,水溶液中的化学平衡包括了:电离平衡,水解平衡,沉淀溶解平衡等。看是三大平衡,其实只有一大平衡,既化学反应平衡。所有关于平衡的原理、规律、计算都是相通的,在学习过程中,不可将他们割裂开来。 化学平衡勒夏特列原理(又称平衡移动原理)是一个定性预测化学平衡点的原理,内容为:在一个已经达到平衡的反应中,如果改变影响平衡的条件之一(如温度、压强,以及参加反应的化学物质的浓度),平衡将向着能够减弱这种改变的方向移动,但不能完全消除这种改变。 比如一个可逆反应中,当增加反应物的浓度时,平衡要向正反应方向移动,平衡的移动使得增加的反应物浓度又会逐步减少;但这种减弱不可能消除增加反应物浓度对这种反应物本身的影响,与旧的平衡体系中这种反应物的浓度相比而言,还是增加了,转化率还是降低了。 1、不管是电离、水解还是沉淀溶解,一般情况下,正反应的程度都不高,即产物的浓度是较低的,或者说产物离子不能大量共存。双水解除外。 2、弄清楚三类反应的区别和联系。 影响电离平衡的因素 1.温度:电离过程是吸热过程,温度升高,平衡向电离方向移动 2.浓度:弱电解质浓度越大,电离程度越小 3.同离子效应:在弱电解质溶液中加入含有与该弱电解质具有相同离子的强电解质,从而使弱电解质的电离平衡朝着生成弱电解质分子的方向移动,弱电解质的解离度降低的效应称为同离子效应 4.化学反应:某一物质将电离的离子反应掉,电离平衡向正方向移动

1、电离平衡 定义:在一定条件下,弱电解质的离子化速率(即电离速率)等于其分子化速率(即结合速率) (如:水部分电离出氢离子和氢氧根离子,同时,氢离子和氢氧根离子结合成水分子的可逆过程) 范围:弱电解质(共价化合物)在水溶液中 外界影响因素:1)温度:加热促进电离,既平衡向正反向移动(电离是吸热的) 2)浓度:越稀越电离,加水是促进电离的,因为平衡向电离方向移动(向离子数目增多的方向移动) 3)外加酸碱:抑制电离,由于氢离子或氢氧根离子增多,使平衡向逆方向移动 2、水解平衡 定义:在水溶液中,盐溶液中电离出的弱酸根离子或弱碱根离子能和水电离出的氢离子或氢氧根离子结合成弱电解质的过程。 范围:含有弱酸根或弱碱根的盐溶液 外界影响因素:1)温度:加热促进水解,既平衡向正反向移动(水解是吸热的,是中和反应的逆反应) 2)浓度:越稀越水解,加水是促进水解的,因为平衡向水解方向移动 3)外加酸碱盐:同离子子效应。

有关化学平衡常数的计算

(a)已知初始浓度和平衡浓度求平衡常数和平衡转化率 例1:对于反应2SO 2(g)+ O2(g) 2SO3(g) ,若在一定温度下,将0.1mol的SO2(g)和0.06mol O2(g)注入一体积为2L的密闭容器中,当达到平衡状态时,测得容器中有0.088mol的SO3(g)试求在该温度下(1)此反应的平衡常数。 (2)求SO2(g)和O2(g)的平衡转化率。 (b)已知平衡转化率和初始浓度求平衡常数 例2:反应SO 2(g)+ NO2(g) SO3(g)+NO(g) ,若在一定温度下,将物质的量浓度均为2mol/L的SO2(g)和NO2(g)注入一密闭容器中,当达到平衡状态时,测得容器中SO2(g)的转化率为60%,试求:在该温度下。 (1)此反应的浓度平衡常数。 (2)若SO2(g) 的初始浓度均增大到3mol/L,则SO2转化率变为多少? (c)知平衡常数和初始浓度求平衡浓度及转化率 练习1、在密闭容器中,将NO2加热到某温度时,可进行如下反应:2NO 2 2NO+O2,在平衡时各物质的浓度分别是:

[NO2]=0.06mol/L,[NO]=0.24mol/L, [O2]=0.12mol/L.试求: (1)该温度下反应的平衡常数。 (2)开始时NO2的浓度。 (3)NO2的转化率。 练习2:在2L的容器中充入1mol CO和1mol H2O(g),发生反应:CO(g)+H 2O(g) CO2(g)+H2(g) 800℃时反应达平衡,若k=1.求:(1)CO的平衡浓度和转化率。 (2)若温度不变,上容器中充入的是1mol CO和2mol H2O(g),CO 和H2O(g),的平衡浓度和转化率是多少。 (3)若温度不变,上容器中充入的是1mol CO和4mol H2O(g),CO 和H2O(g),的平衡浓度和转化率是多少。 (4)若温度不变,要使CO的转化率达到90%,在题干的条件下还要充入H2O(g) 物质的量为多少。 练习1、 已知一氧化碳与水蒸气的反应为 CO + H 2O(g) CO2 + H2 在427℃时的平衡常数是9.4。如果反应开始时,一氧化碳和水蒸气的浓度都是0.01mol/L,计算一氧化碳在此反应条件下的转化率。 练习2、 合成氨反应N 2+3H22NH3在某温度下达平衡时,各物质的浓度是:[N2]=3mol·L-1,[H2]=9 mol·L-1,[NH3]=4 mol·L-1。求该温度时的平衡常

高中化学平衡移动练习题

一、填空题 1、为了有效控制雾霾,各地积极采取措施改善大气质量,研究并有效控制空气中的氮氧化物含量、使用清洁能源显得尤为重要。 (1)已知:4NH3(g)+5O2(g)4NO(g)+6H2O(g)?? ?H = -905.48 kJ·mol-1 N2(g)+O2(g)2NO(g)?? ?H = +180.50 kJ·mol-1 则4NH3(g)+6NO(g)5N2(g)+6H2O(g)的?H =????????????? ?。 (2 N (g) v2正=k2 ①(g) ②(g)2NO 达式 (3N (g) M 2、将等物质的量的A、B、C、D四种物质混合后,充入一容积为V的密闭容器,此时容器内压强为p。然后在一定条件下发生如下反应:a A(?)+b B(?)c C(g)+d D(?)。当反应进行一段时间后,测得A减少了n mol,B减少了0.5n mol,C增加了n mol,D增加了1.5n mol,此时达到化学平衡。 (1)该化学方程式中,各物质的化学计量数分别为: a________;b________;c________;d________。

(2)若只改变压强,反应速率发生变化,但平衡不发生移动,则在上述平衡混合物中再加入B物质,上述平衡 ________。 A.向正反应方向移动B.向逆反应方向移动 C.不移动? ??????????????D.条件不够,无法判断 (3)若只升高温度,反应一段时间后,测知四种物质的物质的量又重新相等,则正反应为________反应(填“放热”或“吸热”)。 3、工业合成氨N 2+3H22NH3,反应过程中的能量变化如图所示,据图回答下列问题: ,理 A.3V(N2 B C D.C(N2 E. F. (3) (4)450 (5)填字母代号)。 a.高温高压b.加入催化剂c.增加N2的浓度d.增加H2的浓度e.分离出NH3 二、选择题 4、下列与化学反应能量变化相关的叙述正确的是(? ) A 生成物能量一定低于反应物总能量?????? B 放热反应的反应速率总是大于吸热反应的反应速率

(完整版)化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。 2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。 3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。

(2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应: 2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1 2NO(g)+Cl2(g)2ClNO(g)K2 则4NO2(g)+2NaCl(s)2NaNO3(s)+2NO(g)+Cl2(g)的平衡常数K=(用K1、K2表示)。 2.在一定体积的密闭容器中,进行如下化学反应:CO2(g)+H2(g)CO(g)+H2O(g),其化学平衡常数K和温度t的关系如表所示: t/℃700 800 830 1 000 1 200 K0.6 0.9 1.0 1.7 2.6

高中化学09化学平衡图像专题

一、几大影响因素对应的基本v-t图像 1.浓度 当其他条件不变时,增大反应物浓度或减小生成物浓度,平衡向正反应方向移动;增大生成物浓度或减小反应物浓度,平衡向逆反应方向移动。 改变浓度对反应速率及平衡的影响曲线: 2.温度。 在其他条件不变的情况下,升高温度,化学平衡向着吸热的方向进行;降低温度,化学平衡向着放热的方向进行。 化学平衡图像专题知识梳理

由曲线可知:当升高温度时,υ正和υ逆均增大,但吸热方向的速率增大的倍数要大于放热方向的速率增大的倍数,即υ吸>υ放,故化学平衡向着吸热的方向移动;当降低温度时,υ正和υ逆 <υ放,故化学平降低,但吸热方向的速率降低的倍数要大于放热方向的速率降低的倍数,即υ 吸 衡向着放热的方向移动。 3.压强 对于有气体参加且方程式左右两边气体物质的量不等的反应来说,在其他条件不变的情况下,增大压强,平衡向着气体物质的量减小的方向移动;减小压强,平衡向着气体物质的量增大的方向移动。 改变压强对反应速率及平衡的影响曲线[举例反应:mA(g)+n(B)p(C),m+n>p] 由曲线可知,当增大压强后,υ正和υ逆均增大,但气体物质的量减小的方向的速率增大的 倍数大于气体物质的量增大的方向的速率增大的倍数(对于上述举例反应来说,即'υ正增大的倍 数大于'υ逆增大的倍数),故化学平衡向着气体物质的量减小的方向移动;当减小压强后,υ正和υ 均减小,但气体物质的量减小的方向的速率减小的倍数大于气体物质的量增大的方向的速率逆 减小的倍数(对于上述举例反应来说,即'υ正减小的倍数大于'υ逆减小的倍数),故化学平衡向着气体物质的量增大的方向移动。 【注意】对于左右两边气体物质的量不等的气体反应来说: *若容器恒温恒容,则向容器中充入与反应无关的气体(如稀有气体等),虽然容器中的总压强增大了,但实际上反应物的浓度没有改变(或者说:与反应有关的气体总压强没有改变),故无论是反应速率还是化学平衡均不改变。 *若容器恒温恒压,则向容器中充入与反应无关的气体(如稀有气体等),为了保持压强一定,容器的体积一定增大,从而降低了反应物的浓度(或者说:相当于减小了与反应有关的气体压强),故靴和她均减小,且化学平衡是向着气体物质的量增大的方向移动。

(完整版)高中化学平衡移动习题及答案.doc

化学平衡移动 一、选择题 1.压强变化不会使下列化学反应的平衡发生移动的是() A. H2(g)+ Br 2(g)2HBr(g) B . N2(g) + 3H2(g)2NH 3 (g) C. 2SO2(g) +O2(g)2SO3(g) D . C(s)+CO2(g)2CO(g) 【解析】对于气体体积不变的反应,改变压强时化学平衡不移动。 【答案】 A 2.对于平衡CO2(g)CO2 (aq)H=- 19.75 kJ/mol ,为增大二氧化碳气体在水中的 溶解度,应采用的方法是() A.升温增压 B .降温减压 C.升温减压 D .降温增压 【解析】正反应放热,要使平衡右移,应该降低温度;另外正反应为气体分子数减少 的反应,所以为了增加CO2在水中的溶解度,应该增大压强,故选 D 。 【答案】 D 3.在常温常压下,向 5 mL 0.1 mol ·L-1 FeCl3溶液中滴加0.5mL 0.01 mol ·L-1的NH 4SCN 溶液,发生如下反应: FeCl3+ 3NH 4SCN Fe(SCN) 3+ 3NH 4Cl ,所得溶液呈红色,改变下列条件,能使溶液颜色变浅的是() A.向溶液中加入少量的NH 4Cl 晶体 B.向溶液中加入少量的水 C.向溶液中加少量无水CuSO4,变蓝后立即取出 - D.向溶液中滴加 2 滴 2 mol ·L 1的 FeCl3 【解析】从反应实质看,溶液中存在的化学平衡是: 3 + + 3SCN - Fe Fe(SCN) 3, Fe(SCN) 3溶液显红色,加入 NH 4Cl 晶体,因为在反应中NH 4 +、 Cl -未参与上述平衡,故对此平衡无影响;加水稀释各微粒浓度都变小,且上述平衡逆向移动,颜色变浅;CuSO4粉末结合水,使各微粒浓度变大,颜色加深;加 2 滴 2 mol ·L-1FeCl3,增大 c(Fe3+ ),平衡正向移动,颜色加深 (注意,若加入FeCl3的浓度≤ 0.1 mol L·-1,则不是增加反应物浓度,相当于稀 释 )。 【答案】 B 4.合成氨工业上采用了循环操作,主要原因是() A.加快反应速率 B .提高 NH 3的平衡浓度 C.降低 NH 3的沸点 D .提高 N 2和 H2的利用率 【解析】合成氨工业上采用循环压缩操作,将N2、 H 2压缩到合成塔中循环利用于合 成氨,提高了N2、H 2的利用率。

化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。 (2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1

高中化学平衡图像全面分类总结实用汇总

化学平衡图像题专题分类总结 一、化学平衡图像题的解法 1、步骤: (1)看图像。一看面,即看清楚横坐标与纵坐标的意义;二看线,即线的走向和变化趋势;三看点,即起点、、终点、交点、拐点;四看辅助线,如等温线、等压线、平衡线等;五看量的变化,如温度、浓度、压强、转化率、产率、百分含量等的变化趋势(2)想规律。联想外界条件对反应速率和化学平衡的影响规律。 (3)做判断。根据图像中体现的关系与所学规律对比,做出符合题目要求的判断。 2、原则: (1)“定一议二”原则 在化学平衡图像中,包括横坐标、纵坐标和曲线所表示的三个量,先确定横坐标(或纵坐标)所表示的量,再讨论纵坐标(或横坐标)与曲线的关系。 (2)“先拐先平,数值大”原则 在化学平衡图像中,先出现拐点的反应则先达到平衡,先出现拐点的曲线表示温度较高或压强较大。 二、常见的几种图像题的分析 1、速率—时间图 此类图像揭示了V正、V逆随时间(含条件改变对速率的影响)而变化的规律,体现了平衡的“动、等、定、变”的基本特征,以及平衡移动的方向。 【例1】对于达平衡的可逆反应X+Y W+Z,在其他条件不变的情况下,增大压强,反应速度变化图像如图所示,则图像中关于X,Y,Z,W四种物质的聚集状态为 A、Z,W为气体,X,Y中之一为气体() B、Z,W中之一为气体,X,Y为非气体 C、X,Y,Z皆为气体,W为非气体 D、X,Y为气体,Z,W中之一为气体 2、浓度-时间图像 此类图像题能说明各平衡体系组分(或某一成分)在反应过程中的变化情况,解题时要注意各物质曲线的拐点(达平衡时刻),各物质浓度变化的内在联系及比例符合化学方程式中化学计量数关系等情况。 【例2】今有正反应放热的可逆反应,若反应开始 经t1秒后达平衡,又经t2秒后,由于反应条件改变,使平衡破坏,到t3秒时 又建立新的平衡,如图所示: (1)该反应的反应物是_________________ (2)该反应的化学方程式为_________________

高中化学平衡归纳总结

高中化学平衡的归纳总结 化学反应速率与化学平衡 一、高考展望: 化学反应速率和化学平衡理论的初步知识是中学化学的重要基本理论。从历年高考经典聚焦也不难看出,这是每年高考都要涉及的内容。从高考试题看,考查的知识点主要是:①有关反应速率的计算和比较;②条件对反应速率影响的判断; ③确定某种情况是否是化学平衡状态的特征;④平衡移动原理的应用;⑤转化率的计算或比较;⑥速率、转化率、平衡移动等多种图象的分析。要特别注意本单元知识与图象结合的试题比较多。从题型看主要是选择题和填空题,其主要形式有:⑴根据化学方程式确定各物质的反应速率;⑵根据给定条件,确定反应中各物质的平均速率;⑶理解化学平衡特征的含义,确定某种情况下化学反应是否达到平衡状态;⑷应用等效平衡的方法分析问题;⑸应用有关原理解决模拟的实际生产问题;⑹平衡移动原理在各类平衡中的应用;⑺用图象表示外界条件对化学平衡的影响或者根据图象推测外界条件的变化;⑻根据条件确定可逆反应中某一物质的转化率、消耗量、气体体积、平均式量的变化等。预计以上考试内容和形式在今后的高考中不会有太大的突破。 从考题难度分析,历年高考题中,本单元的考题中基础题、中档题、难题都有出现。因为高考中有几年出现了这方面的难题,所以各种复习资料中高难度的练习题较多。从新大纲的要求预测命题趋势,这部分内容试题的难度应该趋于平缓,从2005年高考题看(考的是图象题),平衡方面的题目起点水平并不是太高。在今后的复习中应该抓牢基础知识,掌握基本方法,提高复习效率。

二、考点归纳: 1. 化学反应速率: ⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念: ①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关; ②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。但这些数值所表示的都是同一个反应速率。因此,表示反应速率时,必须说明用哪种物质作为标准。用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m∶n∶p∶q ③一般来说,化学反应速率随反应进行而逐渐减慢。因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。 ⑵. 影响化学反应速率的因素: I. 决定因素(内因):反应物本身的性质。 Ⅱ. 条件因素(外因)(也是我们研究的对象): ①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。值得注意的是,固态物质和纯液态物质的浓度可视为常数; ②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。 ③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。

高中化学知识点总结:化学平衡

高中化学知识点总结:化学平衡 1.化学平衡状态:指在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度不变的状态。 2.化学平衡状态的特征 (1)“等”即 V正=V逆>0。 (2)“动”即是动态平衡,平衡时反应仍在进行。 (3)“定”即反应混合物中各组分百分含量不变。 (4)“变”即条件改变,平衡被打破,并在新的条件下建立新的化学平衡。 (5)与途径无关,外界条件不变,可逆反应无论是从正反应开始,还是从逆反应开始,都可建立同一平衡状态(等效)。 3.化学平衡状态的标志 化学平衡状态的判断(以mA+nB xC+yD为例),可从以下几方面分析: ①v(B耗)=v(B生) ②v(C耗):v(D生)=x : y ③c(C)、C%、n(C)%等不变 ④若A、B、C、D为气体,且m+n≠x+y,压强恒定 ⑤体系颜色不变 ⑥单位时间内某物质内化学键的断裂量等于形成量 ⑦体系平均式量恒定(m+n ≠ x+y)等 4.影响化学平衡的条件 (1)可逆反应中旧化学键的破坏,新化学键的建立过程叫作化学平衡移动。 (2)化学平衡移动规律——勒沙特列原理 如果改变影响平衡的一个条件(如浓度、压强或温度),平衡就向能够减弱这种改变的方向移动。 ①浓度:增大反应物(或减小生成物)浓度,平衡向正反应方向移动。 ②压强:增大压强平衡向气体体积减小的方向移动。减小压强平衡向气体体积增大的方向移动。 ③温度:升高温度,平衡向吸热反应方向移动。降低温度,平衡向放热反应方向移动。 ④催化剂:不能影响平衡移动。 5.等效平衡 在条件不变时,可逆反应不论采取何种途径,即由正反应开始或由逆反应开始,最后所处的平衡状态是相同;一次投料或分步投料,最后所处平衡状态是相同的。某一可逆反应的平衡状态只与反应条件(物质的量浓度、温度、压强或体积)有关,而与反应途径(正向或逆向)无关。 (1)等温等容条件下等效平衡。对于某一可逆反应,在一定T、V条件下,只要反应物和生成物的量相当(即根据系数比换算成生成物或换算成反应物时与原起始量相同),则无论从反应物开始,还是从生成物开始,二者平衡等效。 (2)等温、等压条件下的等效平衡。反应前后分子数不变或有改变同一可逆反应,由极端假设法确定出两初始状态的物质的量比相同,则达到平衡后两平衡等效。 (3)在定温、定容情况下,对于反应前后气体分子数不变的可逆反应,只要反应物(或生成物)的物质的量的比值与原平衡相同,两平衡等效。 6.化学平衡计算时常用的2个率 (1)反应物转化率=转化浓度÷起始浓度×100%=转化物质的量÷起始物质的量×100%。

相关文档
最新文档