二自由度机器人的通用控制

二自由度机器人的通用控制
二自由度机器人的通用控制

二自由度机器人的通用控制

机器人是一中自动化的机器,所不同的是这种机器具备一些与人或生物相似的智力能力,如感知能力,规划能力,动作能力和协同能力,是一中具有高度灵敏的自动化机器。作为一个复杂的综合系统,机器人控制系统涉及到很多的学科(如计算机,机械,传感器,人工智能等)。其中,机器人的控制系统具有很重要的意义。随着机器人的功能日益复杂,如何综合考虑模块功能,控制性能要求,设计一个合乎要求的机器人控制系统,将是一项非常有意义的事情。

那么研究一个机器人控制系统,需要我们对机器人控制系统有一个明确的认识。机器人控制体系是指控制机器人的软件和硬件机构,其研究主要集中在机器人控制器的研究和开发上,通常分为功能设计和结构设计。功能设计部分要完成控制功能和算法的定义,结构设计是完成功能在软件和硬件上的分布。

本文概要

本文主要着眼于机器人的控制系统的设计。以二连杆机器人的控制系统为例提出二自由度机器人的控制设计方案:基于PID 控制器的二自由度机器人的MATLAB仿真。

第一章:机器人的基础知识

什么是机器人?如果将常规的机器人操作手与挂在多用车或着牵引车上的起重机进行比较,可发现两者非常相似。他们都具有许多的连杆,这些关节同过连杆依次连接,这些关节有驱动器驱动。在上

述两个系统中,操作手都能在空中运动并且还可以运动到空间的任何位置,他们都能承担一定的负荷,并都用一个中央控制器驱动器。然而,他们一个称为机器人一个称为起重机,两者最根本的不同就是起重机是有人工操作的,而机器人是由计算机编程控制的,正是通过这个可以区别一台设备到底是简单的操作机还是机器人。通常机器人设计成由计算机或着类似的装置来控制,机器人的动作受计算机监控的控制器多控制,该控制器本身也会运行某中类型的程序。因此,如果程序变了,机器人的动作相应的就会改变。我们希望一台设备能灵活地完成各种不同的工作而无需要重新设计硬件装置。为此机器人必须设计成可重复编程,通过改变程序来执行不同的任务(当然在限制的范围内)。简单的操作机除非一直有人来操作否则无法作到这一点。

机器人的分类:

按照日本工业机器人学会(JIRA)的标准,可奖机器人进行如下的分类:

第一类:人工操作装置----由操作员操纵的多自由度装置

第二类:固定顺序机器人-----按照预定的不变方法有步骤地依次执行任务的设备,其执行顺序很难改变。

第三类:可变顺序机器人------同第二类,但其顺序易于修改。

第四类:示教再现机器人(playback)-----操作员引导机器人手动执行任务,纪录下这些动作并由机器人以后再现执行,即机器人按照纪录下的信息重复执行同样的动作。

第五类:数控机器人----操作员为机器人提供运动程序,而不是

手动示教执行任务。

第六类:智能机器人----机器人具有感知和理解外部环境的能力,即使起环境发生改变也能够成功的完成任务。

美国机器人学会(RIA)只将以上第三类到第六类视为机器人。

法国机器人学会(AFR)将机器人进行一下的分类:

类型A:手动控制远程机器人的操作装置。

类型B:具有预定周期的自动操作装置。

类型 C:具有连续轨迹或点到点轨迹的可编程伺服控制机器人。

类型D:同类型C,但能够获取环境的信息。

什么是机器人学

机器人学是人们设计和应用机器人的技术和知识。机器人系统不仅有机器人组成,还需要其它的装置和系统连同机器人来一起完成必要的任务。机器人可以用于生产制造,水下作业,空间探测,帮助残疾人甚至娱乐方面。通过编程控制,许多的场合均可运用机器人。机器人学是一门交叉的学科,他得益于机械工程,电器与电子工程,计算机科学,生物学以及许多的其它的学科。

机器人的组成部件

机器人作为一个系统,他由如下的部件组成:

机械手和移动车这是机器人的主体部分,由连杆和活动关节以及其他的结构部件构成。如果没有其他的部件,仅机械手本身并不是机器人。

末端执行器这就是连接在机械手最后的一个关节上的部件,

他一般用来抓取物体,与其他机构连接并执行需要的任务。机器人制造商一般不设计末端执行器,多数情况下他们只提供一个简单的抓持器。一般来说,机器人手部都具有能连接专用末端执行器的接口,折中末端执行器是为某中用途专门设计的。

驱动器驱动器是机械手的肌肉。常见的驱动器有伺服电机,步进电机,汽缸和液压缸等,也还有一些用于特殊场合的新型驱动器,还有驱动器受控制器的控制。

传感器传感器用来收集机器人内部状态的信息和用来与外部环境进行通信。想人一样,机器人控制器也需要知道每一个连杆的位置才能知道机器人的总体结构,人即使在完全黑暗中,也会知道胳膊和腿在那里,这是因为肌腱内的中枢神经系统中的神经传感器将信息反馈给了人的大脑。大脑利用这些信息来测定肌肉伸缩的程度,进而确定腿和胳膊的状态。机器人也同样如此,集成在机器人内的传感器将每一个关节和连杆的信息发送给控制器,于是控制器就能机器人的构型。机器人常用的传感器有许多外部传感器,例如视觉传感器,语言合成器以使机器人能与外部进行通信。

控制器机器人控制器与人的大脑十分的相似,虽然小脑的功能没有人的大脑功能强大,三他却控制着人的运动。机器人控制器从计算机获取数据,控制驱动器的动作,并与传感器反馈信息一起协调机器人的运动。假如要机器人从箱柜里取出一个零件,他的第一关节必须为35度,如果第一关节尚未达到这一角度,控制器就会发出一个信号到驱动器(输送电流到电机,输送气体到汽缸或发送信号到液

压缸的伺服阀),使驱动器运动,然后通过关上的反馈传感器(电位器或是编码器)测量关节上的角度变化,当关、关节达到预定的角度时,停止发送控制信号。对与更复杂的机器人,机器人的运动速度和力也由控制器控制。

处理器处理器是机器人呢的大脑,用来计算机器人关节的运动,确定每个关节应移动多少和多远才能达到预定速度和位置,并且监督控制器与传感器协调工作。处理器通常是一台计算机,只不过是一台专用计算机。他也需要拥有操作系统,程序和象监视器那样的外部设备等,同时他在许多其他的方面也具有与PC处理器同样的功能和局限性。

软件用于机器人的软件大致有三块。第一块是操作系统,用来操作计算机;第二块是机器人软件,他根据机器人的运动学方程计算每个关节的必要动作,然后将这些信息传送到控制器,这中软件有多种级别,即从机器语言到现代机器人使用的复杂高级语言不等;第十块是例行程序和应用程序,他们是为了使用机器人外部设备而开发的(例如视觉程序),或者是为了执行特定任务而开发的。

注意:在许多系统中控制器和处理器放在同一单元中。虽然着两部分放在同一装置盒内甚至集成在同一电路中,但他们有各自的功能。

机器人的自由度

正如工程力学课程中所学到的为了确定点在空间中的位置,需要指定三个坐标,就象沿直角坐标x, y 和 z三个坐标。要确定该点的位

置必须要有三个坐标,同时只要有三个坐标便可确定该点的位置。虽然这三个坐标可以用不同的坐标系来表示,但没有坐标系是不性的。然而,不能用两个或四个坐标,因为两个坐标不能确定点在空间中的位置,而在三维空间不可能有四个坐标。同样的,如果考虑三自由度的三维装置。例如,台架(x y z)起重机可以将一个求放到他工作区内操作员所制定的任意位置。

同样,要确定一个刚体(一个三维的物体而不是一个点)在空间的位置,首先要在该刚体上选择一个点并指定该改点的位置,因此需要三个数据来确定他的位置。然而,即使物体的位置已经确定仍有无数中的方法来确定物体关于所选点的姿态。为了安全定位空间的物体,除了确定所选点的位置外还需要确定物体的姿态。这就意味着需要有六个数据才能完全确定刚体的位置和姿态。基于同样的理由,需要有六个自由度才能见物体放置到期望的位姿。如果少于六个自由度,机器人的能力将会受到很大的限制。为了说明问题,考虑一个三自由度的机器人,他只能沿x, y 和z轴运动。在这中情况下,不能指定机械手的姿态。此时,机器人只能夹持物件做平行与坐标轴的运动,姿态保持不变。再假设一个机器人有五个自由度,可以饶三坐标轴旋转运动,但只能沿x和 y轴移动。这时虽然可以任意的指定姿态,但只能沿x和y 轴而不可能沿z轴给部件定位。

具有七个自由度的系统没有一个唯一的解。这就意味着,如果一个机器人有七个自由度,那么机器人就可以有无穷多种方法在期望位置为部件定位和定姿。为了使控制器知道具体怎么做,必须有附加的

决策程序死机器人能够从无数中方法中只选择一种。例如,可以采用最优程序来选择最快和最段路径到达目的地。为此,计算机必须检验所有的解,从中找到最短和最快的并且执行。由于这种额外的需要会耗费许多计算时间,因此这种七自由度的机器人在工业上是不被采用的。与之类似的的问题是,假如一个机械手机器人安装在一个活动的基座上,例如移动平台或传送带上,则这种机器人就有冗余的自由度。给予前面的讨论,这种自由度是无法控制的。机器人能够从传送带或移动平台的无数不确定的位置上到达所要求的位姿。这时虽然有太多的自由度但是这种多余的自由度一般来说好不去求解的。换言之,当机器人安装在传送带上或是可移动的,机器人基座相对于传送带或其他参考坐标系的位置是已知的,由于基座的位置无需有控制器决定,自由度的个数实际上仍为六个,因此解是唯一的。只要机器人基座在传送带或移动平台上的位置已知(或已选定),就没有必要靠求解一组机器人运动方程来找到机器人基座的位置,从而系统得以求解。

对于机器人系统来说,从来不将末端执行器考虑为一个自由度。所有的机器人都有该附加功能,他看起来类似一个自由度,但末端执行器的动作并不计入机器人的自由度。

有时会有这样的情况,虽然关节是能够活动的,但他的运动并不完全受控制器的控制。例如,假设一个线性关节由一个汽缸,其上的手臂可以把全程伸开,也可以收缩,但不能控制他在两个极限之间的位置。在着中情况下,通常把这个关节的自由度确定为1/2,他表示这个关节只能在他的运动极限内定位。自由度为1/2的另一个含义是

仅仅只能对该关节赋予一些特定值,例如,假设一个关节的角度只能为0,30,60和90度,那么如前所述,该关节被限定为只有几个可能的取值,从而是一个受限制的自由度。

许多工业机器人的自由度都少于6个。实际上,自由度为3.5个,4个,和5个的机器人非常普遍。只要没有对附加自由度的需要,这些机器人都能很好的工作。例如,假设将电子元件插入电路板,电路板防在一个给定的工作平面上,此时,电路板相对与机器人基座的高度(z坐标)是已知的。因此,只需要沿x轴和 y 轴方向上的两个自由度就可以确定元件插入电路板的位置。另外,假设元件需要按照某个方位插入电路板,而且电路板是平的,此时,需要一个绕z轴旋转的自由度,才能在电路板上给元件定向。由于这里还需要一个1/2的自由度,一边能完全伸展末端执行器来插入元件,或者在运动前能够完全收缩见机器人抬起,因而总共需要3.5个自由度,其中两个自由度用来在电路板的上方运动,一个用来旋转元件,还有1/2个自由度用来插入和缩回。

机器人关节

机器人有许多不同类型的关节,有线性的,旋转的,滑动的或球形的。虽然球关节机器人在许多系统中很普遍,但是但是拥有多个自由度而且难以控制,所以在机器人中除了用于研究外并不长用。大多数机器人关节是线性的或旋转型关节。

滑动关节是线性的,他不包含旋转运动,并有汽缸,液压缸或者线性电机驱动器驱动。

回转关节属于旋转型的,主要有步进电机驱动,或者更普遍的采用伺服电机驱动。

机器人坐标

机器人的构型通常是根据他们的坐标系来确定。滑动关节用P表示,旋转关节用R表示,球形关节用S表示。例如:一个机器人有个滑动关节和三个旋转关节,则用3P3R表示。

以下是用于机器人手定位的常用构型:

笛卡儿坐标/直角坐标/台架型(3P)

圆柱坐标型(R2P)

求坐标型(2RP)

链式/拟人型(3R)

选择性柔性装配机器人臂(SCARA)

机器人的参考坐标系

机器人可以相对与不同的坐标系运动,在每一种坐标系中的运动都不相同。通常,机器人的运动在以下三种坐标系下完成。

全局参考坐标系全局参考坐标系是一种通用的坐标系,由x y 和z轴多定义。在此情况下,通过机器人关节的同时运动来产生沿三个主轴方向的运动。在这种坐标系中,无论手臂在那里,x轴的正向运动就是在x轴的正方向。这一坐标通常用来定义机器人相对与其他物体的运动,与机器人通信的其他部件以及运动路径。

关节参考坐标系关节参考坐标系用来描述机器人每一个独立关节的运动。假设希望将机器人的手运动到一个特定的位置可以

一次只运动一个关节,从而把手引导到期望的位置上。在这种情况下,每一个关节单独控制,从而每次只有一个关节运动。由于所以关节的类型(滑动型,旋转型,球形的)不同,机器人手的动作也各不相同。例如,旋转关节运动,机器人手将绕着关节的轴旋转。

第二章二连杆机器人模型的建立

自由度搬运物料工业机器人的设计设计

毕业设计论文 四自由度搬运物料工业机器人的设计 摘要:在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。 本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。 关键词:机器人示教编程伺服制动

The Design of an Industrial Robot with Four DOFs for Carrying Material for a Punch Abstract:In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the automation production line, industrial robots are gradually approved and adopted by enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jobs of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way. In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servocontrol, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback

自由度机器人认知实验

六自由度串联机器人认知实验 一.实验目的 1. 了解串联机器人的机构组成; 2. 了解机器人机械系统各部分的原理及作用; 3. 认识RBT 机器人的运动特点及控制原理 4. 掌握机器人单轴运动的方法。 5. 二.实验设备和工具 1、 RBT-6T/S03S 教学机器人一台; 2、 RBT-6T/S03S 教学机器人控制系统软件一套; 3、 RBT-6T/S03S 教学机器人控制柜一台; 4、 装有运动控制卡计算机一台; 5、 机器人气动手爪一套。 三.实验原理与方法 1, RBT 教学机器人的性能指标 机器人是一种具有高度灵活性的自动化机器,是一种复杂的机电一体化设备。机器人按技术层次分为:固定程序控制机器人、示教再现机器人和智能机器人等。如图2-1所示,本实验所使用的RBT 机器人为6自由度串联关节式机器人,即机器人各连杆由旋转关节串联连接,各关节轴线相互平行或垂直。连杆的一端装在固定的支座上(底座),另一端处于自由状态,可安装各种工具以实现机器人作业。关节的传 动采用模块化结构,由锥齿轮、同步齿型带和谐波减速器等多种传动结构配合实现。机器人各关节采用伺服电机和步进电机混合驱动,并通过Windows 环境下的 图2-1 机器人结构

软件编程和运动控制卡实现对机器人的控制,使机器人能够在工作空间内任意位置精确定位。 RBT机器人技术参数如下: 2,机器人机械系统组成 机器人机械系统主要由以下几大部分组成:原动部件、传动部件、执行部件。基本机械结构连接方式为原动部件→传动部件→执行部件。机器人的传动简图如图2-2所示。 Ⅰ关节传动链主要由伺服电机、减速器构成。 Ⅱ关节传动链主要由伺服电机、减速器构成。 Ⅲ关节传动链主要由步进电机、同步带、减速器构成。 Ⅳ关节传动链主要由步进电机、减速器构成。 Ⅴ关节传动链主要由步进电机、同步带、减速器构成。

二自由度简易云台增稳控制系统设计

二自由度简易云台增稳控制系统设计 项目简介:本课题要求学生在查阅相关资料的基础上,利用单片机、IMU姿态测量元件、舵机等设备搭建二自由度增稳控制平台,设计姿态数据的读取程序,设计舵机的控制程序,设计增稳平台的机械结构,对所设计的程序进行调试,实现云台的增稳控制。 项目方案: 本课题分以下步骤展开研究: 2014年4月~ 2014年10月 收集有单片机接口程序设计方面的资料,学习相关理论知识; 2014年11月~2014年12月 学习MWC飞行控制板的程序设计技术; 2015年1月~2015年4月 设计板载姿态传感器数据读取; 2015年5月~ 2015年8月 设计舵机控制程序和平台机械结构,测试平台增稳性能; 2015年9月~2015年10月 撰写研究报告、结题,项目鉴定。 本项目主要使用MWC飞行控制板和舵机实现二自由度平台的增稳控制 预期成果: 本项目要求完成如下成果: 设计并实现二自由度增稳平台的软、硬件系统,搭建增稳平台的机械结构,完成系统的负载测试。完成研究报告一份。 二自由度云台概述: 云台是一种安装、固定摄像装置的支撑设备,用于摄像装置与支撑物的联结。其英文名称为Pan-Tilt(简称PT),即可以在水平方向和俯仰方向旋转的机械装置。主要用于安装监控、动态摄像等需要进行运动图像(视频)捕捉的场合或环境,使采集方式更直接方便;在需要摇摆和摆动的机构中,如机械臂等,也利用云台来实现可接触范围的延伸和扩展。 根据云台的回转特点可以分为只能左右旋转的水平旋转平台和既能左右旋转又能上下旋转的全方位云台,即二自由度(2-Degree of Freedom)云台,简称2-DOF云台。 增稳的意义: 比如飞行器在飞行过程中,由于自身的抖动以及外界因素对它的影响,它的姿态不断变化,装在上面的图像采集装置一起变化,导致图像的不稳定。如果采用反馈控制原理,先测量姿态变化,再传输到控制装置(舵机),达到稳像的目的。将一个二自由度的稳像平台与遥控直升机恰当地结合在一起,实现了在飞行过程中跟踪目标稳定图像,保持图像质量的功能。

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

双自由度控制器

第一章绪论 在工程和科学技术发展过程中,自动控制担负着重要的角色。除了在宇宙飞船系统、导弹制导系统和机器人系统等领域中,自动控制具有特别重要的作用之外,它已成为现代机器制造业和工业生产过程中的重要而不可缺少的组成部分。例如,在制造工业的数控机床控制中,在航空和航天工业的自动驾驶仪系统设计中,以及在汽车工业的小汽车和大卡车设计中,自动控制都是必不可少的。此外,在工业中的过程控制,对压力、温度、湿度、黏性和流量的控制等工业操作过程,自动控制也是不可缺少的。 自动控制理论和实践的不断发展,为人们提供了获得动态系统最佳性能的方法,提高了生产率,并且使人们从繁重的体力劳动和大量重复性的手工操作中解放出来。 1.2控制系统的分类 1.2.1 反馈控制系统 能对输出量与参考输入量进行比较,并且将它们的偏差作为控制手段,以 保持两者之间预定关系的系统,称为反馈控制系统。室温控制系统就是反馈系统的例子。通过实际室温,并且将其与参考温度(希望的室温)进行比较,温室调机器就会按照某种方式,加温或冷却设备打开或关闭,从而将室温保持在使人们感到舒适的水平上,且与外界条件无关。反馈系统并不限于工程系统,在各种不同的非工程领域,同样存在着反馈控制系统。 1.2.2 闭环控制系统 反馈控制系统通常属于闭环控制系统。在实践中,反馈控制和闭环控制这两个术语通常交换使用。在闭环控制系统中,作为输入信号与反馈信号(反馈信号可以是输出信号本身,也可以是输出信号的函数及其导数和/或其积分)之差的作用误差信号被传送到控制器,以便减小误差,并且使系统的输出达到希望的值。闭环控制这个术语,总是意味着采用反馈控制作用,以减小系统误差。

多自由度机械手课程设计

机电一体化系统设计课程设计 设计题目: 内装: 1. 设计说明书 2. 装配图 3. 控制电路原理图 4. ……. 专业: 姓名: 学号: 指导教师: 完成日期: 成绩: 福建农林大学机电工程学院

机电一体化系统设计课程设计说明书 设计题目: 学院: 专业年级: 学号: 学生姓名: 指导教师: 年月日

一、机械手的概述 (1) 1.1 机械手的组成和分类 (1) 1.2 应用机械手的意义 (1) 二、总体方案设计 (3) 2.1 设计任务 (3) 2.2 总体方案确定 (3) 2.2.1机械手基本形式的选择 (3) 2.2.2机械手的主要部件及运动 (3) 2.2.3驱动机构的选择 (4) 三、机械系统设计 (5) 3.1机械手手部的设计计算 (5) 3.1.1手部设计基本要求 (5) 3.1.3机械手手抓的设计计算 (5) 3.1.4.机械手手抓夹持精度的分析计算 (8) 3.1.5弹簧的设计计算 (9) 3.2腕部的设计计算 (11) 3.2.1 腕部设计的基本要求 (11) 3.2.3 腕部结构和驱动机构的选择 (12) 3.2.4 腕部的设计计算 (12) 3.3臂部的设计及有关计算 (15) 3.3.1 臂部设计的基本要求 (15) 3.3.2 手臂的典型机构以及结构的选择 (16) 3.3.3 液压缸工作压力和结构的确定 (18) 3.4机身的设计计算 (19) 3.4.1 机身的整体设计 (19) 3.4.2 机身回转机构的设计计算 (20) 3.4.3 机身升降机构的计算 (22) 3.4.4 轴承的选择分析 (25) 四、控制系统硬件电路设计 (26) 4.1可编程序控器的简介 (26) 4.2 PLC的结构,种类和分类 (26) 4.3 FX2n系列三菱PLC特点 (30) 4.4 接近开关传感器 (28) 4.5 I/O接口简介 (29) 4.6 行程开关的介绍 (30) 4.6.1 行程开关的概念 (30) 4.6.2 行程开关的作用及原理 (30) 4.7电路的总体设计 (30) 4.7.1回路的设计 (30) 4.7.2 系统输入/输出分布表 (31) 4.7.3机械手的程序设计 (33) 4.7.4 步进电机的运行控制 (33) 五、参考文献 (34)

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

两自由度串联机器人分析与设计

机器人技术基础 三级项目报告 设计题目:两自由度串联机器人分析与设计指导教师:赵永杰 学生姓名:citycars 学号:09128888 邮箱:citycars@https://www.360docs.net/doc/b89714366.html, 院系:机械电子工程系 汕头大学 机械电子工程系 2012年6月17日

目录 1.前言 (3) 2.运动学模型 (4) 3.机器人的位置及速度分析 (5) 3.1建立机器人位置输入输出方程 (5) 3.2建立机器人的速度关系及推导出雅可比矩阵 (5) 3.3机器人的位置反解 (5) 3.4机器人的速度反解 (7) 4.机器人的速度各项同性分析及设计 (8) 4.1速度各项同性分析 (8) 4.2速度各向同性设计求解 (10) 4.3求解及分析 (10) 4.4综合分析 (12) 5.结语 (13) 6附录 (13) 附录1:位置反解程序 (14) 附录2:速度反解程序 (15) 附录3:速度各向同性程序 (15)

两自由度串联机器人分析与设计 【摘要】通过建立两自由度串联机器人位置输入输出方程,建立两自由度串联机器人的速度关系,推导出雅可比矩阵,分析两自由度串联机器人的速度各向同性的条件,设计出一各向同性的构型。 关键词位置方程速度关系雅可比矩阵各向同性 1.前言 随着现代科学技术的迅猛发展,特别是由于微电子技术、电子计算机技术的迅猛发展,机器人更加广泛地应用于各个领域。工业机器人靠自身动力控制能力来实际各种功能,大都用于简单、重复、繁重的工作,如上、下料,搬运等,以及工作环境恶劣的场所,如喷漆、焊接、清砂和清理核废料等。本课程设计旨在通过工业机器人的一个小分支-----两自由度串联机器人,其输入输出方程、雅可比等的分析,以及对于速度各向同性的分析和设计,对工业机器人有初步的了解,为以后从事工业机器人相关工作奠定基础。

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

工业机器人_三自由度直角坐标工业机器人设计讲解

沈阳工程学院 课程设计 设计题目:三自由度微型直角坐标工业机器人模型设计 系别自控系班级 学生姓名学号 指导教师祝尚臻职称讲师 起止日期:2012年1 月2 日起——至2012 年1 月13 日止 - I -

沈阳工程学院 课程设计任务书 课程设计题目:三自由度直角坐标工业机器人设计 系别自动控制工程系班级 学生姓名 学号 指导教师职称讲师 课程设计进行地点:F430 任务下达时间:2011年12月31日 起止日期:2012 年1 月2日起——至2012 年1 月13日止教研室主任年月日批准 - II -

三自由度直角坐标工业机器人设计 1 设计主要内容及要求 1.1 设计目的: 1了解工业机器人技术的基本知识以及单片机、机械设计、传感器等相关技术。 2初步掌握工业机器人的运动学原理、传动机构、驱动系统及控制系统并应用于工业机器人的设计中。3通过学习,掌握工业机器人的驱动机构、控制技术,并使机器人能独立执行一定的任务。 1.2 基本要求 1要求设计一个微型的三自由度的直角坐标工业机器人; 2要求设计机器人的机械机构(示意图),传动机构、控制系统、及必需的内外部传感器的种类和数量布局。 3要有控制系统硬件设计电路。 1.3 发挥部分 自由发挥 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选; (2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份; (3)设计过程的资料保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,包括附录中的图纸。项目齐全、不许涂改,不少于3000字。图纸为A4,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(总体设计框图与电路原理图)。 3 时间进度安排 顺序阶段日期计划完成内容备注 1 2012.1. 2 讲解主要设计内容,布置任务打分 2 2012.1. 3 检查框图及初步原理图完成情况,讲解及纠正错误打分 3 2012.1. 4 检查机械结构设计并指出错误及纠正;打分 4 2012.1. 5 继续机械机构和传动机构设计打分 5 2012.1. 6 进行控制系统设计打分 6 2012.1.9 检查控制系统原理图设计草图打分 7 2012.1.10 完善并确定控制系统打分 8 2012.1.11 指导学生进行驱动机构的选择打分 9 2012.1.12 进行传感器的选择和软件流程设计打分 10 2012.1.13 检查任务完成情况并答辩打分 2011-12-30 - III -

三自由度圆柱坐标工业机器人

三自由度圆柱坐标型工业机器人设计 学院:机电工程学院 班级: 姓名: 学号:

1.末端执行机构设计 采用内撑连杆杠杆式夹持器,用小型液压缸驱动夹紧,它的结构形式如图。内撑连杆杠杆式夹持器采用四连杆机构传递撑紧力,即当液压缸1工作时,推动推杆2向下运动,使两钳爪3向外撑开,从而带动弹性爪4夹紧工件。该种夹持器多用于内孔薄壁零件的夹持。

2.弹性爪的结构设计: 这种结构是在手爪外侧用螺钉固定弹性片两端。当弹性手工作时,由于夹紧过程具有弹性,就可避免易损零件被抓伤、变形和破损。 3.手臂机构的设计 本设计中手臂由滚珠丝杠驱动实现上下运动,结构简单,装拆方便,还设计有两根导柱导向,以防止手臂在滚珠丝杠上转动,确保手

臂随机座一起转动。它的结构如下图。选用轴向脚架型液压缸,活塞杆末端为外螺纹结构,手臂与末端执行器连同活塞杆一起转动。 4.腰部和基座设计 1——支座,2——步进电机,3——谐波齿轮,4——转动机座5——支承槽钢梁,6——滚珠丝杠,7——导向柱,8——锥环无键联轴器 通过安装在支座上的步进电机和谐波齿轮直接驱动转动壳体转动,从而实现机器人的旋转运动;通过安装在顶部的步进电机和联轴器带动滚珠丝杠转动实现手臂的上下移动。采用双导柱导向,防止手臂在滚珠丝杠上转动,确保手臂随机座一起转动。支撑梁采用槽钢,以减轻重量和节省材料,它的结构如上图。 5.驱动方式的选择

由上表知步进电机应用于驱动工业机器人有着许多无可替代的 优点,如控制性能好,可精确定位,体积较小可用于程序复杂和运动轨迹要求严格的小型通用机械手等,所以本设计采用它来实现机器人的旋转和上下移动。选电机为BF反应式步进电机,型号为:90BF001。 由上表知,液压驱动方式反应灵敏,可实现连续轨迹控制,液体压力高,可获得较大的输出力,因此机器人的伸缩运动采用液压驱动方式来实现,从而使机器人容易找准工件。它的型号为Y-HG1-C50/28×100LJ1HL1Q,它的主要技术参数如下表

工业机器人的十一个问答

工业机器人的十一个问答 1、工业机器人定义及特点? 定义:机器人是一个在三维空间具有较多自由度的,并能实现诸多拟人动作和功能的机器:而工业机器人则是在工业生产上应用的机器人。 特点:可编程、拟人化、通用性、机电一体化 2、工业机器人有哪几个子系统组成?各自的作用是什么? 驱动系统:使机器人运行起来的传动装置。 机械结构系统:由机身手臂末端操作器三大件组成的一个多自由度的机械系统。 感受系统:由内部传感器模块和外部传感器模块组成获取内部和外部环境状态的信息。 机器人-环境交互系统:实现工业机器人与外部环境中的设备相互联系和协调的系统 人-机交互系统:是操作人员参与机器人控制与机器人进行联系的装置 控制系统:根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能 3、什么是机器人的自由度?机器人位置操作需要几个自由度?姿态操作需要几个自由度?为什么? 自由度是指机器人所具有的独立坐标轴运动的数目,不应包括手爪(末端操作器)的开合自由度,在三维空间中描述一个物体的位置和姿态需要六个自由度,位置操作需要3个自由度(腰肩肘)姿态操作需要3个自由度(俯仰偏航侧滚)。但是工业机器人的自由度,但是工业机器人的自由度是根据其用途而设计的可能小于6个自由度,也可能大于6个自由度。 4、工业机器人的主要技术参数有哪些? 答:自由度、重复定位精度、工作范围、最大工作速度、承载能力 5、机身和臂部的作用各是什么?在设计时应注意哪些问题? 答:机身是支承臂部的部件,一般实现升降回转和俯仰等运动。

机身设计时需要注意: 1)要有足够的刚度和稳定性 2)运动要灵活,升降运动的导套长度不宜过短,避免发生卡死现象,一般要有导向装置 3)结构布置要合理臂部是支承腕部手部和工件的静动载荷的部件,尤其高速运动时将产生较大的惯性力,引起冲击,影响定位的准确性。 设计臂部时要注意: 1)刚度要求高 2)导向性好 3)重量轻 4)运动要平稳,定位精度要高。 其它传动系统应尽量简短以提高传动精度和效率;各部件布置要合理,操作维护要方便;特殊情况特殊考虑,在高温环境中应考虑热辐射的影响腐蚀性环境中应考虑防腐蚀问题。危险环境应考虑防暴问题 6、手腕上的自由度主要起什么作用?如果要求手部能处于空间任意方向则手腕应具有什么样的自由度? 手腕上的自由度主要是实现手部所期望的姿态。为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X Y Z的转动。即具有翻转俯仰和偏转三个自由度 7、手部的作用和特点 机器人手部的作用:工业机器人的手部也叫末端操作器是用来握持工件或工具的部件 特点: 1)手部是一个独立的部件 2)手部是工业机器人的末端操作器。不一定与人的手部结构相同。可以具有手指也可以不具有手指:可以有手爪也可以是专用工具

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

工业机器人的主要技术参数

工业机器人的主要技术参数 工业机器人的种类、用途以及用户要求都不尽相同。但工业机器人的主要技术参数应包括以下几种:自由度、精度、工作范围、最大工作速度和承载能力。 1. 自由度 机器人所具有的独立坐标轴运动的数目,一般不包括手爪(或末端执行器)的开合自由度。在三维空间中表述一个物体的位置和姿态需要6个自由度。但是,工业机器人的自由度是根据其用途而设计的,可能小于6个也可能大于6个自由度。例如,日本日立公司生产的A4020装配机器人有4个自由度,可以在印制电路板上接插电子元器件; PUMA562机器人具有6个自由度(见图1.11~图1.13),可以进行复杂空间曲面的弧焊作业。从运动学的观点看,在完成某一特定作业时具有多余自由度的机器人,叫做冗余自由度机器人,又叫冗余度机器人。例如,PUMA562机器人去执行印制电路板上接插元器件的作业时就是一个冗余度自由机器人。利用冗余的自由度可以增加机器人的灵活性,躲避障碍物和改善动力性能。 人的手臂共有7个自由度,所以工作起来很灵巧,手部可回避障碍物,从不同方向到达目的地。 2.精度 工业机器人精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异,用反复多次测试的定位结果的代表点与指定位置之间的距离来表示。重复定位精度是指机器人重复定位手部于同一目标位置的能力,以实际位置值的分散程度来表示。实际应用中常以重复测试结果的标准偏差值的3倍来表示,它是衡量一列误差值的密集度。图1.14所示为工业机器人定位精度与重复定位精度图例。 (a)重复定位精度的测定 (:b)合理的定位精度,良好的重复定位精度 (C)良好的定位精度,较差的重复定位精度(d)很差的定位精度,良好的重复定位精度 2. 工作范围 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫做工作区域。因为末端操作器的形状和尺寸是多种多样的,为了真实地反映机器人的特征参数,一般工作范围是指不安装末端操作器的工作区域。工作范围的形状和大小是十分重要的,机器人在执行某作业时可能会因为存在手部不能到达的作业死区而不能完成任务,如图1.15所示。 3.最大工作速度 最大工作速度,有的厂家指工业机器人自由度上最大的稳定速度,有的厂家指手臂大合成速度,通常欧洲技术参数中就有说明。工作速度越高,工作效率就越高。但是,工作速度越高就要花费更多的时间去升速或降速。 4.承载能力 承载能力是指机器人在工作范围内的任何位置上所能承受的最大质量。承载能力不仅决定于负载的质量,而且与机器人运行的速度、加速度的大小和方向

二自由度搬运机器人指标

题目名称二自由度搬运机器人结构设计 学生姓名蒋宁学号2011011606 所在系部机电工程系专业机械工程及自动化 第一指导教师王扬威教师号70206037 1.内容及要求: 二自由度搬运机器人具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。 随着自动化数控加工机床的发展,搬运机器人已成为提高劳动生产率的重要装备,二自由度搬运机器人的研制,将为加工中心提供一种快速、高效、运动平稳的上下料装置。 具体研究内容及要求包括: 1. 查找相关文献,分析上下料搬运机器人的研究现状和发展趋势。 2. 设计二自由度搬运机器人的机械结构,对其进行运动分析,并根据设计要求选用元器件和校核结构件强度。 3. 设计机械手的腕部结构,并进行运动分析。 2.主要技术指标: 1. 搬运机器人z轴行程1200mm,y轴行程1500mm。 2. 搬运机器人负载1t。 3. 最大运行速度300mm/s。 3.参考文献:《参考文献规范要求》 1.陶湘厅, 袁锐波, 罗璟. 气动机械手的应用现状及发展前景. 机床与液压[J], 2007, 35(18): 226~228. 2.赵碧, 巴鹏, 徐英凤. 气动上下料机械手手部结构的设计与分析[J]. 沈阳理工大学学报, 2006, 25(6): 58~60. 3.贺东坤, 田明. 气动通用上下料机械手结构设计[J]. 长春大学学报, 2012, 22(10): 1171~1173, 1180. 4.曹海燕, 周一届, 范增良, 欧阳焕. 上下料机械手柔性手腕的设计及位置误差分析[J]. 江南大学学报, 2012,11(1): 56~60. 5.王战中, 张俊, 季红艳, 赵赛, 臧丽超. 自动上下料机械手运动学分析及仿真. 机械设计与制造, 2012,(5):244~24 6. 6.刘金, 周志雄, 黄向明, 周德旺. 一种微细零件上下料机械手的设计与仿真. 计算机仿真, 2010, 27(2): 166~169,179. 4.毕业设计进度、任务安排: 2014.12.30 ~ 2015.02.24 完成文献查找,分析搬运机器人的研究现状和发展趋势; 2015.02.25 ~ 2015.03.30 完成二自由度搬运机器人的机械结构设计; 2015.03.31 ~ 2015.04.20 完成二自由度搬运机器人的运动分析和元器件选型,完成外文资料翻译工作; 2015.04.21 ~ 2015.05.25 完成机械手腕部结构设计,完成相关机械图,完成毕业设计报告,做好毕业答辩准备工作; 2015.05.26 ~ 2015.06.08 论文评审、答辩。

3个自由度机械手

优秀设计 引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。 在国外,目前主要是搞第一类通用机械手,国外称为机器人。本课题所做的机械手是属于第三类机械手。 1、简史 机械手首先是从美国开始研制的。1958年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。 1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为Unimate(即万能自动)。运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。不少球坐标通用机械手就是在这个基础上发展起来的。同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。 1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。 1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。联邦德国机械制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。 联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。 日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进两种机械手后大力从事机械手的研究。 前苏联自六十年代开始发展应用机械手,至1977年底,其中一半是国产,一半是进口。

云台两自由度控制

云台两自由度控制 作者:04——715班王天指导老师:李 云台是搭载激光测距仪座,摄像头座,机械手座之物,为这些仪器部件提供更大的适用范围。 此品主要采用蜗轮蜗杆的结构来作为传动机构。 其优点是可以得到很大的传动比,比交错轴斜齿轮机构紧凑,因为线接触,故承载能力比交错轴斜齿轮大得多,另外传动平稳无噪音,这样仿生蛇可以执行更隐蔽的任务。还有蜗杆的到程角r小于轮齿间的当量摩擦角时,机构具有自锁性,即只能由蜗杆带动蜗轮,而不能有蜗轮带动蜗杆,这样便于抬板稳定在某一位置工作。而蜗轮蜗杆将纵向转动变为侧向转动方可以使我们的布局更合理。 当然蜗轮蜗杆机构也具有一定的缺点,(1)齿合时相对滑动速度v较大,以磨损,以发热股效率低,而对于具有自锁性的蜗杆传动其效率更低。(2)为了散热和减小摩擦,常需贵重的抗磨材料和良好的润滑装置,故成本较高(3)蜗杆的轴向力较大。看起来去点多多,但在我们的设备本身的运作状况下这些也便不再是缺点了。首相我们的设备转速要求不大,阻力也不大,并不要求时刻保持运作,因此以磨损,易发热,效率较低情况便可忽略。也因如此便不用采用贵重的材料了,所以成本的问题也便不再成为问题。因为阻力不大,轴向力大的问题也便不是问题了。 我们用的电机是瑞士产的ZGR17AL支流减速电机。每分钟转速15转。正好可以迎合我们的设备不需要告诉运作的要求,而起匀速,慢速转动的特性,可以很好的进行控制,在开环控制的情况下获得较大的精度。 控制用数字化控制,利用双极坐标控制,(X,Y).X为底盘转角。Y为台办的转角。X介于0度到360度之间,Y介于0度到90度之间。我们并没有安装测算转过角度的设备,我们通过测算电机转动时间来推算转过的角度,此过程在我们要求转动精度不高的情况下是一种很实用经济有效的手法。我们的转盘上安装一个触碰开关,这样在每次反应前,反转,当碰及触碰开关时停止,以此作为基准。这个既为校准的过程,此位置作为0度。在开始转动命令要求的角度。如此,可以是误差不累加化,提高了工作精度! 我们的电子系统主要是利用plcc封装的51单片机来进行控制,其优点在于功能全面执行能力强,开发工具完善,衍生产品丰富,大量的设计资源可以继承和共享。此单片机成本较低,可以反复擦写1000次左右,可以在没有仿真器的情况下进行反复测试。有效的降低了成本,而plcc封装是正方形而且体积小重量轻,安装于抬板上,云台上,其重心较为稳定,可避免在蛇身高速运动,灵活转向时出现不必要的问题。而运抬要升高到很高高度时,其承载能力较差,所以减轻重量是必要之举。而且使用此单片机可是总体电路紧凑,简明,便于制作和日后维修。 工作原理简述:从并口输入坐标值(X,Y).经过程序中的一套算法,其中包括蜗轮蜗杆的传动比,电机转速,时钟,底座(齿轮)半径,始终,最后转化为电机开启时间,使设备转到预定位置。

相关文档
最新文档