最新一阶常微分方程初等解法毕业doc

最新一阶常微分方程初等解法毕业doc
最新一阶常微分方程初等解法毕业doc

一阶常微分方程初等解法毕业d o c

目录

摘要 (1)

关键词 (1)

Abstract (1)

Keywords (1)

0 前言 (1)

1预备知识 (1)

1. 1变量分离方程 (2)

1. 2恰当微分方程 (2)

1. 3积分因子 (2)

2 基本方法 (2)

2. 1一般变量分离 (3)

2. 2齐次微分方程 (3)

2. 2 .1齐次微分方程类型一 (3)

2. 2. 2齐次微分方程类型二 (4)

2. 3常数变易法 (5)

2.3.1常数变易法一 (5)

2.3.2常数变易法二 (6)

2.4积分因子求解法 (7)

2.5恰当微分方程求解法 (8)

3基本方法的应用 (8)

3. 1一般变量分离方程应用 (8)

3.1.1应用举例 (9)

3.1.2应用举例 (9)

3. 2齐次微分方程应用 (10)

3.2.1类型一应用举例 (10)

3.2.2类型一应用举例 (11)

3.2.3类型二应用举例 (11)

3.2.4类型二应用举例 (12)

3.3常数变易法应用 (13)

3.3.1常数变易法应用举例 (13)

3.3.2伯努利微分方程应用举例 (14)

3. 4利用积分因子求解 (14)

3. 5 利用恰当微分方程求解 (15)

参考文献 (16)

一阶常微分方程初等解法

摘要: 本文对一阶微分方程的初等解法进行归纳与总结,同时简要分析了变量分离,积分因子,恰当微分方程等各类初等解法.并且结合例题演示了如何把常微分方程的求解问题化为积分问题,进行求解.

关键词: 一阶常微分方程;变量分离;恰当微分方程;积分因子

The Fundamental methods of the first-order ordinary

differential equation

Abstract:In this thesis, we summarize the fundamental methods of the first-order ordinary differential equation. At the same time, we analysis the various types of fundamental methods such as the separation of variables, integrating factor and the exact differential equation. Combined with examples, we show how the ordinary differential equations solve problems by transforming them into the problems of integration.

Key Words: first-order ordinary differential equation; separation of variables; exact differential equation; integrating factor

0 前言

常微分方程在微积分概念出现后即已出现,对常微分方程的研究也可分为几个阶段.发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代.莱布尼茨曾专门研究利用变量变换解决一阶微分方程的求解问题,而欧拉则试图用积分因子处理.但是求解热潮最终被刘维尔证明里卡蒂方程不存在一般初等解而中断.加上柯西初值问题的提出,常微分方程从“求通解”转向“求定解”时代.在20

世纪六七十年代以后,常微分方程由于计算机技术的发展迎来了新的时期,从求“求所有解”转入“求特殊解”时代,发现了具有新性质的特殊的解和方程,如混沌(解)、奇异吸引子及孤立子等.

常微分方程的研究还与其他学科或领域的结合而出现各种新的分支,如控制论、种群分析、种群生态学、分支理论、泛函微分方程、脉冲微分方程等.

总之,常微分方程属于数学分析的一支,是数学中与应用密切相关的基础学科,其自身也在不断发展中,学好常微分方程基本理论和实际应用均非常重要.因此本文对一阶常微分方程的初等解法进行了简要的分析,同时结合例题,展示了初等解法在解题过程中的应用.

1预备知识

1. 1 变量分离方程

形如 ()()dy f x y dx

?=, (1.1) 的方程,称为变量分离方程,()f x ,()y ?分别是x ,y 的连续函数.这是一类最简单的一阶函数.

如果()0y ?≠,我们可将(1)改写成

()()

dy f x dx y ?=,这样变量就分离开来了.两边积分,得到

()()dy f x dx c y ?=+??,

c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程(1)的解. 1.2 恰当微分方程

将方程

),(y x f dx

dy =, 写成微分的形式,得到

0),(=-dy dx y x f ,

或把x ,y 平等看待,写成下面具有对称形式的一阶微分方程

0),(),(=+dy y x N dx y x M , (1.2)

如果方程)2(的左端恰好是某个二元函数),(y x u 的全微分,即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y

??+==+??, 则称方程)2(就是恰当微分方程.

1.3 积分因子

如果存在连续可微函数(),0x y μμ=≠,使得

()()()(),,,,0x y M x y dx x y N x y dy μμ+=

为一恰当微分方程,即存在函数u ,使

Mdx Ndy du μμ+=,

则称(),x y μ为方程()(),,0M x y dx N x y dy +=的积分因子. 2基本方法

2.1一般变量分离

()()dy f x y dx

?=, )1.2( 的方程,称为变量分离方程,()f x ,()y ?分别是x ,y 的连续函数.这是一类最简单的一阶函数.

如果()0y ?≠,我们可将)1.2(改写成

()()

dy f x dx y ?=,

这样,变量就分离开来了.两边积分,得到 ()()dy f x dx c y ?=+??

. )2.2( 这里我们把积分常数c 明确写出来,而把?)(y dy ?, ?dx x f )(分别理解为)(1y ?,)(x f 的原函数.常数c 的取值必须保证)2.2(有意义,如无特别声明,以后也做这样理解. 因)2.2(式不适合0)(=y ?情形.但是如果存在0y 使0)(0=y ?,则直接验证知0y y =也是)1.2(的解.因此,还必须寻求0)(=y ?的解0y ,当0y y =不包括在方程的通解)2.2(中时,必须补上特解0y y =

2.2齐次微分方程

2.2.1齐次微分方程类型一

形如

)(y

x g dx dy =, 的方程,称为奇次微分方程,这里)(u g 是u 的连续函数. 作变量变换

x

y u =, 即ux y =,于是

u dx

du x dx dy +=. 代入原方程可得

)(u g u dx

du x =+, 整理后,得到 x

u u g dx du -=)(. )3.2(

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

常微分方程的初等解法_论文

(此文档为word格式,下载后您可任意编辑修改!) 1.常微分方程的基本概况 1.1.定义: 自变量﹑未知函数及函数的导数(或微分)组成的关系式,得到的便是微分方程,通过求解微分方程求出未知函数,自变量只有一个的微分方程称为常微分方程。 1.2.研究对象: 常微分方程是研究自然科学和社会科学中的事物、物体和现象运动﹑演化和变化规律的最为基本的数学理论和方法。物理﹑化学﹑生物﹑工程﹑航空﹑航天﹑医学﹑经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程。如牛顿运动规律、万有引力﹑能量守恒﹑人口发展规律﹑生态总群竞争﹑疾病传染﹑遗传基因变异﹑股票的涨伏趋势﹑利率的浮动﹑市场均衡价格的变化等。对这些规律的描述﹑认识和分析就归结为对相应的常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学各个领域。 1.3.特点: 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 1.4.应用: 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

常微分方程的初等解法

常微分方程的初等解法

1.常微分方程的基本概况 1.1.定义: 自变量﹑未知函数及函数的导数(或微分)组成的关系式,得到的便是微分方程,通过求解微分方程求出未知函数,自变量只有一个的微分方程称为常微分方程。 1.2.研究对象: 常微分方程是研究自然科学和社会科学中的事物、物体和现象运动﹑演化和变化规律的最为基本的数学理论和方法。物理﹑化学﹑生物﹑工程﹑航空﹑航天﹑医学﹑经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程。如牛顿运动规律、万有引力﹑能量守恒﹑人口发展规律﹑生态总群竞争﹑疾病传染﹑遗传基因变异﹑股票的涨伏趋势﹑利率的浮动﹑市场均衡价格的变化等。对这些规律的描述﹑认识和分析就归结为对相应的常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学各个领域。 1.3.特点: 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 1.4.应用: 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 2.一阶的常微分方程的初等解法

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

常微分方程的初等解法与求解技巧

山西师范大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名张娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 内容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

常微分方程初等解法的研究

2015届本科毕业论文(设计) 论文题目:常微分方程初等解法的研究 学院:数学科学学院 专业班级:数学与应用数学11-1班 学生姓名:汤鹏 指导老师:张新东副教授 答辩日期:2015年5月5日 新疆师范大学教务处

目录 引言 (1) 1 常微分方程的定义及分类 (2) 1.1 定义 (2) 1.2 一阶线性微分方程 (2) 1.3 一阶线性微分方程组 (2) 2 一阶线性微分方程的解法 (4) 2.1 分离变量法 (4) 2.2 常数变易法 (5) 2.3 全微分法 (6) 2.4 参数法 (7) 3 n阶常系数线性微分方程的解法 (9) 3.1 单根的情形 (9) 3.2 重根的情形 (10) 4 常微分方程的应用 (11) 4.1 人口动力学问题 (11) 4.2 简谐运动 (11) 4.3 电路理论 (12) 4.4 MATLAB解常微分方程 (13) 5 总结 (15) 参考文献 (16) 致谢 (17)

常微分方程初等解法的研究 摘要:本文主要对常微分方程的初等解法进行研究,使大家更深一步地了解常微分方程的分类、解法及其在其他领域的应用。首先总结阐述常微分方程的定义和几种常见的类型,然后讲解了常微分方程的解法及方程组解的情况,最后讲述了常微分方程在以下四个方面的应用:动力学问题、简谐运动、电路理论及用MATLAB解常微分方程。 关键词:常微分方程;初等解法;方程组;动力学;MATLAB

Research elementary solution of ordinary differential equations Abstract: This paper mainly elementary solution of ordinary differential equation is studied,make you a deeper understanding of classification,the ordinary differential equation solution and its application in other fields.Firstly summarizes the type describes the definition of ordinary differential equations and several common,then explain the ordinary differential equation solution and the solution of equations,and finally describes the application of ordinary differential equations in the following four aspects:dynamics,simple harmonic motion,boundary value problem and the solution of ordinary differential equation with MATLAB. Key words: Ordinary differential equations; The primary solution; Equations; Dynamics; MATLAB

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

常微分方程初等解法和求解技巧毕业论文

目 录 摘 要 .............................................................. I 关键词 ............................................................. I Abstract ........................................................... I Key words .......................................................... I 1.前 言 (1) 2.常微分方程的求解方法 (1) 2.1常微分方程变量可分离类型解法 (1) 2.1.1直接可分离变量的微分方程 (2) 2.1.2可化为变量分离方程 (2) 2.2常数变易法 (9) 2.2.1一阶线性非齐次微分方程的常数变易法 (9) 2.2.2一阶非线性微分方程的常数变易法 (10) 2.3积分因子法 (16) 3.实例分析说明这几类方法间的联系及优劣 (17) 3.1几个重要的变换技巧及实例 (18) 3.1.1变dx dy 为dy dx ............................................... 18 3.1.2分项组合法组合原则 (19) 3.1.3积分因子选择 (20) 参考文献 (21) 致 (22)

常微分方程初等解法及其求解技巧 摘要 常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法. 关键词 变量分离法常数变易法积分因子变换技巧 Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly. Key words

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

(完整版)一阶常微分方程初等解法毕业设计46doc

目录 ? ? ? 1 关键 词…… (1) Abstract.................................... . (1) Keywords.................................... ..……… ..1 0 前 ..1 识 (1)

1 预备知 识 (1)

1. 1 变量分离方程........................................................ .2 1. 2 恰当微分方程........................................................ .2 1. 3 积分因子................................................. .... (2) 2 基本方法.................................................... ■■ (2) 2. 1 一般变量分离……………………………………………………………………… .3 2. 2 齐次微分方程 (3) 2. 2 .1 齐次微分方程类型一………………………………………………………… .3 2. 2. 2齐次微分方程类型二........................ ........ (4) 2. 3 常数变易法.............................. .................... (5) 2.3.1常数变易法一 (5) 2.3.2常数变易法二……………………… .………………………… ..…………… ..6 2.4 积分因子求解法....................................... .. (7)

相关文档
最新文档