汽车线控转向系统的台架试验

汽车线控转向系统的台架试验
汽车线控转向系统的台架试验

https://www.360docs.net/doc/b911690870.html,

汽车线控转向系统的台架试验1

于蕾艳1,林逸2,施国标2

(1 中国石油大学(华东)机电工程学院,山东东营; 2北京理工大学机械与车辆工程学

院,北京 100081)

摘要:线控转向系统取消了转向盘和转向轮之间的机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性。进行了线控转向系统的试验台架的软硬件设计,该台架可以验证线控转向系统的控制策略,进行路感电机、转向电机、传感器等关键部件的试验。试验结果表明,采用的路感电机控制算法能较好地实现对电流的伺服控制,可用于路感控制;转向电机控制算法能较好地实现对传动比的控制。

关键词:线控转向台架试验路感电机

中图分类号:U270.11 文献标识码:A

引言

线控转向(Steer-by-Wire ,SBW)系统对传统转向系统的根本变革是取消了转向盘和转向轮的之间机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性 [1][2][3][4]。国内对线控转向试验台研究尚不多。本文探讨了线控转向试验台的软硬件设计和控制策略验证等。

1线控转向系统的试验台架

线控转向系统的试验台架结构如图1所示,主要由转向阻力模拟装置、系统安装台架、测控系统及部分附件组成。线控转向系统包括转向管柱、齿轮齿条式转向器、横拉杆等,与试验台有3处连接位置,即转向管柱与转向管柱连接支架、转向器壳体与转向器连接架、转

1基金项目:奥运用纯电动客车整车优化及制造编号:D0305002040111

向横拉杆与转向阻力模拟装置(左、右各一)。此3处连接位置可调,以适应安装不同规格的线控转向系统。

1-铁地板;28-座椅;9-转向盘;10-转向盘扭矩传感器;11-转向盘转角传感器;12-线控转向管柱;13-支架;

14-导轨

图1 线控转向试验台结构

图2所示为测控系统硬件构成,测控系统由工控机、数据采集卡、测控软件、各种传感器、开关、继电器、按钮等组成。采用研华PC 作为测控计算机,其CPU 为PIV1.4G ,内存128M 。采用PC 作为测控计算机,是因为PC 具有很多优点:性能稳定,计算速度快,能实现复杂的控制算法;PC 的开发工具齐全,应用程序接口和图形界面非常友好;PC 储存器容量大,可以实时存储大量的试验数据用于分析计算;能使用通用操作系统和大多数编程语言;支持DOS 、Windows98、Windows NT/2000、UNIX 等多种通用操作系统,为控制系统的软硬件开发提供很大方便;围绕PC 的各种板卡标准化、系列化,系统集成灵活机动。试验台装有的传感器包括:转向盘转矩与转速传感器、转向盘转角传感器、齿条位移传感器、齿条拉压传感器、电机电流传感器及电压传感器。

转向阻力(左、右)模拟车速

图2 测控系统硬件构成

2线控转向系统匹配设计

路感电机采用直流有刷力矩伺服电机,转向电机采用三相交流步进电机。路感电机的最大力矩根据驾驶员作用在转向盘边缘的最大力确定:

1max T d max F

1max d max /2T F d =? (1)

式中:d -转向盘直径。

一般认为,汽车原地转向时具有最大的转向阻力矩:

max r

T max

r T = (2) 转向电机的最大输出转矩应满足下式2max T [5]:

2max max /r t T T >g

式中:-转向电机的减速比

t g 表1所示为路感电机和转向电机主要参数。

表1 电机参数

电机 参数类别

参 数 路感电机

类型

额定电压(V ) 额定转矩(N ·m ) 额定电流(A ) 减速机构传动比 力矩伺服电机

DC12 1.5 30 16.5 转向电机

类型 相数

步距角(°)

保持转矩(N ·m ) 电压(V ) 相电流(A )

步进电机 三相 0.6 7.0 AC80~350

2.0

3 线控转向系统的控制系统设计

线控转向控制系统主要由路感电机、转向电机、转向盘转角传感器、小齿轮转角传感器和控制器组成。路感电机的驱动与控制由控制器完成,控制器中设有H 桥驱动电路和电流传感器,可采用PWM 方法实现对路感电机输出力矩的控制。步进电机运转由专门的步进电机驱动器来控制,驱动器受控制器输出的脉冲信号和方向信号控制,驱动器接受一个脉冲,步进电机按控制器给出的方向转一步。转向盘转角传感器与小齿轮转角传感器均采用美国TT 公司的BI 转向传感器。控制器为16位单片机系统,包括电源电路、转角传感器接口电路、路感电机电流传感器电路、路感电机驱动电路、转向电机控制电路等。硬件系统的结构框图如图3所示。

图3控制器硬件系统的结构框图

控制软件主要包括主函数程序、中断程序、定时程序、自检程序、计算程序等。主函数程序主要是根据控制的要求整合各个功能模块,并实现软件保护等功能。首先对程序中使用的所有变量、MCU 的相关寄存器进行初始化,然后根据先采集后控制的顺序调用各个模块,实时检测系统的工作状态。如图4为主函数控制流程图。

图4 主函数控制流程图

路感电机PWM 计算模块的作用是使电机实际电流快速、平稳地跟随着目标电流的变化。

首先通过比较目标电流cmd I 和电机实际电流I ,求出它们的差值。通过调整PID 的三个参数,调节出符合要求的系统输出。PID 参数整定是控制系统设计的核心内容。它()e k ()u k 是根据被控过程的特性确定PID 控制器的比例系数P K 、积分系数和微分系数I K D K 的大用是压空与上述路感电机电流跟踪PID 计算过程相似,根据转向盘转角传感器计算,得出转向电机脉冲数。 4 线析

小。PWM 程序的主要作向电机驱动模块输出PWM 信号和电机换向信号。首先,根据PID 电流跟踪程序得出的)u k 与母线电U 的比值k ,确定PWM 的占比P ,P 等于k*100%。然后判断当前转向盘力矩d T 的方向,当d T 正向时,PC0输出0;当反向时,PC0输出1。转向(d T 电机脉冲数的计算过程和小齿轮转角的差值进行PID 控转向试验分析

4.1 路感电机控制试验分

采用例型转向盘力矩算法和策略的有效性。

比反馈控制策略[6]进行路感控制特性试验,用于验证路感电机控制ml iswl sw I K δ=

式中,ml I 为路感电机的电流;iswl K 为路感比例系数,sw δ为转向盘转角。

试验中设置0.018A/°和0.03 A/°两个不同比例的K 。每次运行记录转向盘转角和路感电机电流sw1。图5为转向盘转角-路感电机电流曲线,曲线表明路感电机的电流能较好地跟踪目标电流的变化,所采用的路感电机控制算法能较好地实现对电流的伺服控制,可用于路感控制。

图5 路感电机电流的跟踪

4.2 转向电机控制试验分析

图6所示小齿轮转角踪转向盘转角的时间历程曲线,曲线表明转向电机控制算法能较好地实现对传动比的控制,但是图中小齿轮转角滞后于转向盘转角,这是由于转向电机的响应速度不足引起的,需要采用更快速的转向电机。

图 6 步进电机转角的跟踪

5 结论

进行了线控转向系统的试验台架的软硬件设计,

该台架可以验证线控转向系统的控制策略,进行路感电机、转向电机、传感器等关键部件的试验。试验结果表明,采用的路感电机控制算法能较好地实现对电流的伺服控制,可用于路感控制。转向电机控制算法能较好地实

对传动比的控制,

但是图中小齿轮转角滞后于转向盘转角,这是由于转向电机的响应速度现

不足引起的,需要采用更快速的转向电机。 参 Yao et al. System and method of controlli -by-wir . United states :US 6,694,239 [2] 左统控制方法研究[D].吉林:吉林大学,2005.

eel steering control.IEEE 35th

[5] [6] rn Raksincharoensa, Shunsuke Watanabe. Design of Steer-by-Wire Control Based

on Vehicle Dynamic Control Theory[R]. The 13th International Pacific Conference on Automotive Engineering :891~896.

考文献

[1] ng vehicle steer e systems[P]B1,Feb.17,2004.

建令.汽车电子转向系[3] Shoji Asai. Development of Steer-by-Wire System with force feedback using a disturbance observer[R]. SAE

paper, 2004-01-1100.

[4] E.Ono. Robust stabilization of vehicle dynamics by active front wh conference ,1777-1782,1996.

余志生.汽车理论[M].北京:机械工业出版社,2004第三版:126~128.

Masao Nagai, Pongsatho https://www.360docs.net/doc/b911690870.html,

Test Bench of Automobile Steer-by-Wire System

Yu Lei-yan 1, Lin Yi 2, Shi Guo-biao 2

(1 College of Mechanical and Electronic Engineering, China University of Petroleum,

Dongying,Shandong 257061, China; 2 School of Mechanism and Vehicle Engineering, Beijing

Institute of Technology, Beijing 100081, China ) Abstract: Steer-By-Wire (SBW) system eliminates the mechanical connections between steering wheel and

turning wheels so it can provide road feel actively and perform active steering control according to vehicle states to enhance handling and stabilities. Hardware and software design of Steer-by-Wire test bench , based on which control strategy of Steer-by-Wire system can be evaluated and key parts such as road feel motor, steering motor and sensors can be tested, are performed . Test results show that road feel motor control algorithm can realize servo control of current and be used for road feel control; and steering motor control algorithm can realize control of steering ratio.

Keywords: Steer-by-Wire (SBW); test bench; road feel motor

作者简介:于蕾艳,1980-,女,山东,博士,讲师。

汽车线控转向技术

汽车线控转向技术 前言 汽车转向性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要的作用。如何合理地设计转向系统,使汽车具有良好的操纵性能,始终是设计人员的重要研究课题。在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。线控转向系统(Steering By - WireSystem,简称SBW)的发展,正是迎合这种客观需求。它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,而且它在转向盘和转向轮之间不再采用机械连接,彻底摆脱传统转向系统所固有的限制,在给驾驶员带来方便的同时也提高了汽车的安全性。 一、线控转向系统的发展概况 德国奔驰公司在1990年开始了前轮线控转向的研究,并将它开发的线控转向系统应用于概念车F400Carving上。日本Koyo也开发了线控转向系统,但为了保证系统的安全,仍然保留了转向盘与转向轮之间的机械部分,即通过离合器连接,当线控转向失效时通过离合器结合回复到机械转向。宝马汽车公司的概念车BMWZ22,应用了SteerByWire技术,转向盘的转动范围减小到160,使紧急转向时驾驶员的忙碌程度得到了很大降低。意大利Bertone设计开发的概念车FILO,雪铁龙越野车C-Crosser,Daimlerchrysler概念车R129,都采用了线控转向系统。2003年日本本田公司在纽约国际车展上推出了LexusHPX概念车,该车也采用了线控转向系统,在仪表盘上集成了各种控制功能,实现车辆的自动控制。估计几年后,机械系统将由电缆与电子信号取代。 二、线控转向系统的结构及工作原理 (一)线控转向系统的结构 汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成,其结构如图1所示。

QC T 306-1999汽车动力转向控制阀总成台架试验方法

QC T 306-1999汽车动力转向控制阀总成台架 试验方法 QC/T 306一1 999 汽车动力转向操纵阀总成 台架试验方法代替ZB T23 00 8一89 1主题内容与适用范畴 本标准规定了汽车常流式液压动力转向操纵阀(简称操纵阀)总成台架试验 方法。 本标准适用于单独的操纵阀总成,也适用于与有关部件装成一体的操纵阀, 例如操纵阀与动力缸一体的联阀式动力转向装置中的操纵阀,操纵阀与转向器一 体的半整体式动力转向装置中的操纵阀和操纵阀与转向器及动力缸一体的整体式 动力转向装置中的操纵阀。 2引用标准 JB 3784汽车液压转向加力装置及动力转向器总成台架试验方法。 3试验类别及项目 3.1可靠性试验 本标准规定操纵阀总成可靠性试验按JB 3784执行。 3.2性能试验 3.2.1动力转向操纵阀油压灵敏度特性试验。 3.2.2动力转向操纵阀操纵力特性试验。 3.2.3动力转向操纵阀泄漏试验。

3.2.4动力转向操纵阀压力降试验。 4试验设备及要求 4.1试验设备液压系统工作原理见图1。 4.2试验台液压源应满足动力转向最大工作油压及流量的要求。 4.3试验用油粘度为17~23mm2/s(50℃)。过滤精度不低于30μm。 5试验条件 5.1操纵阀进油口油温50±5℃。 5.2流量:除另有规定外,应为动力转向装用车辆发动机怠速时的油泵输出量。 5.3操作转向盘的角速度不得大于10°/s。 5.4每次试验前仪器调零。 5.5每项性能试验样品不得少于三个。 6试验仪器精度 6.1压力表精度为0.5级。 6.2流量测试外表误差小于0.5%。 6.3转角测试仪线性误差小于0.5%。 6.4扭矩测试仪线性误差小于0.5%。 7试验方法及试验结果处理 7.1一样要求 7.1.1将操纵阀阀芯置于中间位置。 7.1.2操纵阀的固定 关于单独操纵阀总成应将操纵阀阀体固定,关于联阀式动力转向装置应将动 力缸缸体及动力缸活塞杆固定,关于半整体及整体式动力转向装置应将转向器及 转向摇臂固定。 7.1.3油压的测量点 在操纵阀的进油口与回油口测量油压。

自动驾驶汽车线控转向系统的制作技术

本技术属于汽车转向系统中的线控转向系统技术领域,具体地说是一种自动驾驶汽车线控转向系统的设计。该转向系统组成上包括主控制器、转向操纵机构、转向执行机构、横拉杆、转向轮、电磁离合器和车轮转角传感器等;本技术是一种结构简单的自动驾驶汽车线控转向系统,改进了目前已有的线控转向系统结构使其更好地应用在自动驾驶汽车上,保证自动驾驶汽车能实现前轮线控转向,并且在转向电机出现故障时,该系统可以转化为传统机械式转向系统,使汽车的转向具有良好的可控性和安全性,解决了线控转向系统目前存在的问题。 权利要求书 1.一种自动驾驶汽车线控转向系统,其特征在于,该转向系统包括主控制器、横拉杆、转向轮、转向操纵机构、转向执行机构、常开式电磁离合器(11)和车轮转角传感器;所述转向操纵机构包括力感电机(5)、三级行星齿轮减速机构(6)、锥齿轮(7)、方向盘转距传感器(8)、方向盘转角传感器(9)和方向盘(10);所述转向执行机构包括转向电机(1)、常闭式电磁离合器(2)、蜗轮蜗杆减速机构(3)、齿轮齿条转向器(4);所述主控制器的输入与车轮转角传感器、方向盘转距传感器(8)、方向盘转角传感器(9)相连;所述主控制器的输出与转向操纵机构中的力感电机(5)相连;所述力感电机(5)的输出轴与三级行星齿轮减速机构(6)中的高速级太阳轮(601)连接;所述三级行星齿轮减速机构(6)的输出轴与锥齿轮(7)的输入轴连接;所述锥齿轮(7)的输出端与方向盘(10)的转向轴连接,其上有方向盘转矩传感器(8)和转角传感器(9);

所述齿轮齿条转向器(4)与横拉杆连接;所述横拉杆与转向轴的转向臂连接;所述转向轴与转向轮连接;所述常开式电磁离合器(11)的内花键与锥齿轮(7)输出轴的外花键连接;所述常闭式电磁离合器(2)的内花键与转向电机(1)输出轴上的外花键相啮合;所述蜗轮蜗杆减速机构(3)中的蜗杆轴(303)的外花键与常闭式电磁离合器(2)的内花键相啮合。 2.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮蜗杆减速机构(3)还包括蜗杆(301)、蜗轮(302)、蜗轮轴(304);所述蜗杆轴(303)与常闭式电磁离合器(2)相连;所述常闭式电磁离合器(2)与转向电机(1)相连;所述蜗杆(301)与蜗轮(302)相啮合;所述蜗轮轴(304)设置在蜗轮(302)的中间孔内通过平键与蜗轮(302)固定,蜗轮轴上有一部分为齿轮轴(401);所述蜗轮轴(304)上齿轮轴(401)一侧的末端设置有滚针轴承。 3.根据权利要求3所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮轴(304)上蜗轮(302)处有一对深沟球轴承。 4.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述三级行星齿轮减速机构(6)还包括高速级太阳轮(601)、高速级行星轮(602)、高速级行星架(603)、中速级太阳轮(604)、中速级行星轮(605)、中速级行星架(606)、低速级太阳轮(607)、低速级行星轮(608)、低速级行星架(609)和齿圈(610);所述高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)通过行星架上的短轴与高速级行星架(603)、中速级行星架(606)和低速级行星架(609)连接;所述高速级太阳轮(601)与高速级行星轮(602)相啮合;所述中速级太阳轮(604)与中速级行星轮(605)相啮合;所述低速级太阳轮(607)和低速级行星轮(608)相啮合;所述齿圈(610)的内齿与高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)相啮合,外部固定在力感电机(5)的壳体上。 5.根据权利要求4所述一种自动驾驶汽车线控转向系统,其特征在于,所述高速级太阳轮(601)、中速级太阳轮(604)、低速级太阳轮(607)、高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)的模数均相同,均采用直齿齿轮。 6.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述齿轮齿条转向器(4)包括齿轮(401)和齿条(402);所述齿轮(401)与齿条(402)相啮合;所述齿轮(401)采用斜齿轮;所述齿条(402)的两个端头与左右横拉杆端头连接在一起。

汽车线控技术应用实例

汽车线控技术应用实例 1、线控制动系统 线控制动系统(BBW,Brake-By-Wire),目前分为两类,一种为电液制动系统(EHB,Electro-Hydraulic Brake),另一种为电子机械制动系统(EMB,Electro-Mechanical Brake)。EHB是电子与液压系统相结合所形成的多用途、多形式的制动系统,它由电子系统提供柔性控制,液压系统提供动力;而EMB 则将传统制动系统中的液压油或空气等传力介质完全由电制动取代,是未来制动控制系统的发展方向。 (1)电液制动系统 在中小型车辆的传统制动系统中,驾驶员通过制动主缸在轮缸建立制动压力,而EHB则是通过蓄能器提供制动压力。蓄能器压力由柱塞泵产生,可提供多次连续的制动压力。EHB由传感器、ECU及执行器(液压控制单元)等构成,其结构如图1所示。

制动踏板与制动器间无直接动力传递。制动时,制动力由ECU和执行器控制,踏板行程传感器将信号传给ECU,ECU汇集轮速传感器、转向传感器等各路信号,根据车辆行驶状态计算出每个车轮的最大制动力,并发出指令给执行器的蓄能器来执行各车轮的制动。高压蓄能器能快速而精确地提供轮缸所需的制动压力。同时,控制系统也可接受其他电子辅助系统(例如ABS、BAS、EBD、ESP 等)的传感器信号,从而保证最佳的减速度和行驶稳定性。 (2)电子机械制动系统 EMB主要用于小型车辆中,主要包含电制动器、ECU、轮速传感器、动力电源等。它与EHB最大区别是制动力为电机提供的转矩,而不是由柱塞泵产生的高压油,且有独立的电源来供电,其各部分的功能如表1。 2、线控转向系统 线控转向系统(SBW,Steering-By-Wire)去掉了转向盘和转向轮之间的机械连接,减轻了大约5kg重量,消除了路面的冲击,具有降低噪声和隔振等优点。目前国外著名汽车公司和汽车零部件厂家竞相研究具有智能化的新一代转向系统,如美国Delphi公司、TRW公司、日木三菱公司、Koyo公司、德国

QCT29096—92汽车转向器总成台架试验方法

QC T 29096—92汽车转向器总成台架试验方法 汽车转向器总成台架试验方法 1主题内容与适用范畴 本标准规定了汽车转向器总成台架试验方法。 本标准适用于蜗杆滚轮式、循环球式、蜗杆指销式及齿轮齿条式汽车转向器 总成。 本标准不适用于动力转向器。 2总则 2.1本标准包括下列三种试验: a.性能试验 b.强度试验 c.疲劳寿命试验 2.2产品在进行性能和疲劳寿命试验前,应在下述工况下进行磨合: a.输入轴转角不小于全转角的90%; b.加在转向摇臂轴或齿条上的载荷,为额定输出扭矩或额定输出力的40%; c.循环次数不低于1.5X 103次; d.磨合时,输入轴的转速不大于10r/ min; e.磨合后更换润滑油。 2.3转向器试验时,在设计规定的条件下进行润滑。 2.4有专门要求的转向器,可由有关部门在此基础上另作补充规定。 3性能检验 3.1试验项目 3.1. 1输入轴全转角 3.1. 2传动比特性

3.1. 3传动间隙特性

3. 1. 4 传动效率特性 3. 1. 5 转动力矩 3. 1. 6 刚性 3. 2 输入轴全转角的测定 旋转输入轴,从一极端位置至另一极端位置,测出总圈数。 3.3传动比特性的测定 3讪3传动比特性的测定 3.3.1. 角传动比运算公式如下: 如]角传动比& 3.3. 1. 2测定范畴不小于输入轴全转角的的90%。 3. 3. 1. 3测量点间隔:输入轴转角增量不大于45°;变速比转向器输入轴 转角增量不大于18°。 3. 3. 1. 4测定方法: 驱动输入轴,测出输入轴转角和转向摇臂轴相应转角,取其增量,代入公式 (1),可得出角传动比。输入轴转角的测量误差不大于10',转向摇 臂轴转角的 误差不大于1.5'测量结果按附录訝*-1及附录图」T的格式给出。 -3」」3 . -2亠线角传动比的测定P 3 3?:珥线角传动比运算公式如下: 3. 3. 2. 2测定范畴不小于输入轴全转角的90%。 3. 3. 2. 3测量点间隔:输入轴转角增量不大于45 °;变速比转向器输入转角 增量不大于18°。 3. 3. 2. 4测定方法: 驱动输入轴,测出输入轴转角和齿条相应位移,取其增量,代入公式(2), 可得出线角传动比。输入轴转角的测量误差不大于10',齿条位移的 测量误差不 大于0.01mm。测量结果按附录表2及附录图2的格式给出。 3. 4传动间隙特性的测定

汽车转向系统EPS设计毕业论文

汽车转向系统EPS设计毕业论文 目录 1 引言 (1) 1.1汽车转向系统简介 (1) 1.2汽车转向系统的设计思路 (3) 1.3 EPS的研究意义 (4) 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 3 电助力转向系统的设计 (11) 3.1 动力转向机构的性能要求 (11) 3.2 齿轮齿条转向器的设计计算 (11) 3.3 转向横拉杆的运动分析[9] (21) 3.4 转向器传动受力分析 (22) 4 转向传动机构优化设计 (24) 4.1传动机构的结构与装配 (24) 4.2 利用解析法求解出外轮转角的关系 (25) 4.3 建立目标函数 (27) 5 控制系统设计 (29) 5.1 电助力转向系统的助力特性 (29) 5.2 EPS电助力电动机的选择 (30)

本科毕业设计(论文) 5.3 控制系统框图设计 (31) 结论 (32) 致谢 (34) 参考文献 (35)

1 引言 1.1汽车转向系统简介 汽车转向系统,顾名思义是为了能够使车辆按照驾驶员的意愿向左或者向右转弯或者直线行驶。转向装置有很多种,也一直在经历一个循序渐进不断更新不断创新的过程。从发明家本茨发明汽车的初期,转向系统知识最简单的形式来转向,其机构为单纯的扶把式,没有助力,所以笨重,费力,以及行驶状态不稳定。从在原始的雏形开始,各国人士不断创新改革,到现在为止,汽车转向系统的应用按先后顺序可以分为:机械转向装置、液压助力转向装置、电子控液压助力转向系统、电助力转向系统、四轮转向系统、主动前轮转向系统和线控转向系统[1]目前市场大部分中低档轿车采用的液压式转向器,当然电控的也很常见,所以在该种系统的转向器技术的发展如今已经遇到了瓶颈。随着人们对乘车舒适,节能,安全,稳定的期望,电控液压式转向系统逐渐取代了先前的版本,但随着科技的进步,越来越多的科学家期待有路感的转向系统问世,所以流量阀式液压助力转向器出现了,在不同车速下,驾驶员手握方向盘,感觉到了路感的存在,助力特性曲线描述的就是“路感”,但是美中不足的是这种液压式转向器依然存在很多缺陷,电机,液压泵,转向器,流量阀等等转向器在发动机旁的布置问题又出现了,还有就是液压油的泄漏问题越来越的突出尖锐。电助力EPS (Electronic Power steering system)是在纯机械转向机构的前提下,设计加装了扭矩和车速等信号传感器、电子控制单元和转向助力装置等[2]。所以电助力式转向器弥补了上述的不足,而且节能环保,易于线性控制,所以现在很多研究人员把目光转向了电助力式转向机,瞬时其成为了国际汽车工业转向系统新的研究主题,且这种系统也正在慢慢实现整车量产状态。

线控技术

SBW的英文全称是Steering By Wire。中文意思是“线控转向系统”。该系统去掉了转向盘和转向轮之间的机械连接,减轻了大约5kg重量,消除了路面的冲击,具有降低噪声和隔振等优点。目前国外著名汽车公司和汽车零部件厂家竞相研究具有智能化的新一代转向系统,如美国Delphi公司、TRW公司、日木三菱公司、Koyo公司、德国Bosch 公司、ZF公司、BMW公司等都相继在研制各自的SBW系统,国内也开始涉足这一相关研究领域。 SBW系统由方向盘模块、转向执行模块和ECU3个主要部分以及自动防故障系统、电源等辅助模块组成。 方向盘模块包括方向盘、方向盘转角、力矩传感器、方向盘回正力矩电机。方向盘模块的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号并传递给主控制器;同时接受ECU送来的力矩信号,产生方向盘回正力矩以提供给驾驶员相应的路感信号。转向执行模块包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等。转向执行模块的功能是接受ECU的命令,控制转向电机实现要求的前轮转角,完成驾驶员的转向意图。ECU对采集的信号进行分析处理,判别汽车的运动状态,向方向盘回正力电机和转向电机发送命令,控制两个电机的工作。自动防故障系统是线控转向系的重要模块,它包括一系列监控和实施算法,针对不同的故障形式和等级作出相应处理,以求最大限度地保持汽车的正常行驶。汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。 SBW的工作原理是当转向盘转动时,转向传感器和转向角传感器将测量到的驾驶员转矩和转向盘的转角转变成电信号输入到ECU,ECU依据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。 二、DBW线控油门系统

汽车线控转向标准系统原理与未来消费前景

汽车线控转向系统原理与未来消费前景 观研天下 出版时间:2014年

导读:汽车线控转向系统原理与未来消费前景。线控转向系统是指通过通讯网络连接各部件的控制系统,它替代了传统的机械或液压连接,取消了转向盘和转向轮的机械连接,占据空间小,并可减少汽车发生碰撞时对驾驶员的伤害,线控转向系统提高了汽车的转动效率,缩短了系统响应的时间,从而进一步改善了驾驶特性,控制单元接收各种数据,可以在瞬时转向条件下,立刻提供转向动力,转动车轮。取消转向柱、转向器后,有利于提高汽车碰撞安全性和整车主动安全性。 参考《中国汽车零部件市场需求调研与投资战略分析报告(2013-2017)》 线控转向系统是指通过通讯网络连接各部件的控制系统,它替代了传统的机械或液压连接,取消了转向盘和转向轮的机械连接,占据空间小,并可减少汽车发生碰撞时对驾驶员的伤害,线控转向系统提高了汽车的转动效率,缩短了系统响应的时间,从而进一步改善了驾驶特性,控制单元接收各种数据,可以在瞬时转向条件下,立刻提供转向动力,转动车轮。取消转向柱、转向器后,有利于提高汽车碰撞安全性和整车主动安全性。交通工具如汽车、轮船、飞机都可以采用线控转向系统,从而增强了车辆的安全性和操纵稳定性。 1 线控转向系统的基本结构与工作原理 1.1 线控转向系统的基本结构 汽车线控转向系统是一种全新概念的转向系统,如图1 所示,它由方向盘模块、主控制器、车轮转向模块三个主要模块以及自动防故障系统、电源等辅助系统组成。 1) 方向盘总成由方向盘、方向盘转角传感器、方向盘回正力矩电机和力矩传感器等部件构成。方向盘总成首先是将驾驶人员的转向意图经过转换,变成数字信号,然后把数字信号传送给主控制器ECU,用于控制汽车前轮完成转向

Q-FDA 010-2016汽车转向横拉杆总成性能要求及台架试验方法(最终版本)修订20160121——A汇总

ICS 点击此处添加中国标准文献分类号Q/FD 北京福田戴姆勒汽车有限公司企业标准 Q/FD XXXXX—XXXX 汽车转向桥系统横拉杆总成结构、 性能要求及台架试验方法 点击此处添加标准英文译名 点击此处添加与国际标准一致性程度的标识 文稿版次选择 2016-XX-XX发布2016-XX-XX实施

目录 前言............................................................................... III 汽车转向桥系统横拉杆总成结构、性能要求及台架试验方法 (1) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 横拉杆零部件尺寸及结构要求 (3) 4.1 球接头总成尺寸及螺纹 (3) 4.2 横拉杆与球接头总成螺纹连接精度 (3) 4.3 横拉杆总成紧固装置结构技术要求 (3) 4.4 转向横拉杆卡箍螺栓螺母技术要求 (4) 5 转向横拉杆总成装配技术要求 (4) 5.1 装配技术要求 (4) 5.2 横拉杆球头防尘罩装配密封要求 (4) 5.3 横拉杆总成润滑介质要求 (4) 5.4 外观及防护要求 (4) 6 台架试验项目 (5) 7 台架试验设备及条件 (6) 8 台架试验方法 (6) 8.1 球接头相关试验 (6) 8.1.1 球接头总成最大摆角测定 (6) 8.1.2 球接头总成摆动力矩T1测定 (6) 8.1.3 球接头总成旋转力矩T2测定 (7) 8.1.4 最大轴向位移量δ1测定 (8) 8.1.5 最大径向位移量δ2测定 (8) 8.1.6 球销锥面配合面积检测 (9) 8.1.7 球接头总成球销拔出力 (9) 8.1.8 球接头总成球销压出力 (9) 8.1.9 球接头总成常温耐久性试验 (10) 8.1.10 球接头总成高温耐久性试验 (10) 8.1.11 球接头总成低温耐久性试验 (11) 8.1.12 球接头总成泥水环境耐久性试验 (11) 8.1.13 球接头防尘罩泥水环境耐久性试验 (12) 8.1.14 球接头防尘罩臭氧环境耐久性试验 (13) 8.1.15 球接头总成球销弯曲疲劳 (14) 8.1.16 球接头总成盐雾试验 (14) 8.2 转向直拉杆臂与转向横拉杆臂疲劳试验 (14) 8.2.1 转向直拉杆臂疲劳试验 (14) 8.2.2 转向横拉杆臂疲劳试验 (15)

汽车助力转向文献综述

文献综述 汽车转向是通过驾驶者转动方向盘,经过转向系统提供的操纵力以改变车轮角度来实现。助力转向是一种为了减轻驾驶员的操纵力而设有主力机构的转向装置。为方便驾驶员易于操纵转向系,动力转向已经成为汽车的标准装备。 黄蓉清认为:汽车汽车转向系统大致经历了无助力的纯机械转向(MS)、有液压助力的液压助力转向(HPS)、随车速改变助力大小的电控液压助力转向(ECHPS)、由电动机直接驱动转向油泵的电动液压助力转向(EHPS)、纯粹靠电动机提供助力的电动助力转向(EPS)、可变传动比转向系统(VGRS)等发展历程。专家们预测,未来汽车转向系统的发展趋势是线控转向(SBW),即取消方向盘与转向车轮之间原有的机械连接,而改用控制信号代替的一种电动转向系统。(电动助力转向的原理和发展,华南理工大学汽车工程学院,广东广州510640,黄蓉清,向铁明,许迎东)。电子助力转向系统的发展是朝着EPS的方向发展的,未来汽车配置中将必不可少的拥有电子助力转向系统,对司机的安全驾驶起到协助作用。 李国洪(电动助力系统控制单元的设计,天津理工大学,天津市复杂系统控制理论及应用重点实验室,天津300384)做出论断:在电动助力转向系统中,电子控制单元是整个系统的控制核心,也是驾驶系统的主要工作,电子控制单元设计要实现的主要功能如下: (1)采集方向盘扭矩信号和车速信号,并将其转化为DSP可以接收、处理的信号。 (2)根据控制要求,确定助力特性,将扭矩值换算成为电机提供的目标电流值。 (3)设计合适的驱动电路,将DSP的输出信号提供给直流助力电机。 (4)跟踪目标电流形成闭环控制,保证实际电流和目标电流的误差不超过允许范围. (5)对系统进行监控和保护,保证系统正常工作。 电动助力系统控制单元的设计是重中之重,对于控制单元的设计,我会尽力于老师沟通,毕竟控制单元一步错步步错,对于控制单元我细心加谨慎,来认真完成。 郝金魁认为(电动助力转向系统驱动电路的设计,石家庄铁道学院机械工程分院,2006-09-11,郝金魁,张超风):电动助力转向系统的硬件电路主要包括以下模块: MC9S12DP256 微控制器、电源电路、信号处理电路、直流电机功率驱动模块、故障诊断模块与显示模块、车速传感器、扭矩传感器、发动机点火信号、电流及电流传感器等接人处理电路, 另外还有电磁离合器等。 EPS 系统的硬件逻辑框架如图2 所示。

汽车线控转向技术的发展与应用

汽车线控转向技术的发展与应用 汽车转向系统的基本性能是保证车辆在任何工况下转动转向盘时有较理想的操纵稳定性。随着汽车电子技术的不断发展和汽车系统的集成化,汽车转向系统从传统的液压助力转向系统 (Hydraulic Power Steering System,HPS)、电控液压动力转向系统(Electronic Control Hydraulic Power Steering Sys-tern,ECHPS),发展到现在逐渐推广应用的电动液压动力转向系统(Electro-Hydraulic Power Steering System,EHPS)。近年来,汽车线控转向技术(Steer-ing-Bv-Wire,SBW)也成为国外的研究热点。SBW是X-By-Wire的一种。X-By-Wire的全称是“没有机械和液力后备系统的安全相关的容错系统”。“X”表示任何与安全相关的操作,包括转向、制动,等等。 1 汽车线控转向系统的结构和基本原理 1.1 汽车线控转向系统的结构 汽车线控转向系统由方向盘总成、转向执行总成和主控制器(ECU)三个主要部分以及自动防故障系统、电源等辅助系统组成,如图1所示。 方向盘总成包括方向盘、方向盘转角传感器、力矩传感器、方向盘回正力矩电机。方向盘总成的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号.并传递给主控制器:同时接受主控制

器送来的力矩信号,产生方向盘回正力矩.以提供给驾驶员相应的路感信息。转向执行总成包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等组成。转向执行总成的功能是接受主控制器的命令,通过转向电机控制器控制转向车轮转动,实现驾驶员的转向意图。 主控制器对采集的信号进行分析处理.判别汽车的运动状态,向方向盘回正力电机和转向电机发送指令,控制两个电机的工作,保证各种工况下都具有理想的车辆响应,以减少驾驶员对汽车转向特性随车速变化的补偿任务,减轻驾驶员负担。同时控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。当汽车处于非稳定状态或驾驶员发出错误指令时线控转向系统会将驾驶员错误的转向操作屏蔽,而自动进行稳定控制,使汽车尽快地恢复到稳定状态。 自动防故障系统是线控转向系的重要模块.它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度地保持汽车的正常行驶。作为应用最广泛的交通工具之一,汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。它采用严密的故障检测和处理逻辑,以更大地提高汽车安全性能。 电源系统承担着控制器、两个执行马达以及其它车用电器的供电任务,其中仅前轮转角执行马达的最大功率就有500-800 W,加上汽车上的其它电子设备,电源的负担已经相当沉重。所以要保证电网在大负荷下稳定工作,电源的性能就显得十分重要。 1.2汽车线控转向系统的原理简介 汽车转向系统是决定汽车主动安全性的关键总成,传统汽车转向系统是机械系统,汽车的转向运动是由驾驶员操纵转向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。汽车线控转向系统取消了转向盘与转向轮之间的机械连接.完全由电能实现转向,摆脱了传统转向系统的各种限制.不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间。是汽车转向系统的重大革新。

QCT5292021汽车动力转向器总成台架试验方法

QCT5292021汽车动力转向器总成台架试验方法 前言 本标准是对QC/T 529-1999《汽车掖压转向加力装置及动力转向器总成台架试验方法》的修订,性能试验部分依照国国情及有关文献,增加空载转动力矩测量。同时,对特性曲线的数据处理方法等效采纳QC/T 306-1999中有关内容,其余部分依照相关标准和征求意见情形略作更换。可靠性试验部分要紧参加德国相关标准,力求与我国有关标准相统一,其要紧内容与该标准等效。 本标准自实施日起,同时代替QC/T 529-1999。 本标准由国家机械工业局提出。 本标准由全国汽车标准化技术委员会归口。 本标准由长春汽车研究所负责起草。 本标准要紧起草人:郝金良、王宇阳、黄达时。 本标准由全国汽车标准化技术委员会负责说明。 中华人民共和国汽车行业标准QC/T 529—2000 汽车动力转向器总成台架试验方法代替QC/T 529—1999 1 范畴 本标准规定了汽车常流式液压动力转向器总成台架试验方法。 本标准使用与汽车常流式液压动力转向器总成(以下简称总成)。 本标准不适用于全液压转向器。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨

使用下列标准最新版本的可能性。 QC/T 306-1999 汽车动力转向操纵阀总成台架试验方法。 3 定义 本标准采纳下列定义。 循环 总成输入端由中间位置再向另一方向旋转至规定角度后,再回到中间位置为1个循环。 4 总则 4.1 本标准规定下列试验方法: a)性能试验; b)可靠性试验; 4.2 被试总成台架安装布置型式 4.2.1 总成试验时,应参考原车的布置型式。在相应的试验台架上进行,油罐承诺用试验台油箱,滤油器的绝对率精度不得低于原车,其它装置承诺用试验台上配备的装置代用。 4.2.2 试验用油料应符合残品使用说明书的要求,性能试验油温(50±5)℃,可靠性试验油温50~80℃,试验流量以产品说明书中提供的限制流量为准。4.3 试验用仪器外表测试误差 4.3.1 压力:出厂试验的压力测试误差不大于1.5%。型式试验的压力测试误差不大于0.5%。 4.3.2 流量:出厂试验的流量测试误差不大于1.5%。型式试验的流量测试误差不大于0.5%。 4.3.3 转矩:出厂试验的转距测试误差不大于2.0%。型式试验的转距测试误差不大于1.5%。 5 性能试验

汽车转向系统的技术发展趋势

综 述  汽车转向系统的技术发展趋势 武汉理工大学机电学院 赵 燕 周 斌 张仲甫 [摘要]多年来,转向系统经历了从舒适性到安全性再到环保性的演变。本文简要回顾了转向系统的技术发展趋势以及对其未来发展的预测。 关键词: 转向系统 电动转向器 1 概述 汽车转向系统是用于改变或保持汽车行驶方向的专门机构。其作用是使汽车在行驶过程中能按照驾驶员的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及汽车意外地偏离行驶方向时,能与行驶系统配合共同保持汽车继续稳定行驶。因此,转向系统的性能直接影响着汽车的操纵稳定性和安全性。以往转向器的生产厂商主要在质量、价格、舒适性及其他因素之间寻找平衡点,而且将改进汽车的舒适性、易操作性和安全性作为转向器的发展方向。然而,随着全球汽车总量的不断增加,汽车技术的发展在给人们带来便利和舒适的生活方式的同时,也导致了对环境的破坏。在21世纪,汽车技术的发展必须全方位考虑环保的问题。在此情况下,对转向系统的大量需求不仅仅是针对性能的改善,还应对更高层次的安全及环保要求采取相应的对策。本文展示了转向系统相关的技术趋势,包括当前的成果及对未来的展望。 2 汽车转向系统的发展概况 2.1 汽车的产品数量 汽车是在一个世纪前出现的,大规模的汽车制造可以远溯到1911年。相关技术的发展及二次世界大战中的技术更新促进了汽车工业的发展和进步。今天,汽车工业在世界上大部分国家的经济中起到了中心作用。1999年,全球轿车的总产量大约为3866万辆,比1998年增加大约2.2%;2000年世界汽车产量达5733万辆,比1999年增长2.8%[1],创历史新纪录。汽车生产大国日本在1999年生产了810万辆汽车,比1998年增加了0.6%[2]。由于中国及其他亚洲国家汽车市场的扩大,这种增长趋势还会持续下去。1992~2001年的10年里,我国汽车产量平均年增长15%,是同期世界汽车年均增长率的10倍。2000年我国生产汽车206.82万辆。2002年1~9月我国国产汽车实现销售237.11万辆,销售拉动生产,1~9月累计生产汽车234.15万辆,年底突破300万辆已胜券在握。我国“十五”计划的最后一年即2005年,汽车产量的预期目标是320万辆,其中轿车为110万辆[3]。然而,这种增长也具有负面影响,那就是会导致空气污染和其他负面的社会和环保问题。因此,随着汽车产量的增加,人们对具有更高水平的环保、节能、安全性的转向系统及其他汽车零部件的需求会越来越大。 2.2 转向系统的技术状况 对转向系统产品的需求随着汽车化的提高而发生着变化。最初驾驶员们只希望比较容易地操纵转向系统,而后则追求在高速行驶时的稳定性、舒适性和良好的操纵感。动力助力转向器系统应运而生。 在上世纪50年代,通用汽车公司推出循环球式液压动力转向系统。由油泵产生的液压力帮助驾驶员克服负载施加在转向系统上的操纵阻力。在过去的50年里,转向系统主要使用液压力来帮助驾驶员操纵汽车。汽车厂家已经为不同尺寸、不同质量、不同类型的汽车——从经济型到大的运动型汽车及大货车的液力和电液动力转向系统做了超凡的工作,使之成为当今动力转向系统的主力。 上世纪80年代出现的电动转向系统(EPS)则为动力转向器增添了新品种。EPS不仅可以提供汽车在高 ? 22 ?汽车研究与开发

东风轻型货车转向系统设计

毕业设计(论文)开题报告 学生姓名 郑蕊 系部 汽车工程系 专业、班级 车辆07—6班 指导教师姓名 姚佳岩 职称 副教授 从事 专业 车辆工程 是否外聘 □是■否 题目名称 东风轻型货车转向系统设计 一、课题研究现状、选题目的和意义 作为汽车的一个重要组成部分, 汽车转向系统是决定汽车主动安全性的关键总成, 如何设计汽车的转向特性, 使汽车具有良好的操纵性能, 始终是各汽车生产厂家和科研机构的重要研究课题。特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天, 针对更多不同水平的驾驶人群, 汽车的操纵设计显得尤为重要。汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动助力转向系统3 个基本发展阶段。1)纯机械式转向系统,由于采用纯粹的机械解决方案, 为了产生足够大的转向扭矩需要使用大直径的转向盘, 这样一来, 占用驾驶室的空间很大, 整个机构显得比较笨拙, 驾驶员负担较重, 特别是重型汽车由于转向阻力较大,单纯靠驾驶员的转向力很难实现转向, 这就大大限制了其使用范围。但因结构简单、工作可靠、造价低廉, 目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用。2)液压助力转向系统,1953 年通用汽车公司首次使用了液压助力转向系统, 此后该技术迅速发展, 使得动力转向系统在体积、功率消耗和价格等方面都取得了很大的进步。80 年代后期, 又出现了变减速比的液压动力转向系统。在接下来的数年内, 动力转向系统的技术革新差不多都是基于液压转向系统, 比较有代表性的是变流量泵液压动力转向系统( Variable Displacement Power Steering Pump) 和电动液压助力转向( Electric Hydraulic PowerSteering, 简称EHPS) 系统。变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下, 泵的流量会相应地减少, 从而有利于减少不必要的功耗。电动液压转向需要全套设计请联系Q Q1537693694系统采用电动机驱动转向泵, 由于电机的转速可调, 可以即时关闭, 所以也能够起到降低功耗的功效。液压助力转向系统使驾驶室变得宽敞, 布置更方便, 降低了转向操纵力, 也使转向系统更为灵敏。由于该类转向系统技术成熟、能提供大的转向操纵助力, 目前在部分乘用车、大部分商用车特别是重型车辆上广泛应用。但是液压助力转向系统在系统布置、安装、密封性、操纵灵敏度、能量消耗、磨损与噪声等方面存在不足。3)汽车电动助力转向系统(EPS),EPS 在日本最先获得实际应用, 1988 年日本铃木公司首次开发出一种全新的电子控制式电动助力转向系统, 并装在其生产的Cervo 车上, 随后又配备在Alto 上。此后, 电动助力转向技术得到迅速发展, 其应用范围已经从微型轿车向大型轿车和客车方向发展。日本的大发汽车公司、三菱汽车公司、本田汽车公司, 美国的Delphi 公司, 英国的Lucas 公司, 德国的ZF 公司, 都研制出了各自的EPS 。EPS 的助

汽车线控转向系统分析

龙源期刊网 https://www.360docs.net/doc/b911690870.html, 汽车线控转向系统分析 作者:于秀涛李博 来源:《中小企业管理与科技·上旬刊》2010年第10期 摘要:本文通过阐述汽车转向系统在汽车运行时的功能和作用,并介绍了线性转向系统的结构和性能,最后分析了线性转向系统中虚拟现实技术、人工神经网络、模糊控制等关键技术,并对2个自由度的整车动力学模型进行论述。 关键词:转向系统线控转向系统 0引言 转向系统是与汽车主动安全性能相关的重要系统,其操纵稳定性好坏对汽车性能影响很 大。操纵性是汽车准确的按照驾驶员意图行驶:稳定性是汽车在危险工况(侧滑或横摆)下汽车仍稳定行驶。 为提高操纵稳定性,出现了ESP(电子稳定程序)、主动转向、4WS(4轮转向)等。ESP判断 产生不足转向或过度转向时相应在后轮、前轮产生制动力,产生横摆力矩即纠偏力矩。主动前 轮转向(AFS-Active front steering)通过电机根据车速和行驶工况改变转向传动比。低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向 传动比较大,提高车辆的稳定性和安全性。同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。四轮转向的后轮也参与转向。低速时,后轮与前轮反向转向,减小转弯半径,提高机动灵活性。高速时,后轮与前轮同向转向,提高汽车的稳定性。其控制目标是质心侧偏角为零。 然而这些汽车转向系统却处于机械传动阶段,由于其转向传动比固定,汽车的转向响应特性随车速而变化。因此驾驶员就必须提前针对汽车转向特性的幅值和相位变化进行一定的操作补偿,从而控制汽车按其意愿行驶。如果能够将驾驶员的转向操作与转向车轮之间通过信号及控 制器连接起来,驾驶员的转向操作仅仅是向车辆输入自己的驾驶指令,由控制器根据驾驶员指令、当前车辆状态和路面状况确定合理的前轮转角,从而实现转向系统的智能控制,必将对车辆操纵稳定性带来很大的提高,降低驾驶员的操纵负担,改善人一车闭环系统性能。因而线控转向系统(Steering-By-Wire System,简称SBW)应运而生。SBW是X-By-Wire的一种。X--By--W的全称是“没有机械和液力后备系统的安全相关的容错系统”。“x”表示任何与安全相关的操作,包括转向、制动等等。“By--Wire”表示X--By--wire是一个电子系统。

汽车线控转向系统的台架试验

https://www.360docs.net/doc/b911690870.html, 汽车线控转向系统的台架试验1 于蕾艳1,林逸2,施国标2 (1 中国石油大学(华东)机电工程学院,山东东营; 2北京理工大学机械与车辆工程学 院,北京 100081) 摘要:线控转向系统取消了转向盘和转向轮之间的机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性。进行了线控转向系统的试验台架的软硬件设计,该台架可以验证线控转向系统的控制策略,进行路感电机、转向电机、传感器等关键部件的试验。试验结果表明,采用的路感电机控制算法能较好地实现对电流的伺服控制,可用于路感控制;转向电机控制算法能较好地实现对传动比的控制。 关键词:线控转向台架试验路感电机 中图分类号:U270.11 文献标识码:A 引言 线控转向(Steer-by-Wire ,SBW)系统对传统转向系统的根本变革是取消了转向盘和转向轮的之间机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性 [1][2][3][4]。国内对线控转向试验台研究尚不多。本文探讨了线控转向试验台的软硬件设计和控制策略验证等。 1线控转向系统的试验台架 线控转向系统的试验台架结构如图1所示,主要由转向阻力模拟装置、系统安装台架、测控系统及部分附件组成。线控转向系统包括转向管柱、齿轮齿条式转向器、横拉杆等,与试验台有3处连接位置,即转向管柱与转向管柱连接支架、转向器壳体与转向器连接架、转 1基金项目:奥运用纯电动客车整车优化及制造编号:D0305002040111

向横拉杆与转向阻力模拟装置(左、右各一)。此3处连接位置可调,以适应安装不同规格的线控转向系统。 1-铁地板;28-座椅;9-转向盘;10-转向盘扭矩传感器;11-转向盘转角传感器;12-线控转向管柱;13-支架; 14-导轨 图1 线控转向试验台结构 图2所示为测控系统硬件构成,测控系统由工控机、数据采集卡、测控软件、各种传感器、开关、继电器、按钮等组成。采用研华PC 作为测控计算机,其CPU 为PIV1.4G ,内存128M 。采用PC 作为测控计算机,是因为PC 具有很多优点:性能稳定,计算速度快,能实现复杂的控制算法;PC 的开发工具齐全,应用程序接口和图形界面非常友好;PC 储存器容量大,可以实时存储大量的试验数据用于分析计算;能使用通用操作系统和大多数编程语言;支持DOS 、Windows98、Windows NT/2000、UNIX 等多种通用操作系统,为控制系统的软硬件开发提供很大方便;围绕PC 的各种板卡标准化、系列化,系统集成灵活机动。试验台装有的传感器包括:转向盘转矩与转速传感器、转向盘转角传感器、齿条位移传感器、齿条拉压传感器、电机电流传感器及电压传感器。 转向阻力(左、右)模拟车速 图2 测控系统硬件构成 2线控转向系统匹配设计 路感电机采用直流有刷力矩伺服电机,转向电机采用三相交流步进电机。路感电机的最大力矩根据驾驶员作用在转向盘边缘的最大力确定: 1max T d max F

电动助力转向试验台架设计

电动助力转向试验台架设计 第1章引言 从上世纪50年代出现了汽车助力转向系统以来,经历了机械式、液压式、电控液压式等阶段,80年代开始研制电子控制式电动助力转向系统,简称EPS(Electric Power Steering)。EPS在机械式助力转向系统的基础上,用输入轴的扭矩信号和汽车行驶速度信号控制助力电机,使之产生相应大小和方向的助力,获得最佳的转向特性。EPS用仅在转向时才工作的助力电机代替了在汽车运行过程中持续消耗能量的液压助力装置,简化了结构,降低了能耗,动态地适应不同的车速条件下助力的特性,操作轻便,稳定性和安全性好,同时,不存在油液泄露和液压软管不可回收等问题。可以说,EPS是集环保、节能、安全、舒适为一体的机电一体化设计。 在EPS研究伊始,因为成本问题难以投入商业生产,再实验室阶段停留了许多年。随着控制元件成本大幅度降低,使EPS的实际应用成为可能。1988年3月日本铃木公司率先开发出商用EPS,1993年本田汽车公司将EPS装备于爱克NSX跑车,取得良好的市场效果。不久,美国的德尔费公司生产的EPS被菲亚特轿车作为标准装备。此后,日本的大发、三菱、本田,美国的TRW,德国的ZF都相继研制出各自的EPS产品。1999年,奔驰和西门子开始投巨资开发EPS。据专家预测,到2010年,全世界30%的轿车将会安装EPS。 国产汽车的动力转向器目前还处在机械—液压阶段,EPS的研究尚处于起步阶段。仅有为数有限的高校对EPS进行过系统结构方案设计、系统建模和动力分析等探索性研究。 为了便于了解其性能,开始了电动助力转向性能实验台的研制。由于这种实验台还没有相关的行业标准,本文借鉴了普通汽车转向器总成台架以及汽车动力转向器总成台架实验方法,并针对电动助力转向器的特点进行了实验方法的设计和实验台架的设计。实验方法设计中根据普通转向器以及汽车动力转向器总成台架实验方法中提到的几项常规实验和重要性能实验,结合现有的技术及设备条件进行归纳总结,确定八项功能实验,测定十项性能,以及进行可靠性实验,并规

相关文档
最新文档