三角换元法在两类问题中的应用

三角换元法在两类问题中的应用
三角换元法在两类问题中的应用

三角换元法在两类问题中应用 浙江省三门中学 王 强

最常见的三角换元是利用同角三角函数中的平方关系对代数式中满足:

221(1(x y x y +=+=或其它常数),或其它常数)

的结构进行三角代换以挖掘代数式中的隐含条件或以单一变量替换双变量发挥三角恒等变换的功能进行解题。

一、求无理函数式的值域:

(一)0,0)y ax b m =>>型函数

例:求函数y x =

解:令cos ,[0,]x θθπ=∈

,则cos sin )4

y π

θθθ=+=+

所以函数的值域为[-

(二)0,0)b

y m a m

=

>+

>型函数

例:求函数y =

解:注意到根式中:(1)(1)2x x ++-=(代数结构中的隐含关系)

,那么就是求函数:

2)y t =≤≤的值域,令22cos ,[0,]2

t π

θθ=∈

sin )2sin(),[0,]42y ππ

θθθθ∴=+=+∈

y ∴∈

变式:求函数y =

解:y =

(1)(2)3x x ++-=,那么就是求函数:

3)y t =≤≤的值域,令23cos ,[0,

]2

t π

θθ=∈

3sin()y θθθ?∴=+=+,其中锐角?

满足:sin 3cos ???

=??

?

?=??

[,

]2

π

θ???+∈+

y ∴∈

二、一类不等式问题的三角换元视角

例:已知实数,x y 满足22

41x y xy ++=,求2x y +的最大值

解析:本题是运用基本不等式进行结构变换求二元变量最值的典型例题,站在运用不等式的

角度:随着系数、结构的变化,问题也是越变越难,比如求x y +,22x y +的最值等,站

在三角换元的角度,22

+=1( )( )的结构是我们很熟悉的。

解:2241x y xy ++=

可变为:2

21()122y x x ??

+

+= ? ???

,令:1cos 2sin y x x θθ?

+=??

?

?=??

cos x y θθθ?

=??

∴??=-??

R θ∈

2cos )x y θθθ?∴+=

+=+

2[55

x y ∴+∈-

初三数学换元法专练

利用换元法解分式方程的四种常见类型 一、直接换元 例1 解方程015)1 (2)1(2=----x x x x . 解:设 y x x =-1 ,则原方程可化为01522=--y y . 解得 5,321=-=y y . 当3-=y 时,31 -=-x x ,解得 43=x ; 当5=y 时,51=-x x ,解得 45 =x . 经检验,4 5 ,4321==x x 是原方程的根. 二、配方换元 例2 解方程 1)1 (3)1(22 2 =+-+ x x x x . 解:原方程配方,得 05)1 (3)1(22=-+-+x x x x . 设,1y x x =+则05322 =--y y . 解得 25 ,121=-=y y . 当1-=y 时,,11-=+x x 即012 =++x x . 因为0311412 <-=??-=?, 所以方程012 =++x x 无实数根. 当25=y 时,,2 51=+x x 即02522 =+-x x . 解得 21 ,221==x x . 经检验,2 1 ,221==x x 是原方程的根. 三、倒数换元 例3 解方程 031 ) 1(21122=-+++++x x x x . 解:设 y x x =++1 12,则原方程可化为032 =-+y y .

去分母,整理,得0232 =+-y y ,解得 2,121==y y . 当1=y 时, 11 1 2=++x x ,即02=-x x . 解得 1,021==x x . 当2=y 时, 21 1 2=++x x ,即0122=--x x . 解得 21,2143-=+=x x . 经检验,,1,021==x x 21,2143-=+=x x 都是原方程的根. 四、变形换元 例4 解方程12 22 242 2 =+-+ -x x x x . 解:原方程可变形为052 22 )22(22 2 =-+-+ +-x x x x . 设y x x =+-222 ,则原方程可化为052 2=-+ y y . 去分母,整理,得02522 =+-y y . 解得 2 1,221= =y y . 当2=y 时,2222 =+-x x ,即022 =-x x . 解得 2 1,021==x x . 当21= y 时,2 1222 =+-x x ,即03242=+-x x . 因为044344)2(2 <-=??--=?, 所以方程03242 =+-x x 无实数根. 经检验,2 1 ,021= =x x 是原方程的根. 例1 解方程 分析 括号里的分式相同,由这个特点,知可用换元法来解。

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

初中数学因式分解中的换元法学法指导

初中数学因式分解中的换元法学法指导 徐卫东 刘建英 因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。 一、整体换元 例1 因式分解.2)1x x ()1x x (2424--++-+ 解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ). 1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+= 例2 若βα、是方程0c bx x 2=++的两根。因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++ 解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-= 设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α 同理),x )(1x (A β-+α-=β- 所以原式).1x )(1x )(x )(x (+β-+α-β-α-= 二、局部换元 例3 因式分解.14)8x 5x )(5x 5x (22-++-+ 解:设,A x 5x 2=+ 原式14)8A )(5A (-+-= ). 9x 5x )(6x )(1x () 9x 5x )(6x 5x () 9A )(6A (54 A 3A 2222+++-=++-+=+-=-+= 例4 因式分解.x )6x 5x )(6x 7x (222+++++ 解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++= 三、局部分解后,重组再换元 例5 因式分解.91)9x )(35x 4x 4(22---- 解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+?+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

换元法及其应用

换元法及其应用 高一(2)班(C3)张宇绪论:目的在于总结数学解题方法,灵活运用换元法解题。 (一)选题引入 【例一】 其中(>1),则的值域是_______。 【分析】 一般得求出的值域比较容易,但当的自变量也是一个函数的时候求 其值域相对比较困难,这时候换元法就大派用场了。 【解】 求的值域,首先要求出的表达式。 函数一般我们习惯还是用来表示,所以要把换成。 【例二】 解不等式:。 【分析】 这是包含对数函数的不等式,一般地对数函数或指数函数写起来都比较麻烦,当在一个等式或不等式中对数或指数出现次数很多的时候,一般可以考虑用换元法,把对数或指数换掉,这样可以简化计算的中间过程,减少因为写错写漏而引起的错误。 【解】 原不等式可以化为: 即,以2为底的对数函数是增函数。 ,以2为底的指数函数是增函数。

变量代换的一个共同的特点是:尽可能让外表结构简单明白,尽可能将新鲜的问题转化到熟悉的老问题中去。换元法关键的一步是变量代换,如何选择,如何代换直接影响计算的复杂度,甚至影响到能否解决问题。 (二) 选题概述 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 (三) 选题分类 1、局部换元 又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 +2 -2≥0,先变形为设2 =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 2、三角换元 应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =√1-X^2值域时,若x ∈[-1,1],设x =sin α ,sinα∈[-1,1 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x +y =r (r>0)时,则可作三角代换x =rco sθ、y =rsinθ化为三角问题。 3、均值换元 如遇到x +y =2S 形式时,设x = S +t ,y = S -t 等等。 (四) 换元法典型题归纳 1、整体换元 求函数x x x x y cos sin cos sin ++=的最大值. 解:设??t x x ?y x x t .2 1cos sin ),22(cos sin 2-=?≤≤-+=则 ?t t t y .1)1(2 12122-+=+-=故 当.221,2max +==??y ?t 时 2、三角换元 求函数25x x y -+=的值域. 解:令????x ],2 ,2[,sin 5ππθθ-∈=

中考数学复习专题三角函数与圆.docx

2011 中考数学复习专题—三角函数和圆 考点 1三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1. 如图所示, Rt △ ABC~ Rt △ DEF,则 cosE 的值等于() A .1 B.2C.3D. 3 2223 2. 如图,已知直角三角形ABC中,斜边 AB的长为 m,∠ B=40,则直角边 BC的长是() A. msin 40B. mcos 40 C . mtan40D. m tan 40 3. 王师傅在楼顶上的点 A 处测得楼前一棵树CD 的顶端 C 的俯角为 60,又知水平距离BD=10m,楼高 AB=24m,则树高 CD为() A . 24 10 3 m B.2410 3 m C . 24 5 3 m D.9m 3 4. 如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜, 光线从点 A出发经平面镜反射后刚好射到古城墙CD的顶端 C 处,已知 AB⊥ BD, CD⊥BD,且测得 AB=1.2 米, BP=1.8 米, PD=12 米,那么该古城墙的高度是() A . 6 米B. 8 米C. 18 米D. 24 米 5.如图所示,某河堤的横断面是梯形 ABCD,BC∥ AD,迎水坡 AB长 13 米,且 tan ∠ BAE=12 , 5 则河堤的高 BE为米。 6.如果,小明同学在东西方向的环海路 A 处,测得海中灯塔P 在北偏东 60 方向上,在A 处东 500 米的 B 处,测得海中灯塔P 在北偏东 30 方向上,则灯塔 P到环海路的距离PC=米(用根号表示)。

7.某大草原上有一条笔直的公路,在紧靠公路相距40 千米的 A、 B 两地,分别有甲、乙两个医疗站,如图,在 A 地北偏东 45 、B 地北偏西 60方向上有一牧民区C。一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案 I :从 A 地开车沿公路到离牧民区 C 最近的 D 处,再开车穿越草地沿DC方向到牧民区 C。方案Ⅱ:从 A 地开车穿越草沿 AC方向到牧民区 C。已知汽车在公路上行驶的速度是在草地上行驶速度的 3 倍。( 1)求牧民区到公路的最短距离CD。 ( 2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理并说明理由。(结果精确到,参考数据: 3 取,2取) 年初,我国南方部分省区发生了雪灾,造成通讯受阴。如图,现有某处山坡上一座发射 塔被冰雪从 C 处压折,塔尖恰好落在坡面上的点 B 处,在 B 处测得点C的仰角为 38 8,塔基 A 的俯角为 21 ,又测得斜坡上点 A 到点 B 的坡面距离AB 为 15 米,求折断前发射塔的高。(精确到 0.1 米)。 9.如图,山脚下有一棵树 AB,小华从点 B 沿山坡向上走 50 米到达点 D,用高为 1.5 米的测角仪CD测得树顶的仰角为 10 ,已知山坡的坡角为 15 ,求树 AB的高。(精确到 0.1 米)

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

高中数学3(换元法)

第 7 讲 换元法(高中版) (第课时) 换元法? ??? ??? ???? ??? ???? ?? ??????? ????三角代换均值代换 整体代换策略化超越式为代数式化无理式为有理式化分式为整式降次复杂问题简单化非标准问题标准化 用途 重点:1.;2.;3.。 难点:1.;2.;3.;。 我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子。换元的关键是构造元和设元。 换元的实质是转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式。换元后要注意新变量的取值范围,它既不能缩小也不能扩大。 换元法在因式分解、化简求值、恒等式证明、条件等式证明、方程、不等式、函数、数列、三角、解析几何等问题中有广泛的应用。 换元的常用策略有:整体代换(有理式代换,根式代换,指数式代换,对数式代换、复变量代换)、三角代换、均值代换等。 整体代换:在条件或者结论中,某个代数式反复出现,那么我们可以用一个字母来代替它, 当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角代换:如果把代数式换成三角式更容易求解时,可以利用代数式中与三角知识的联系进

行换元。例如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2 α ,α∈[0, π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。又如变量x 、y 适合条件x 2 +y 2 =r 2 (r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值代换:对两个类似的式子,可令其算术平均值为t 进行换元;如果遇到形如 S y x =+ 或 S y x =+2 2 这样的对称结构,可设 x =S 2+t ,y =S 2-t 或 t S x +=22 ,t S y +=2 2等等。 1.换元法在方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而利用这些常规的变形方法解题,有时会产生高次方程,解起来相当繁琐,甚至有时难于解得结果。对于某些方程,我们可以用新的变量来替换原有的变量,把原方程化成一个易解的方程。 例.(高二)如果关于x 的方程 0sin cos 22 2 4 =++θθx x 有相异的四实根,求θ的范围。 分析:此题已知条件的形式比较陌生,我们先看看能不能把它转化为我们所熟悉的形式。 令 t x =2 ,则原方程化为: 0sin cos 22 2=++θθt t ⑴ 使原方程有相异的四实根等价于使方程⑴有两不等正根。 由此得 ?? ? ? ?>>->-=?)4(0sin )3(0cos ) 2(0sin 4cos 4222θθθθ 即 ?? ? ??≠<>0sin 0cos 02cos θθθ 解之得 4 52432ππθππ+<<+ k k 且 )()12(J k k ∈+≠πθ 2.换元法在不等式中的应用 例.(高二)设对所于有实数x ,不等式x 2 log 241()a a ++2x log 221a a ++log 2()a a +142 2 >0 恒成立,求a 的取值范围。 分析:不等式中,log 241()a a +、 log 221a a +、log 2()a a +142 2 三项有何联系?对它们进 行变形后再实施换元法。 解: 设 log 2 21 a a +=t ,则 log 241()a a +=log 2812()a a +=3+log 2a a +12=3-log 221 a a +=3-t , log 2()a a +142 2 =2log 2 a a +12=-2t , 代入后原不等式简化为 (3-t )x 2 +2tx -2t>0 ,它对一切实数x 恒成立,

初中数学竞赛:换元法

初中数学竞赛:换元法 【内容提要】 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2.换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2 +bx+a=0. 两边都除以x 2,得a(x 2+2 1x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 【例题】 例1. 解方程1112---++x x x =x.

圆与三角函数专题

第21题专练 课前练习: 南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价) (1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少? 1.如图,在Rt △ABC 中,∠ACB =90°,BO 平分∠ABC 交AC 于点O ,以点O 为圆心,OC 长为半径作⊙O ,交AC 于点D . (1)判断直线AB 与⊙O 的位置关系,并说明理由; (2)若AD =2,tan ∠BOC =2,求⊙O 的半径. 2.在⊙O 中,AB ⌒=AC ⌒,点F 是AC 上一点,连接AO 并延长交BF 于E. (1)如图1,若BF 是△ABC 高,求证:∠CBF=∠CAE ; (2)如图2,若BF 是△ABC 内的角平分线,BC=10,COS ∠BCA=13,求AE 的长. 图2 图1

3.如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E (1) 若∠AOD =45°,求证:CE =2ED (2) 若AE =EO ,求tan ∠AOD 的值 4.如图,P A 是⊙O 的切线,A 为切点,点B 、C 均在⊙O 上,且P A =PB (1) 求证:PB 为⊙O 的切线 (2) 连AB ,若AB =6,tanC =2 3,求P A 的长 5.如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ; (2) 连接BE 交AC 于点F ,若cos ∠CAD = 4 5 ,求AF FC 的值. A

8常用数学方法-配方法、待定系数法、换元法

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C . 例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠ F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即

换元法在数学解题中的应用[开题报告]

毕业论文开题报告 信息与计算科学 换元法在数学解题中的应用 一选题的背景、意义 1.1 选题的背景[1] 从一种形态转化到另一种形态,这是数学发展的一个杠杆,也是集体常用的手段。数学史上这样的例子很多,无论是对一些具体问题的解决,还是在经典的数学方法中,都无不渗透着这一思想。解题中常用到的换元法,其实也是这一思想的具体体现。由于条件与结论中的变量关系在形式上的隐蔽,它们之间实质性的逻辑联系不易从表面形式上发现,即使看出它们之间的联系,也由于表面形式的复杂而不易直接求解。但当我们进行适当的变量代换,把问题的条件和结论作形式上的转换,这样就容易揭示出它们之间的内在联系,把问题化难为易,化繁为简。掌握了换元思想,不但可以比较顺利地解决一些较难的题目,还可以用多种方法解答同一个个问题,提高我们的思维。 当然,为了使问题得到解决,这种转换应该是有效的。什么是有效的转化?总的来说,有利于问题解决的转化就是有效转化。在具体问题中,针对转化的有效性,人们做了很多的探讨。以换元法为例,就有很多文章探讨了解方程中的换元技巧,积分中的换元技巧等等。每一类问题又由于其具体形式的不同,换元的形式也多种多样。分析各种还原形式的共同规律,可以捡起归纳为以下几类:定积分换元法、不定积分换元法、三角换元、二重积分换元法、含无理递推式的换元法和换元法在其他方面的应用。 1.2 选题的意义[2] 换元法在解决定积分、不定积分、三角函数、二重积分、含无理递推式等数学问题中有着广泛的应用,换元法是解决复杂繁琐数学问题的重要工具。 解数学问题时,当遇到代数中式子较烦或解法比较复杂时,如果能从式子的特殊性中挖掘并发挥换元的因素,这样往往能够产生更为简洁的解法,把繁难的计算和推理简化。从而达到化难为易、化深为浅、化繁为简的目的。这就是简化解题方案,寻求最佳解题法的有效方法。 当遇到题中含有几个变量或次数较高问题时,我们可以考虑用换元法,能否消去某些变量或降低变量次数,起到减元降次的作用。

中考数学复习专题三角函数与圆

2011中考数学复习专题—三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1.如图所示 ,Rt △ABC ~Rt △DEF ,则cosE 的值等于( ) A .2 1 B .2 2 C .2 3 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=ο40,则直角边BC 的长是( ) A .ο40sin m B .ο40cos m C .ο40tan m D .ο40tan m 3.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为ο60,又知水平距离BD=10m ,楼高AB=24m ,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东ο60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东ο30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

数学方法之换元法篇

数学方法之换元法篇 通过换元法可以把未知问题化为已知问题,把抽象问题化为具体问题,把较复杂的问题化为简单问题. 通过问题化为具体问题,把较复杂的问题化为简单问题. 通过换元可以清楚的认识问题的实质,迅速寻找和选择解决问题的途径的方法. 根据数式的特点常见的换元法有:(1)整体换元;(2)平均数换元法;(3)比值换元法;(4)三角代换法;(5)不等量换元法;(6)根式换元法;(7)倒数换元法;(8)相反数换元法;(9)坐标换元法等等. 一、整体换元 例1:求函数x x x x y cos sin cos sin ++=的最大值. 解析:设 ?? t x x ?y x x t .21 cos sin ),22(cos sin 2-=?≤≤-+=则 ? t t t y .1)1(2 12122-+=+-=故 当.22 1 ,2max +== ??y ?t 时 二、三角换元 例2:求函数2 5x x y -+=的值域. 解析:令????x ],2 ,2[,sin 5π πθθ- ∈=

). 4 sin(10cos 5sin 5|cos |5sin 5π θθθθθ+=+=+?=y 则 因为 2 2 π θπ ≤ ≤- ,所以 .4 34 4 π π θπ ≤ + ≤- 所以1)4 sin(22≤+≤- πθ,得 10 )4 sin(105≤+ ≤-π θ 所以函数的值域为[10 ,5?- ]. 三、平均数换元法 例3: 已知 正 数 .4 25 )1)(1(:,1,≥++=+y y x x ???y x y x?求证满足 证明:由题意可知x ,y 的平均数为2 1,令x =21+θ,y =21-θ(-21<θ<2 1), 则 .4 11625 23) 1)(1()1)(1(22422θθθ-+ += ++=++xy y x y y x x 显然分子 的值大于等于1625 , 分母的值大于0小于等于4 1,从而得证. 四、比值换元 例4:已知x ,y ,z 满足x -1=3 2 21-= +z y ,试问实数x ,y ,z 为何值时,x 2+y 2+z 2达到最

初中数学十大思想方法-换元法

初中数学思想与方法——换元法 一、内容提要 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0. 两边都除以x 2,得a(x 2+ 21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 二、例题 例1. 解方程1112---+ +x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x . 原方程化为: y - 21y 2=0 . 解得 y=0;或y=2.

圆中的三角函数

锐角三角函数和圆 复习目标 ● 巩固三角函数的概念、熟记30°,45°, 60°角的三角函数值; ● 熟练运用三角函数的定义,结合圆的特点,解决问题。 考察重点 ● 求三角函数值; ● 运用三角函数的知识,解决数学中的其他问题。 课前热身 1. 如图,PM 是⊙O 的切线,M 为切点,OM=5,PM=12,则sin ∠OPM 的 值为( ) A . B . C . D . 2. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形 顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则tan ∠APB 等于( ) A .1 B . C . D . 3. 如图,⊙O 中,OA ⊥BC ,∠AOB=60°,则sin ∠ADC= . 夯实基础 4. 根据三角函数的定义填空: 如图,△ABC 中,sinA= ,cosA= ,tanA= 。 例1 如图,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 等于( ) A . B . C .2 D . 6. (2016?衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作 ⊙ O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( ) A . B . C . D . c b a B A C C A P E A D C A B

解答精练 例3 如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC=BC ; (2)若AB=5,AC=4,求tan ∠DCE 的值. 8. 已知:如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA=4, OA=3,则cos ∠APO 的值为( ) A . B . C . D . 9. 如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 弦,则sin ∠OBD=( ) A . B . C . D . 10. 如图,∠1的正切值等于 . A 备用图 A

相关文档
最新文档