一维小波变换

一维小波变换
一维小波变换

一维小波变换

现在可以正式定义若干密切相关的小波变换:一般小波序列展开、离散小波变换和连续小渡变换。它们在傅里叶域的对应部分分别是傅里叶序列展开、离散傅里叶变换和连续傅里叶变换。在7.4节,将定义一种计算效率很高的称做快速小波变换的离散小波变换。

一.小波序列展开

首先根据小波φ(x)和尺度函数φ(x)为函数f(x)∈L2(R)定义小波序列展开。据式(7.2.27),可写出:

(7.3.1)

其中j0是任意开始尺度,c j0和d j(k)分别是式(7.2.12)和式(7.2.21)中αk的改写。c j0(k)通常称为近似值或尺度系数;d j(k)称为细节或小波系数。这是因为式(7.3.1)的第一个和式用足度函数提供了f(x)在尺度j0的近似[除非f(x)∈V j0,此时为其精确值]。对于第二个和式中每一个较高尺度的j≥j0,更细分辨率的函数(一个小波和)被添加到近似中以获得细节的增加。如果展开函数形成了一个正交基或紧框架(通常情况下是这样),基于式(7.2.5)和式(7.2.9)的展开系数计算如下:

(7.3.2)

(7.3.3)

如果展开函数是双正交基的一部分,上式中的φ和φ项要分别由它们的对偶函数和代替。

例7.7 y=x2的哈尔小波序列展开

考虑图7.13(a)中显示的简单函数:

使用哈尔小波——见式(7.2.14)和式(7.2.30)——和开始尺度J0=0,式(7.3.2)和式(7.3.3)可以被用来计算下述展开系数:

将这些值代入式(7.3.1),可以得到小波序列展开:

上述展开中的第一项用c0(0)生成待展开函数的V0子空间近似值。该近似值如图7.13(b)所示,是原始函数的平均值。第二项使用d0(0)通过从W0子空间添加一级细节来修饰该近似值。添加的细节及V1的结果近似值分别如图7.13(c)和(d)所示。其他级别的细节由子空间

W1的系数d1(0)和d1(1)给出。该附加细节如图7.13(e)所示,V2的结果近似值如图7.13(f)所示。注意,展开函数现在已经接近原始函数了。越高的尺度(或细节的级别越高)被叠加,近似值越变得接近函数的精确表示,它的极限是j→∞。

二.离散小波变换

与傅里叶序列展开相似,前节的小波序列展开将一个连续变量函数映射成一系数序列。如果待展开函数是一个数字序列,如连续函数f(x)的抽样值,得到的系数就称为f(x)的离散小波变换(DWT)。在这种情况下,式(7.3.1)到式(7.3.3)中定义的序列展开变成DWT变换对:

(7.3.5)

(7.3.6)

对于j≥j0还有:

(7.3.7)

这里,f(x),φjo,k(x)和φj,k(x)是离散变量x=0,1,2,·,M一1的函数。例如,对于某个x0,△x,x=0,1,2,…,M-1,f(x)=f(x0+x△x)。通常冷j0=0并选择M是2的幂(即M=2J),对x=0,l,2,,M -1,j=0,1,2,…,J-l和k=0,1,2,…,2j-1求和。对于哈尔小波,变换中使用的离散尺度和小波函数(即基函数)与7.l.3节中的M×M哈尔变换矩阵的行相对应。变换本身由M个系数组成,最小尺度是0,最大尺度是J-1。出于7.3.1节和例7.6中解释的原因,式(7.3.5)和式(7.3.6)中定义的系数分别称为近似值和细节系数。

式(7.3.5)到式(7.3.7)中的Wφ(j0,k)和Wφ(j,k)对应于前节的小波序列展开中的c j0(k)和d j(k)(这些变量的变化并不是必须的,但它为下一节的连续小波变换中的标准符号提供了铺垫)。注意,序列展开中的积分变成了求和,而曾在4.2.1节的DFT中出现的归一化因子1/M展开和反展开表达式中都有出现。该因子也可以在正展开和反展开表达式中以1

/M的形式出现。最后,应该记住,式(7.3.5)到式(7.3.7)只对正交基和紧框架有效。对于

双正交基,式(7.3.5)和式(7.3.6)中的φ和φ项必须由它们的对偶函数

~

φ

~

?

代替。

例 7.8 计算一维离散小波变换

为说明式(7.3.5)和式(7.3.7)的用途,考虑四点的离散函数:f(0)=1,f(1)=4,f(2)=-3和f(3)=0.因为M=4.J=2且由于j0=0,对x=0,1,2,3(且对于j=0,k=0,或者对于j=1,k=0,1)求和.将使用哈尔尺度和小波函数,并假定f9x)的4个采样值分布在基函数的支撑区上,基函数的值为1.将4个采样点代入式(7.3.5),可得:

因为对于x=0,1,2,3,φ0,0(x)=1.注意,这里采用的是哈尔尺度函数对于j=0且k=0的均匀空间采样.该值对应于7.1.3节的哈尔变换矩阵H4的第一行.继续使用式(7.3.6)和相似间隔的采样点φj,k(x)(它对应于H4的第2,3,4行),可得

因此,这种简单的四点采样函数的离散小波变换与哈尔小波和尺度函数的关系是{1,4,-1.52,-1.52.这里,变换系数是以它们计算的顺序安排的。

式(7.3.7)允许从变换中恢复出原始函数.重复求和,可得:

x=0,1,2,3.如果x=0

小波去噪代码

例1: load leleccum; index = 1:1024; x = leleccum(index); %产生噪声信号 init = 2055615866; randn('seed',init); nx = x + 18*randn(size(x)); %获取消噪的阈值 [thr,sorh,keepapp] = ddencmp('den','wv',nx); %对信号进行消噪 xd = wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例2: 本例中,首先使用函数wnoisest获取噪声方差,然后使用函数wbmpen获取小波去噪阈值,最后使用wdencmp实现信号消噪。 load leleccum; indx = 1:1024; x = leleccum(indx); %产生含噪信号 init = 2055615886; randn('seed',init); nx = x + 18*randn(size(x)); %使用小波函数'db6'对信号进行3层分解 [c,l] = wavedec(nx,3,'db6'); %估计尺度1的噪声标准差 sigma = wnoisest(c,l,1); alpha = 2; %获取消噪过程中的阈值 thr = wbmpen(c,l,sigma,alpha); keepapp = 1; %对信号进行消噪 xd = wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx);

基于小波变换的信号去噪研究

摘要 小波变换是一种新型的数学分析工具,是80年代后期迅速发展起来的新兴学科。小波变换具有多分辨率的特点,在时域和频域都具有表征信号局部特征能力,适合分析非平稳信号,可以由粗及精地逐步观察信号。小波分析的理论和方法在信号处理、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。 信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。那么究竟应该如何从含噪声的信号中提取出原始的信号,这就成了最重要的问题。经过长期的探索与努力、实验仿真,对比于加窗傅里叶对信号去噪,提取原始信号的方法,终于找到了一种全新的信号处理方法——小波分析。它将信号中各种不同的频率成分分解到互不重叠的频带上,为信号滤波、信噪分离和特征提取提供了有效途径,特别在信号去噪方面显出了独特的优势。 本文从小波变换的定义和信号与噪声的不同特性出发,在对比分析了各种去噪方法的优缺点基础上,运用了对小波分解系数进行阈值化的方法来对一维信号去噪,该方法对去除一维平稳信号含有的白噪声有非常满意的效果,具有有效性和通用性,能提高信号的信噪比。与此同时,本文还补充介绍了强制消噪处理、默认阈值处理、给定软阈值处理等对信号消噪的方法。在对含噪信号运用阈值进行消噪的过程中,对比了用不同分解层数进行处理的去噪效果。 本文采用的是用传感器采集的微弱生物信号。生物信号通常是噪声背景小的低频信号,而噪声信号通常集中在信号的高频部分。因此,应用小波分解,把信号分解成不同频率的波形信号,并对高频波进行相关的处理,处理后的高频信号在和分离出的低频信号进行重构,竟而,就得到了含少量噪声的原始信号。而且,随着分解层数的不同,小波去噪的效果也是不同的。并对此进行了深入的分析。 关键词:小波变换;声信号;默认阈值处理;降噪小波重构

小波变换程序

小波滤波器构造和消噪程序(2个) 1.重构 % mallet_wavelet.m % 此函数用于研究Mallet算法及滤波器设计 % 此函数仅用于消噪 a=pi/8; %角度赋初值 b=pi/8; %低通重构FIR滤波器h0(n)冲激响应赋值 h0=cos(a)*cos(b); h1=sin(a)*cos(b); h2=-sin(a)*sin(b); h3=cos(a)*sin(b); low_construct=[h0,h1,h2,h3]; L_fre=4; %滤波器长度 low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器 if(mod(i_high,2)==0); coefficient=-1; else coefficient=1; end high_construct(1,i_high)=low_decompose(1,i_high)*coefficient; end high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度 n=1:L_signal; %信号赋值 f=10; t=0.001; y=10*cos(2*pi*50*n*t).*exp(-20*n*t); figure(1); plot(y); title('原信号'); check1=sum(high_decompose); %h0(n)性质校验 check2=sum(low_decompose); check3=norm(high_decompose); check4=norm(low_decompose); l_fre=conv(y,low_decompose); %卷积 l_fre_down=dyaddown(l_fre); %抽取,得低频细节 h_fre=conv(y,high_decompose); h_fre_down=dyaddown(h_fre); %信号高频细节 figure(2);

全变分信号去噪的最佳参数选择方法

全变分信号去噪的最佳参数选择方法 摘要:基于现有的全变分信号去噪过程中依靠经验选择参数使得去噪效果精确度低的问题,本文提出一种新颖的全变分信号去噪的最佳参数选择方法,将粒子群优化算法(PSO,Particle Swarm Optimization)运用其中,首先研究了全变分 图像去噪模型,介绍标准PSO算法过程,结合粒子群优法来选择最佳参数,分析了粒子群优法选择参数的过程,实验结果显示了本文所提出的参数选择方法有效性和可靠性。 关键词:全变分;信号去噪;粒子群优化算法 DOI:10.16640/https://www.360docs.net/doc/b91968919.html,ki.37-1222/t.2016.12.127 0 引言 在图像获取或传输的过程中,由于受到各种因素的影响,图像不可避免地受到了噪声的污染,给后续图像处理过程带来了极大的困难。因此图像去噪是图像处理中一个重要环节,图像的噪声去除和细节保护是一对矛盾关系,图像的低通滤波在去除噪声的同时,产生图像边缘的模糊,而人对图像的高频成分是敏感的。近年来,全变分法的图像降噪技术得到了应用,我们在运用全变分模型来去噪时候会用到很多参数。而在以前的研究中,在选取这些参数的最佳数值时,通常是依赖经验来选取的。也就是依靠经验在某个数值范围中选取

适当参数值,然后去尝试处理图像。参数少的话,其组合还可以罗列。而如果参数多的话,这显然是不太方便的。运用PSO来选取最佳参数正是基于这样的背景下提出的。 1 研究现状 1992年,Rudin、Osher和Fatemi提出了一种基于全变 分(TV,Total Variation )模型的去噪方法[1]。该方法实质 上就是各向异性扩散,它能在去噪的同时很好地保持图像的边缘。由于全变分方法引入偏微分方程的各向异性扩散方程用于图像去噪,在平滑噪声的同时,可以使边缘得到保持,较好地解决了恢复图像细节和抑制噪声之间的矛盾[2]。基于偏微分方程的变分模型方法高质量的处理效果已引起国内 外研究学者的广泛重视[3]。近年来又有其他研究者发现全变分模型存在的不足,提出了一种基于平滑核的广义变分模型[4]。实验结果表明,该模型对于高斯噪声污染的图像能取得良好的恢复效果,相比于全变分模型,该模型获得的去噪后的图像具有更好的客观评价指标和细节保护能力,同时还有效避免了阶梯效应[5]。Bing S提出了一种基于范数的广义的TV 去噪模型该模型能克服假边缘的产生,且在去噪的同时 保持了边缘,但该模型的峰值信噪比较低[6]。鉴于上述存在的局限,本文在前人研究变分问题直接解法的基础上,建立求解含一阶导数的变分问题优化模型,构造出了适应度函数,从而使得PSO算法成功应用到变分问题的求解当中。

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

基于MATLAB的信号去噪研究

江西理工大学应用科学学院毕业设计 基于MATLAB的信号去噪研究 摘要 随着现代计算机技术的研究和发展,人们对波形去噪技术的要求越来越高。为了满足此要求,语音识别技术应运而生。这在过去的几十年中,波形去噪发展得很快,在很多方面都有很大的进展。但是要将小波去噪真正运用于实际,还有许多问题需要解决,主要为外界去噪问题和去噪精度问题。 本论文对小波分别进行了时域分析、频域分析和波形分析,分析了去噪语音信号预处理问题。预处理过程包括数字化去噪信号小波去噪。文中介绍了小波分析的基本理论,小波阈值去噪法的主要思想,比较了不同阈值规则情况下不同阈值不同小波函数的去噪结果。 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时-频分析,借助时- 频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MA TLAB中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文简述了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变化;滤波;去噪

杨燕:基于MA TLAB的信号去噪研究 The Study of De-noising Based on the MATLAB Signal Abstract With the development of modern computer technology, the demands on man-machine communication technologies has increased greatly. V oice-recognition technology appeared on the scene in order to satisfy this requirement. This technology which can recognition humanity's voice accuracy and execute command will be widely used and of important research value. In the past decades of years , voice-recognition technology had made a great improvement in many areas(such as Time ranging from long-Match, establish recognition model, running time, etc). The recognition rate of voice-recognition system has reached a very high standard, especially in a quiet environment. However, the practical applications of calculus voice-recognition system existed many problem which mainly focus on de-noising and accurately-recogniting. In this paper, a voice-recognition system of non-specific people with isolated word in noisy environments is proposed. The research which based on the theoretical of Speech signal, meet a practical applications require of voice-recognition system. The wavelet analysis theory is a new signal processing theory. It has a very good topicality in time and frequency, which makes the wavelet analysis very suitable for the time - frequency analysis. With the time - frequency?s local analysis characteristics, the wavelet analysis theory has become an important tool in the signal de-noising. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory. This paper has summarized several methods about the wavelet de-noising, in which the threshold de-noising is a simple, effective method of wavelet de-noising. Key Word:Wavelet change;Filtering;Denoisin

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 1.2 傅立叶变换与小波变换的比较 小波分析是傅立叶分析思想方法的发展与延拓。它自产生以来,就一直与傅立叶分析

一维信号小波阈值去噪

一维信号小波阈值去噪 1、小波阈值处理基本理论所谓阈值去噪简而言之就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。 2、阈值函数的选取小波分解阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中关键的一步。设w表示小波系数,T为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数:(小波系数的绝对值低于阈值的置零,高于的保留不变) 软阈值函数:(小波系数的绝对值低于阈值的置零,高于的系数shrinkage处理) 式(3-8)和式(3-9)用图像表示即为: 值得注意的是: 1)硬阈值函数在阈值点是不连续的,在下图中已经用黑线标出。不连续会带来振铃,伪吉布斯效应等。 2)软阈值函数,原系数和分解得到的小波系数总存在着恒定的偏差,这将影响重构的精度 同时这两种函数不能表达出分解后系数的能量分布,半阈值函数是一种简单而经典的改进方案。见下图: 选取的阈值最好刚好大于噪声的最大水平,可以证明的是噪声的最大限度以非常高的概率

小波分解案列(程序)

简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。 虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。 小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。 对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。 通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可

以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。 实例 % By lyqmath % DLUT School of Mathematical Sciences 2008 % BLOG:https://www.360docs.net/doc/b91968919.html,/lyqmath clc; clear all; close all; load leleccum; % 载入信号数据 s = leleccum; Len = length(s); [ca1, cd1] = dwt(s, 'db1'); % 采用db1小波基分解 a1 = upcoef('a', ca1, 'db1', 1, Len); % 从系数得到近似信号 d1 = upcoef('d', cd1, 'db1', 1, Len); % 从系数得到细节信号 s1 = a1+d1; % 重构信号 figure; subplot(2, 2, 1); plot(s); title('初始电源信号'); subplot(2, 2, 2); plot(ca1); title('一层小波分解的低频信息'); subplot(2, 2, 3); plot(cd1); title('一层小波分解的高频信息'); subplot(2, 2, 4); plot(s1, 'r-'); title('一层小波分解的重构信号'); 结果 总结 小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

基于小波去噪的微弱信号提取

0 引言 微弱信号检测和提取是近年来兴起的关于提取和测量强噪声背景下微弱信号的方法,也是信号处理领域中经常遇到的问题。在工程应用中,往往存在着有用信号较弱,而噪声较强的情况,例如在机械故障检测与诊断中,当机器发生故障时,若机器中潜伏着某一零部件的早期微弱缺陷时,该缺陷信息被其它零部件的运行振动信号和随机噪声所淹没。为了有效地提取弱故障信息,实现早期诊断,可以用小波分析理论,对信号进行小波分解,把信号分解为各个频段的信号,再根据诊断的目的选取包含所需零部件故障信息的频段序列,进行深层信息处理以查到机器的故障源。小波变换是一种新的变换分析方法,通过变换能够充分突出问题某些方面的特征,利用小波变换良好的时频特性,可以在低信噪比情况下提取信号的波形信息。 1 小波变换的原理 1.1 小波变换的定义 设f (t )是平方可积函数,即f (t )L 2(R ),则该连续函数的小波变换定义为[1] : (1) ψ*(t )生成因子。 基于小波去噪的微弱信号提取 The extraction of weak signal based on wavelet denoising 刘正平,冯召勇,杨卫平 LIU Zheng-ping, FENG Zhao-yong, YANG Wei-ping (华东交通大学 机电工程学院,南昌 330013) 摘 要: 小波分析理论是近几年来兴起的一种信号处理理论,已经成为信号去噪处理中的一种重要的工具。介绍了小波分析理论及其在信号去噪中的应用,并主要介绍了三种噪声处理方法:默认阈值法、强制阈值法和独立阈值法,运用小波分解与重构去噪方法,实现含噪信号的去噪处理。仿真结果证明:在信号分析中,利用小波变换来实现信噪分离提取弱信号是一种非常有效的方法。 关键词:小波分析;小波重构;消噪 中图分类号:TN911.6 文献标识码:A 文章编号:1009-0134(2010)08-0098-04Doi: 10.3969/j.issn.1009-0134.2010.08.32 小波能够消噪主要由于小波变换具有如下特点: 低熵性。小波系数的稀疏分布,使信号处理后的熵降低。 多分辨特性。由于采用了多分辨的方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等,可以在不同分辨率下根据信号和噪声的分布来去除噪声。 去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更有利于去噪。 基函数选择更灵活。小波变换可以灵活选择基函数,也可以根据信号特点和降噪要求选择多带小波、小波包等,对不同的场合,可以选择不同的小波基函数。1.2 含噪信号模型假设 假设一个含噪的一维信号的模型为: (2) 其中s (k )号,f (k )为有用信号,e (k )为噪声信号。通常e (k )表现为高频信号,而工程实际中f (k )通常表现为低频信号,或者是一些比较平稳的信号。噪声e (k )一般假设成是一个平稳的高斯白噪声,其小波系数的平均功率与尺度成反比。小波变换的目的就是要抑制e (k )以恢复f (k )。1.3 小波分解与重构法去噪的过程 小波变换运用在信号降噪处理中,主要是针 收稿日期:2009-10-11 作者简介:刘正平(1963-),男,湖南桃江人,教授,主要从事机电设备状态监测与故障诊断软硬件的研究工作。

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

信号阈值去噪实例

信号阈值去噪实例 例1:信号阈值去噪一 程序daimaru代码如下: load leleccum; indx=1:1024; x=leleccum(indx); %产生噪声信号 init=2055615866; randn('seed',init); nx=x+18*randn(size(x)); %获取消噪的阈值 [thr,sorh,keepapp]=ddencmp('den','wv',nx); %对信号进行消噪 xd=wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例2:信号阈值去噪二 在本例中,首先使用函数wnoiset获取噪声方差,然后使用函数wbmpen获取小波去噪阈值,最后使用函数wdencmp实现信号消噪。

程序代码如下: load leleccum; indx=1:1024; x=leleccum(indx); %产生含噪信号 init=2055615866; randn('seed',init); nx=x+18*randn(size(x)); %使用小波函数'db6'对信号进行3层分解 [c,l]=wavedec(nx,3,'db6'); %估计尺度1的噪声标准差 sigma=wnoiset(c,l,1); alpha=2; %获取消噪过程中的阈值 thr=wbmpen(c,l,sigma,alpha); keepapp=1; %对信号进行消噪 xd=wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例3:信号阈值去噪三 在本例中,对小波分解系数使用函数wthcoef进行阈值处理,然后利用阈值处理后的小波系数进行重构达到去噪目的。

小波去噪函数

转:小波函数介绍(wden) 2012-11-23 16:08:41| 分类:小波与神经网络|举报|字号订阅 小波函数介绍(wden)Wden函数:一维信号的小波消噪处理 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,‘wname’);返回经过小波消噪处理后的信号xd及其小波分解结构。 输入参数tptr为阈值选择标准: thr1=thselect(x,'rigrsure');%stein无偏估计; thr2=thselect(x,'heursure');%启发式阈值; thr3=thselect(x,'sqtwolog');%固定式阈值; thr4=thselect(x,'minimaxi');%极大极小值阈值; 输出参数sorh为函数选择阈值使用方式: Sorh=s,为软阈值;

Sorh=h,为硬阈值; 输入参数scal规定了阈值处理随噪声水平的变化: Scal=one,不随噪声水平变化。 Scal=sln,根据第一层小波分解的噪声水平估计进行调整。 Scal=mln,根据每一层小波分解的噪声水平估计进行调整。 [xd,cxd,lxd]=wden(c,l,tptr,sorh,scal,n,‘wname’);由有噪信号的小波分解结构得到消噪处理后的信号xd,及其小波分解结构。 例:比较不同阈值算法进行信号消噪的处理结果; r=2055415866; snr=3;%设置信噪比;

[xref,x]=wnoise(3,11,snr,r);%产生有噪信号; lev=5; xdH=wden(x,'heursure','s','sln',lev,'sym6');%heursure阈值信号处理;xdR=wden(x,'rigrsure','s','sln',lev,'sym6');%rigrsure阈值信号处理;xdS=wden(x,'sqtwolog','s','sln',lev,'sym6');%sqtwolog阈值信号处理;xdM=wden(x,'minimaxi','s','sln',lev,'sym6');%minimaxi阈值信号处理;subplot(3,2,1); plot(xref);title('原始信号'); axis([1,2048,-10,10]); subplot(3,2,2); plot(x);title('有噪信号');

基于小波分析的一维信号处理方法研究

基于小波分析的一维信号处理方法研究 [摘要]小波分析是在傅立叶变换的基础上发展起来的一种时频分析方法。作为一种新的变换域信号处理方法,小波变换尤其擅长处理在非平稳信号的分析。 目前,这种分析方法已经广泛应用于信号处理、图像处理、量子场论、分形理论等领域 。 【关键词 】小波分析 ;时域 ;频域 1 前言 小波分析是近年来发展起来的一门新技术,是建立在Fourier 分析、泛函分析、调和分析 及样条分析基础上的分析处理工具。是傅里叶分析发展史上里程碑式的进展,它被看成是调和分析这一数学领域半个世纪以来工作的结晶。在信号处理方面Fourier 变换是不可缺少的分析工具,但由于Fourier 只适用于平稳信号的分析,不能做局部分析,加窗Fourier 变换无法满足正交性。且窗口大小固定,它不能敏感反映信号的突变,而小波分析优于Fourier 分析之处在于它的时间域和频率域同时具有良好的局部化性质,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。这种特性正符合低频信号变化缓慢而高频信号变化迅速的特点,使小波变换县有对信号的自适应能力。有一个灵活可变的时间-频率窗,它被称为多分辨分析,并且常被誉为信号分析的“数学显微镜”。 2 小波分析的发展历史 小波分析方法的提出,可以追溯到1910年Haar 提出的小“波”规范正交基及1938年Littlewood-Paley 对Fourier 级数建立的L-P 理论,即按二进制频率成分分组。Fourier 变换的相位变化本质上不影响函数的形状及大小。其后,Calderon 于1975年用其早年发现的再生公式给出抛物型空间上H 1的原子分解,它的离散形式已接近小波展开,只是还无法得到组成一个正交系的结论。1981年,Stromberg 对Haar 系统进行了改进,证明了小波函数的存在性。1984年,法国地球物理学家Morlet 在分析地震波的局部性质时,发现传统的Fourier 变换难以达到要求,引入“小波”概念对信号进行分解。随后,理论物理学家Grossman 对Morlet 的这种信号按一个确定函数的伸缩,平移系展开的可行性进行了研究,这无疑为小波分析的形成开了先河。 真正的小波热开始于1986年,Meyer 创造性的构造出了具有一定衰减性的光滑函数ψ,其二进制伸缩与平移/2,{()2(2):,}j j k j t t k j k z ψψ--=-∈构成L 2(R)的规范正交 基。继Meyer 提出了小波变换之后,Lemarie 和Battle 又分别独立地给出了具有指数衰减的小波函数。1987年,Mallat 巧妙地将计算机视觉领域内的多尺度分析的思

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

相关文档
最新文档