杂环化合物

杂环化合物
杂环化合物

第14章杂环化合物

杂环化合物是由碳原子和非碳原子共同组成环状骨架结构的一类化合物。这些非碳原子统称为杂原子,常见的杂原子为氮、氧、硫等。前面已经学过的内酯、内酰胺、环醚等化合物都是杂环化合物,但是这些化合物的性质与同类的开链化合物类似,因此都并入相应的章节中讨论。本章将主要讨论的是环系比较稳定、具有一定程度芳香性的杂环化合物,即芳杂环化合物。

杂环化合物的种类繁多,数量庞大,在自然界分布极为广泛,许多天然杂环化合物在动、植物体内起着重要的生理作用。例如:植物中的叶绿素、动物血液中的血红素、中草药中的有效成分生物碱及部分苷类、部分抗生素和维生素、组成蛋白质的某些氨基酸和核苷酸的碱基等都含有杂环的结构。在现有的药物中,含杂环结构的约占半数。因此,杂环化合物在有机化合物(尤其是有机药物)中占有重要地位。

第一节分类和命名

一、杂环化合物的分类

芳杂环化合物可以按照环的大小分为五元杂环和六元杂环两大类;也可按杂原子的数目分为含一个、两个和多个杂原子的杂环,还可以按环的多少分为单杂环和稠杂环等。见表14-1。

表14-1 有特定名称的杂环的分类、名称和标位

14-1

二、杂环化合物的命名

(一)有特定名称的稠杂环14-2

杂环化合物的命名比较复杂。现广泛应用的是按IUPAC(1979)命名原则规定,保留特定的45个杂环化合物的俗名和半俗名,并以此为命名的基础。我国采用“音译法”,按照英文名称的读音,选用同音汉字加“口”旁组成音译名,其中“口”代表环的结构。见表14-1。

(二)杂环母环的编号规则

当杂环上连有取代基时,为了标明取代基的位置,必须将杂环母体编号。杂环母体的编号原则是:

1.含一个杂原子的杂环

含一个杂原子的杂环从杂原子开始编号。见表14-1中吡咯、吡啶等编号。

2.含两个或多个杂原子的杂环

含两个或多个杂原子的杂环编号时应使杂原子位次尽可能小,并按O、S、NH、N 的优先顺序决定优先的杂原子,见表14-1中咪唑、噻唑的编号。

3.有特定名称的稠杂环的编号有其特定的顺序

有特定名称的稠杂环的编号有几种情况。有的按其相应的稠环芳烃的母环编号,见表14-1中喹啉、异喹啉、吖啶等的编号。有的从一端开始编号,共用碳原子一般不编号,编号时注意杂原子的号数字尽可能小,并遵守杂原子的优先顺序;见表14-1中吩噻嗪的编号。还有些具有特殊规定的编号,如表14-1中嘌呤的编号。

4.标氢

上述的45个杂环的名称中包括了这样的含义:即杂环中拥有最多数目的非聚集双键。当杂环满足了这个条件后,环中仍然有饱和的碳原子或氮原子,则这个饱和的原子上所连接的氢原子称为“标氢”或“指示氢”。用其编号加H(大写斜体)表示。例如:

N N

H O O

1H-吡咯2H-吡咯2H-吡喃4H-吡喃

若杂环上尚未含有最多数目的非聚集双键,则多出的氢原子称为外加氢。命名时要指出氢的位置及数目,全饱和时可不标明位置。例如:

14-3

N N O

H H

1,2,3,4-四氢喹啉2,5-二氢吡咯四氢呋喃

含活泼氢的杂环化合物及其衍生物,可能存在着互变异构体,命名时需按上述标氢的方式标明之。例如:

N

N N

N

N

N

N

N H

H

9H-嘌呤7H-嘌呤

(三)取代杂环化合物的命名

当杂环上连有取代基时,先确定杂环母体的名称和编号,然后将取代基的名称连同位置编号以词头或词尾形式写在母体名称前或后,构成取代杂环化合物的名称。例如:

N

N NH2N

N

N N

N

CH3

NH2

H

H

2-氨基咪唑8-羟基喹啉8-甲基-6-氨基-9H-嘌呤

O CHO N COOH

N

SO3H

OH

2-呋喃甲酸3-吡啶甲酸8-羟基喹啉-5-磺酸

(四)无特定名称的稠杂环的命名

绝大多数稠杂环无特定名称,可看成是两个单杂环并合在一起(也可以是一个碳环与一个杂环并合),并以此为基础进行命名。

1.基本环与附加环的确定

稠杂环命名时,先将稠合环分为两个环系,一个环系定为基本环或母环;另一个为

14-4

14-5

附加环或取代部分。命名时附加环名称在前,基本环名称在后,中间用“并”字相连。例如:

S

N H

噻吩并

23,-附加环基本环附加环编号1

2

3

a

b

c d e

基本环的选择原则:

(1) 碳环与杂环组成的稠杂环,选杂环为基本环。例如:

O

N

N

N

苯并呋喃(呋喃为基本环) 苯并嘧啶(嘧啶为基本环) 苯并喹啉(喹啉为基本环)

(2) 由大小不同的两个杂环组成的稠杂环,以大环为基本环。例如:

N

N O

O

H

吡咯并吡啶(吡啶为基本环) 呋喃并吡喃(吡喃为基本环)

(3) 大小相同的两个杂环组成的稠杂环,基本环按所含杂原子N 、O 、S 顺序有限确定。例如:

S

O

N S

H

噻吩并呋喃(呋喃为基本环) 噻吩并吡咯(吡咯为基本环)

(4) 两环大小相同,杂原子个数不同时,选杂原子多的为基本环;杂原子数目也相同时,选杂原子种类多的为基本环。例如:

N

N

N

N O

N

N H

吡啶并嘧啶(嘧啶为基本环) 吡唑并噁唑(噁唑为基本环)

(5)如果环大小、杂原子个数都相同时,以稠合前杂原子编号较低者为基本环。例如:

N

N N

N N N N

N H H

吡嗪并哒嗪(哒嗪为基本环) 咪唑并吡唑(吡唑为基本环)

(6)当稠合边有杂原子时,共用杂原子同属于两个环。在确定基本环和附加环时,

14-6 均包含该杂原子,再按上述规则选择基本环。例如:

N

N S

咪唑并噻唑(噻唑为基本环)

2.稠合边的表示方法

稠合边(即共用边)的位置是用附加环和基本环的位号来共同表示的。基本环按照原杂环的编号顺序,将环上各边用英文字母a 、b 、c …表示(1,2之间为a ;2,3之间b …)。附加环按原杂环的编号顺序,以阿拉伯数字标注各原子。当有选择时,应使稠合边的编号尽可能小。表示稠合边位置时,在方括号内,阿拉伯数字在前,英文字母在后,中间用短线相连。阿拉伯数字排列顺序按英文字母顺序为准,相同时数字从小到大,相反时从大到小。例如:

N N N N N N N 123456123456a b c

d e a b c d e

吡啶并[3,2-e]嘧啶 吡嗪并[2,3-c]哒嗪

N N N N N N S H

H 1

2

34

5a

b c

d

e 1

23

4

5a b

c

d e

咪唑并[4,5-d]吡唑 咪唑并[2,1-b]噻唑

3.周边编号

为了标示稠杂环上的取代基、官能团或氢原子的位置,需要对整个稠杂环的环系进行编号,称为周边编号或大环编号。其编号原则是:

(1)尽可能使所含的杂原子编号最低,在保证编号最低的前提下,再考虑按O 、S 、NH 、N 的顺序编号。例如:

N

N N O

1

2

3

456

H

1

2

3

4

5

6

1

2

3

4

56N

N N O

H

N

N N O

H

不是也不是

(2)共用杂原子都要编号,共用碳原子一般不编号,如需要编号时,用前面相邻的位号加a 、b …表示。例如:

14-7

8837

a

b

12

3456

a N N

33

CH 33

(3)在不违背前两条规则的前提下,编号时应使共用杂原子位号尽可能低,使所有氢原子的总位号尽可能小。例如:

3

123

7a

1

2

4

56

b N N O

H 3C

H

4.命名实例

N N

NH N OH

N

H 3C

1

2

34

5

6

7

1

2

34

5

67

8

910

a

b

c d

e

a b c d

1

2

34

5

f

g h

4-羟基-1H-吡唑并[3,4-d]嘧啶(别嘌醇) 9-甲基苯并[h]异喹啉

N N O

C O

Ph N N

S

Ph

1

2

34

5

6

7

8

1

2

34

56

7

9

1011

a b 1

2

a

b

a

b

1

2

1111

2-环己甲酰基-1,3,4,6,7,11b-六氢 6-苯基-2,3,5,6-四氢咪唑并[2,1-b]噻唑 -2H-吡嗪并[2,1-a]异喹啉-4-酮 (驱虫净) (吡喹酮)

第二节 六元杂环化合物

六元杂环化合物是杂环类化合物最重要的部分,尤其是含氮的六元杂环化合物,如吡啶、嘧啶等,他们的衍生物广泛存在与自然界,很多合成药物也含有吡啶环和嘧啶环。六元杂环化合物包括含一个杂原子的六元杂环;含两个杂原子的六元杂环;以及六元稠杂环等。

一、含一个杂原子的六元杂环

(一)吡啶

吡啶是从煤焦油中分离出来的具有特殊臭味的无色液体,沸点为115.3℃,比重为0.982,是性能良好的溶剂和脱酸剂。其衍生物广泛存在于自然界中,是许多天然药物、染料和生物碱的基本组成部分。

1.电子结构及芳香性

吡啶的结构与苯非常相似,近代物理方法测得,吡啶分子中的碳碳键长为139pm,介于C-N单键(147pm)和C=N双键(128pm)之间,而且其碳碳键与碳氮键的键长数值也相近,键角约为120°,这说明吡啶环上键的平均化程度较高,但没有苯完全。

吡啶环上的碳原子和氮原子均以sp2杂化轨道相互重叠形成σ键,构成一个平面六元环。每个原子上有一个p轨道垂直于环平面,每个p轨道中有一个电子,这些p轨道侧面重叠形成一个封闭的大π键,π电子数目为6,符合4n+2规则,与苯环类似。因此,吡啶具有一定的芳香性。氮原子上还有一个sp2杂化轨道没有参与成键,被一对未共用电子对所占据,是吡啶具有碱性。吡啶环上的氮原子的电负性较大,对环上电子云密度分布有很大影响,使π电子云向氮原子上偏移,在氮原子周围电子云密度高,而环的其他部分电子云密度降低,尤其是邻、对位上降低显著。所以吡啶的芳香性比苯差。见图14-1。

N

1. 00 1. 01

0. 84

1. 43

0. 87

(a)吡啶的分子轨道示意图(b)吡啶中氮原子的杂化轨道(c) 吡啶的电子云密度

图14-1 吡啶的结构

在吡啶分子中,氮原子的作用类似于硝基苯的硝基,使其邻、对位上的电子云密度比苯环降低,间位则与苯环相近,这样,环上碳原子的电子云密度远远少于苯,因此象吡啶这类芳杂环又被称为“缺π”杂环。这类杂环表现在化学性质上是亲电取代反应变难,亲核取代反应变易,氧化反应变难,还原反应变易。

2.物理性质

14-8

14-9

(1)偶极矩 吡啶为极性分子,其分子极性比其饱和的化合物——哌啶大。这是因为在哌啶环中,氮原子只有吸电子的诱导效应(-I ),而在吡啶环中,氮原子既有吸电子的诱导效应,又有吸电子的共轭效应(-C )。

(2)溶解度 吡啶与水能以任何比例互溶,同时又能溶解大多数极性及非极性的有机化合物,甚至可以溶解某些无机盐类。所以吡啶是一个有广泛应用价值的溶剂。吡啶分子具有高水溶性的原因除了分子具有较大的极性外,还因为吡啶氮原子上的未共用电子对可以与水形成氢键。吡啶结构中的烃基使它与有机分子有相当的亲和力,所以可以溶解极性或非极性的有机化合物。而氮原子上的未共用电子对能与一些金属离子如Ag +、Ni 2+、Cu 2+等形成配合物,而致使它可以溶解无机盐类。

(3)光谱性质

吡啶的红外光谱(IR ):芳杂环化合物的红外光谱与苯系化合物类似,在3070~3020cm-1处有C —H 伸缩振动,在1600~1500cm-1有芳环的伸缩振动(骨架谱带),在900~700cm-1处还有芳氢的面外弯曲振动。吡啶的红外吸收光谱见图14-2。

图14-2 吡啶的红外吸收光谱图 吡啶的核磁共振氢谱(1HNMR ):吡啶的氢核化学位移与苯环氢(δ7.27)相比处于低场,化学位移大于7.27,其中与杂原子相邻碳上的氢的吸收峰更偏于低场。当杂环上连有供电子基团时,化学位移向高场移动,取代基为吸电性时,则化学位移向低场移动。吡啶的NMR δ(ppm )数据如下:

N H

H H H H

a b c

a

b

a

b c

8.607.257.64

吡啶的紫外吸收光谱(UV ):吡啶有两条紫外光谱吸收带,一条在240~260nm (ε=2000),相应于π→π*跃迁(与苯相近)。另一条在270nm 的区域,相应于n →π*跃迁(ε=450)。吡啶的紫外吸收光谱见图14-3。

图14-3 吡啶的紫外吸收光谱图

3.化学性质

14-10 (1)碱性和成盐 吡啶氮原子上的未共用电子对可接受质子而显碱性。吡啶的pKa 为5.19,比氨(pKa9.24)和脂肪胺(pKa10~11)都弱。原因是吡啶中氮原子上的未共用电子对处于sp2杂化轨道中,其s 轨道成分较sp3杂化轨道多,离原子核近,电子受核的束缚较强,给出电子的倾向较小,因而与质子结合较难,碱性较弱。但吡啶与芳胺(如苯胺,pKa4.6)相比,碱性稍强一些。

吡啶与强酸可以形成稳定的盐,某些结晶型盐可以用于分离、鉴定及精制工作中。吡啶的碱性在许多化学反应中用于催化剂脱酸剂,由于吡啶在水中和有机溶剂中的良好溶解性,所以它的催化作用常常是一些无机碱无法达到的。

吡啶不但可与强酸成盐,还可以与路易斯酸成盐。例如:

N

N HCl

HCl

H

Cl

N

N BF 3

N

BF 3

BF 3

N

N

N SO 3

SO 3

SO

3

其中吡啶三氧化硫是一个重要的非质子型的磺化试剂。

此外,吡啶还具有叔胺的某些性质,可与卤代烃反应生成季铵盐,也可与酰卤反应成盐。例如:

N

N

3

CH 3I

I

碘化N 甲基吡啶

N

N

COCH 3

CH 3C

O

Cl

氯化N 乙酰基吡啶

Cl

吡啶与酰卤生成的N-酰基吡啶盐是良好的酰化试剂。

(2)亲电取代反应 吡啶是“缺π”杂环,环上电子云密度比苯低,因此其亲电取代反应的活性也比苯低,与硝基苯相当。由于环上氮原子的钝化作用,使亲电取代反应的条件比较苛刻,且产率较低,取代基主要进入3(β)位。例如:

N

NO2 N

SO3H N

Br

N

N

1

2

3

4

5

β

γ

Cl

不发生反应

与苯相比,吡啶环亲电取代反应变难,而且取代基主要进入3(β)位,可以通过中间体的相对稳定性来说明这一作用。

2(α)位取代:

N

E

N

H

E

特别不稳定

3(β)位取代:

N

H

E

N

E

4(γ)位取代:

N

H E

N

E

特别不稳定

由于吸电性氮原子的存在,中间体正离子都不如苯取代的相应中间体稳定,所以,吡啶的亲电取代反应比苯难。比较亲电试剂进攻的位置可以看出,当进攻2(α)位和4(γ)位时,形成的中间体有一个共振极限式是正电荷在电负性较大的氮原子上,这种极限式极不稳定,而3(β)位取代的中间体没有这个极不稳定的极限式存在,其中间体要比进攻2位和4位的中间体稳定。所以,3位的取代产物容易生成。

(3)亲核取代反应由于吡啶环上氮原子的吸电子作用,环上碳原子的电子云密度降低,尤其在2位和4位上的电子云密度更低,因而环上的亲核取代反应容易发生,取代反应主要发生在2位和4位上。例如:

N Ph

N

N

PhLi

NaNH2

LiH

H O

3

N NH2

14-11

14-12 吡啶与氨基钠反应生成2-氨基吡啶的反应称为齐齐巴宾(Chichibabin )反应,如果2位已经被占据,则反应发生4位,得到4-氨基吡啶,但产率低。

如果在吡啶环的α位或γ位存在着较好的离去基团(如卤素、硝基)时,则很容易发生亲核取代反应。如吡啶可以与氨(或胺)、烷氧化物、水等较弱的亲核试剂发生亲核取代反应。例如:

N

Cl

N

N

OH

N OCH

3

CH 3ONa 3

N

Cl Cl

N

Cl

NHCH 3

CH 3NH 22

(4)氧化还原反应 由于吡啶环上的电子云密度低,一般不易被氧化,尤其在酸性条件下,吡啶成盐后氮原子上带有正电荷,吸电子的诱导效应加强,使环上电子云密度更低,更增加了对氧化剂的稳定性。当吡啶环带有侧链时,则发生侧链的氧化反应。例如:

N

Ph

N

COOH

N

CH 3N COOH

N

COOH

N

N CH

3

/H

H 3O

烟碱(尼古丁)

烟酸

吡啶在特殊氧化条件下可发生类似叔胺的氧化反应,生成N-氧化物。例如吡啶与过氧酸或过氧化氢作用时,可得到吡啶N-氧化物。

N

N O

N

CH 3H 2O 23H 2O 23395%

,,

N

CH 3O

吡啶N-氧化物可以还原脱去氧。

14-13

N

N O

在吡啶N-氧化物中,氧原子上的未共用电子对可与芳香大π键发生供电子的p-π共轭作用,使环上电子云密度升高,其中α位和γ位增加显著,使吡啶环亲电取代反应容易发生。又由于生成吡啶N-氧化物后,氮原子上带有正电荷,吸电子的诱导效应增加,使α位的电子云密度有所降低,因此,亲电取代反应主要发生在4(γ)上。同时,吡啶N-氧化物也容易发生亲核取代反应。例如:

N O

N NO 2

NO 2

N O

N

OCH 3

OCH 3

N O

PCl 3

NH 2N

N O

N

Ph

PCl 3

H 3O

N O

与氧化反应相反,吡啶环比苯环容易发生加氢还原反应,用催化加氢和化学试剂都可以还原。例如:

N

N H

H 2/Pt MPa

.95%

哌啶

N

CH 2CH 3

H

CH 2CH 3

N 64%

吡啶的还原产物为六氢吡啶(哌啶),具有仲胺的性质,碱性比吡啶强(pKa11.2),沸点106℃。很多天然产物具有此环系,是常用的有机碱。

(5)环上取代基与母环的影响 取代基对水溶解度的影响:当吡啶环上连有-OH 、-NH 2后,其衍生物的水溶度明显降低。而且连有-OH 、-NH 2数目越多,水溶解度越小。例如:

14-14 N

N

OH

N

NH 2

N

OH

OH

水溶解度 ∞ 1:1 1:1 溶解

其原因是吡啶环上的氮原子与羟基或氨基上的氢形成了氢键,阻碍了与水分子的缔合。

取代基对碱性的影响:当吡啶环上连有供电基时,吡啶环的碱性增加,连有吸电基时,则碱性降低。与取代苯胺影响规律相似。例如:

N

N

CH 3

N

CHO

N

CH 3

N

NO 2N

Cl

pKa 5.19 5.60 6.02 3.53 3.80 0.8

(二)喹啉与异喹啉

喹啉和异喹啉都是由一个苯环和一个吡啶环稠合而成的化合物。

N

N 1

2

3

4

567

8

1

2

3

4

5

67

8

喹啉(Quinoline ) 异喹啉(Isoquinoline ) 苯并[b]吡啶 苯并[c]吡啶

喹啉和异喹啉都存在与煤焦油中,1834年首次从煤焦油中分离出喹啉,不久,用碱干馏抗疟药奎宁(Quinine )也得到喹啉并因此而得名。喹啉衍生物在医药中起着重要作用,许多天然或合成药物都具有喹啉的环系结构,如奎宁、喜树碱等。而天然存在的一些生物碱,如吗啡碱、罂粟碱、小檗碱等,均含有异喹啉的结构。

1.结构与物理性质

喹啉和异喹啉都是平面性分子,含有10个π电子的芳香大π键,结构与萘相似。喹啉和异喹啉的氮原子上有一对未共用电子对,均位于sp2杂化轨道中,与吡啶的氮原子相同,其碱性与吡啶也相似。由于分子中增加了憎水的苯环,故水溶解度比吡啶大大降低。其物理性质见表14-2。

14-15

表14-2 喹啉、异喹啉及吡啶的物理性质

名称 沸点(℃) 熔点(℃) 水溶解度 苯溶解度 pKa 喹 啉 238 -15.6 溶(热) 混溶 4.90 异喹啉 243 26.5 不溶 混溶 5.42 吡 啶 115.5 -42 混溶 混溶 5.19

2.化学性质

喹啉和异喹啉环系是由一个苯环和一个吡啶环稠合而成的。由于苯环和吡啶环的相互影响,使喹啉和异喹啉发生亲电取代反应、亲核取代反应、氧化反应和还原反应应有以下规律:

(1)亲电取代反应发生在苯环上,其反应活性比萘低,比吡啶高,取代基主要进入5位和8位。

(2)亲核取代反应发生在吡啶环上,反应活性比吡啶高。喹啉取代主要发生在2位上,异喹啉取代主要发生在1位上。

(3)氧化反应发生在苯环上(过氧化物氧化除外)。 (4)还原反应发生在吡啶环上。例如:

N

N

NO 2

N

NO

2

52%

48%

N

SO 3H

N

24

35%

N

N Br

N

N

NH 2

NaNH 2

N NH 2

N

23

N CH 2CH 3

N

323O

14-16 N

H

N

COOH

COOH

N

H

COOH

N

COOH

N O N

223

N

N H /Pt

2或H

NH N

Na CH 3COOH

3.喹啉及其衍生物的合成

合成喹啉及其衍生物的常用方法是斯克劳普(Skraup )合成法。用苯胺(或其它芳胺)、甘油(或α,β不饱和醛酮)、硫酸、硝基苯(相应于所用芳胺)共热,即可得到喹啉及其衍生物。

NH 2

NO 2

CH 2OH CHOH CH 2

OH

N

NH 2

反应过程包括以下步骤:

(1)甘油在浓硫酸作用下脱水生成丙烯醛;

CH CH 2CH 2OH

OH

OH

CH 2CHCHO

H 2O

(2)苯胺与丙烯醛经麦克尔加成生成β-苯胺基丙醛;

N

CHO 2CH

C O H

H δδ

δδ

(3)醛经过烯醇式在酸催化下脱水关环得到二氢喹啉;

14-17

N

OH

N C HO

H

N

CHO

H H

H H H

(4)二氢喹啉与硝基苯作用脱氢成喹啉,硝基苯被还原成苯胺,继续进行反应。

NH

2

N

NO 2

N

H

若想合成各种取代的喹啉,则可以用取代的苯胺,α,β-不饱和醛酮,浓硫酸和取代硝基苯共热来完成。此类反应称为多伯纳-米勒(Doebner-Miller )反应。

NH 2

R 1

R 2

NO 2

R 1

R 2

N R 2

R 1

R 5

R 4R 3

24

C HC

R 5R 4

C O

R 3

例如:

CH 2OH

CHOH CH 2OH

NH 2

OH

2

N

OH

24

NO 2

NH 2

N

CH

3

24CH 3CH CHCHO

NO 2

Cl

NO 2

N Cl

CH 3

H

SO CH 2

CCHO CH 3

NH 2

CH

CHCHO

H 2SO 4

NO 2

N

(三)含氧原子的六元杂环

最简单的含氧六元杂环是吡喃。吡喃有两种异构体,2H -吡喃(α-吡喃)和4H -吡喃(γ-吡喃)。吡喃在自然界不存在,4H -吡喃由人工合成得到。自然界存在的是吡喃羰基衍生物,称为吡喃酮。吡喃酮的苯稠合物是许多天然药物的结构成分。

14-18 O O O

O

O

2H-吡喃 4H-吡喃 α-吡喃酮 γ-吡喃酮

从结构上看,α-吡喃酮为不饱和内酯,不稳定,室温放置会慢慢聚合。γ-吡喃酮是稳定的晶形化合物,但在碱性条件下也容易水解,可以看成是插烯内酯。

O O OH

COONa CHO COOH

NaOH

2

H

O

O

NaOH

2H

HO

O

OH

CHO CHO

O

γ-吡喃酮不显示羰基的典型性质,不与羰基试剂反应,而能与质子及路易斯酸结合形成蛘盐。通常醚的佯盐是不稳定的,遇水即分解,而γ-吡喃酮的佯盐比较稳定,能与硫酸二甲酯发生甲基化反应。这种现象曾一度使有机化学家感到费解,直到1924年才有人提出:γ-吡喃酮的醚氧原子与羰基形成共轭体系,电子云密度重新分配,改变了正常羰基的性质。而吡喃酮环成盐后变为一个芳香体系,从而增加其稳定性。

O

O

O

OH

Cl

O OBF 3

O

OCH 3

I

很多天然产物中存在着苯并α-吡喃酮或苯并γ-吡喃酮的结构,这类化合物也有上述性质,与强酸成盐及遇碱水解开环,这在中草药成分的分离方面有实际价值。例如,当归素和黄芩素。

O C

CH 3O

OCH 3

CH

C

H 3C H 3C

O

COO OH

CH 3O

C

OCH 3

CH

O

C

H 3C H 3C

14-19

O

HO HO

OH O

OH O OH HO

HO O

OH

O HO HO

OH O

OH

在当归素中存在着苯并α-吡喃酮(又称香豆素)结构,在黄芩素中存在着苯并γ-吡喃酮(又称色酮)结构。

O O

O O 1234

12

34αβγ

αβγ

苯并α-吡喃酮 苯并γ-吡喃酮 (香豆素) (色酮)

在苯并γ-吡喃酮(色酮)的2位和3位被苯环取代后的产物称为黄酮和异黄酮,黄酮和异黄酮及其衍生物组成了黄酮体。黄酮体是一种分布很广的黄色色素,许多是天然药物的有效成分,黄酮体常和它们的苷类共存于植物中。例如:中药黄芩中的黄芩素和黄芩苷;葛根中的大豆黄素和大豆黄苷等。

O

HO HO

OH O OH

O

O

O

O

黄酮 异黄酮 黄芩素

O

HO C 6H 9O 6O

OH O OH

O

O

OH

HO

O

O

OH

C 6H 11O 5O

黄芩苷 大豆黄素 大豆黄素苷

二、含两个杂原子的六元杂环

(一)哒嗪、嘧啶和吡嗪

含两个氮原子的六元杂环化合物总称为二氮嗪。“嗪”表示含有多于一个氮原子的六元杂环。二氮嗪共有三种异构体,其结构和名称如下:

N N

N

N

N

N

12 3

4 5

6

12 3

4 5

6

12 3

4

5

6

哒嗪嘧啶吡嗪

哒嗪、嘧啶和吡嗪是许多重要杂环化合物的母核,其中以嘧啶环系最为重要,广泛存在于动植物中,并在动植物的新陈代谢中起重要作用。如核酸中的碱基有三种含嘧啶衍生物,某些维生素及合成药物(如磺胺药物及巴比妥药物等)都含有嘧啶环系。

1.结构与芳香性

二氮嗪类化合物都是平面型分子,与吡啶相似。所有碳原子和氮原子都是sp2杂化的,每个原子未参与杂化的p轨道(每个p轨道有一个电子)侧面重叠形成大π键,两个氮原子各有一对未共用电子对在sp2杂化轨道中。二嗪类化合物具有芳香性,属于芳香杂环化合物。

2.物理性质

二氮嗪类化合物由于氮原子上含有未共用电子对,可以与水形成氢键,所以哒嗪和嘧啶与水互溶,而吡嗪由于分子对称,极性小,水溶解度降低。三种二氮嗪的物理性质见表14-3。

表14-3 哒嗪、嘧啶及吡嗪的物理性质

哒嗪嘧啶吡嗪

偶极矩13.1×10-30C.m 6.99×10-30C.m 0

水溶度∞∞溶解

熔点(℃) -6.4 22.5 54

沸点(℃) 207 124 121

pKa 2.33 1.30 0.65

3.化学性质

(1)碱性二氮嗪的碱性均比吡啶弱。这是由于两个氮原子的吸电作用相互影响,使其电子云密度都降低,减弱了与质子的结合能力。二氮嗪类化合物虽然含有两个氮原子,但它们都是一元碱,当一个氮原子成盐变成正离子后,它的吸电子能力大大增强,致使另一个氮原子上的电子云密度大大降低,很难再与质子结合,不再显碱性,故为一元碱。

(2)亲电取代反应二氮嗪类化合物由于两个氮原子的强吸电作用使环上电子云密度更低,亲电取代反应更难发生。以嘧啶为例,其硝化、磺化反应很难进行,但可以发生卤代反应,卤素进入电子云相对较高的5位上。

14-20

杂环化合物 练习及答案

第十七章杂环化合物 1.写出下列化合物的构造式: (1) 3-甲基吡咯(2) 碘化N,N-二甲基四氢吡咯(3) 四氢呋喃 (4) β-氯代呋喃(5)α-噻吩磺酸(6) 糠醛,糠醇,糠酸 (7)γ-吡啶甲酸(8)六氢吡啶 (9)β-吲哚乙酸(10) 8-羟基喹啉 2.用化学方法区别下列各组化合物: 解:(1)苯,噻吩和苯酚 加入三氯化铁水溶液,有显色反应的是苯酚。在浓硫酸存在下,与靛红一同加热显示蓝色的位噻吩。 (2) 吡咯和四氢吡咯 吡咯的醇溶液使浸过浓盐酸的松木片变成红色,而四氢吡咯不能。 (3) 苯甲醛和糠醛 糠醛在醋酸存在下与苯胺作用显红色。 3. 用化学方法,将下列混合物中的少量杂质除去。 解:(1) 苯中混有少量噻吩 在室温下用浓硫酸处理,噻吩在室温与浓硫酸反应生成α-噻吩磺酸而溶于浓硫酸,苯不反应。 (2) 甲苯中混有少量吡啶 用浓盐酸处理,吡啶具有碱性而与盐酸生成盐溶于水相,分离出吡啶。 (3) 吡啶中有少量六氢吡啶。 六氢吡啶是仲胺,在氢氧化钠水溶液中与对甲基苯磺酰氯反应生成固体,过滤除去六氢吡啶。 4. 试解释为什么噻吩,吡咯,呋喃比苯容易发生亲电取代反应而吡啶比苯难发生? 解:噻吩,吡咯,呋喃是五元杂环化合物,属于多л-电子杂环化合物,芳环上电子云密度比苯大,所以易于发生亲电取代。而吡啶是六元杂环化合物,是缺л-电子杂环化合物,芳环上电子云密度小于苯环,所以难于发生亲电取代反应。 5. 完成下列反应式:

解: 6.用箭头表示下列化合物起反应时的位置。 解: 1. 7 8 9 10 ( ( (11.C 5H 4O 2的 O C 5H 4O 3 C 4H 4O 。

杂环化合物

第10章杂环化合物 §10.1 杂环化合物的分类和命名 10.1.1 分类 1、按照环的多少分类 ?单杂环:常见的是五元杂环和六元杂环,环上的杂原子有一个或两个。 ?五元杂环: ?六元杂环: ?吡喃没有芳香性,生成盐后则具有芳香性。 ?稠杂环:由苯环与单杂环或两个以上单杂环稠合而成的。 10.1.2 命名 常见的基础杂环多数是具有芳香性的,命名时作为杂环化合物的母核。 1、音译法 中文名称采用音译法,用带口字旁的同音汉字表示。 对于无特定名称的杂环化合物,中国化学会1980年颁布的有机化学命名原则规定: 采用“杂”字作介词,把杂环看作是相应的碳环母核中碳原子被杂原子置换后的衍生物来命名。 ?国外现在采用的Hantzsch-Widman系统,规范了10元以下一般杂环的词尾词干的书写

格式。 ?为了正确表明取代基位置,需将杂环母核编号,编号规则主要有: (1)含一个杂环原子的单杂环,从杂原子开始编号。 有时也使用希腊字母,把靠近杂原子的位置叫做α位,其次是β位,再其次是γ位。 (2)含两个及以上相同杂环原子的单杂环,编号从连有氢原子的杂原子开始,并使另一杂原子所在位次保持最小。 (3)含两个及以上不同杂环原子的单杂环,编号从价数小杂原子开始,价数相同时则从原子序数小的开始。 ?因此,常见杂原子编号优先顺序为O、S、N。 ?一般常见的稠杂环有特定的编号,或是沿用习惯。 §10.2 五元杂环化合物 10.2.1 结构和物理性质 1、结构 这三种杂环上的原子都是sp2杂化,为平面结构。 ?每个碳原子垂直于环平面的p轨道有一个电子,杂原子垂直于环平面的p轨道有二个电子。

杂环化合物

第十七章 杂环化合物 一、写出下列化合物的构造式: 1,3-甲基吡咯 2,碘化N,N -二甲基四氢吡咯 3,四氢呋喃 4,β-氯代呋喃 5,α-噻吩磺酸 6,糠醛,糠醇,糠酸 7,γ-吡啶甲酸 8,六氢吡啶 9,β-吲哚乙酸 10,8-羟基喹啉 H 1. CH 3 N 2. N CH 3 CH 3 + I -O 3. 4. Cl O 5. S SO 3H 6. O O O CHO CH 2OH COOH 7. COOH N 8. N H 9. N H CH 2COOH 10. N 二、用化学方法区别下列各组化合物: 1,苯,噻吩和苯酚 解:加入三氯化铁水溶液,有显色反应的是苯酚。在浓硫酸存在下,与靛红一同加热显示蓝色的位噻吩。 2,吡咯和四氢吡咯 解:吡咯的醇溶液使浸过浓盐酸的松木片变成红色,而四氢吡咯不能。 3,苯甲醛和糠醛 解:糠醛在醋酸存在下与苯胺作用显红色。

三、用化学方法,将下列混合物中的少量杂质除去。 1,苯中混有少量噻吩 解:在室温下用浓硫酸处理,噻吩在室温与浓硫酸反应生成α-噻吩磺酸而溶于浓硫酸,苯不反应。 2,甲苯中混有少量吡啶 解:用浓盐酸处理,吡啶具有碱性而与盐酸生成盐溶于水相,分离出吡啶。 3,吡啶中有少量六氢吡啶。 解:六氢吡啶是仲胺,在氢氧化钠水溶液中与对甲基苯磺酰氯反应生成固体,过滤除去六氢吡啶。 四、试解释为什么噻吩,吡咯,呋喃比苯容易发生亲电取代反应而吡啶比苯难发生? 解:噻吩,吡咯,呋喃是五元杂环化合物,属于多л-电子杂环化合物,芳环上电子云密度比苯大,所以易于发生亲电取代。而吡啶是六元杂环化合物,是缺л-电子杂环化合物,芳环上电子云密度小于苯环,所以难于发生亲电取代反应。 五、完成下列反应式:

杂环化合物

杂环化合物和生物碱 在环状有机化合物中,组成环的原子除碳原子外,还有其它非碳原子时,这类化合物称为杂环化合物。这些非碳原子叫做杂原子,常见的杂原子有氮、氧、硫。杂环化合物在自然界分布很广,其数量几乎占已知有机化合物的三分之一,用途也很多。许多重要的物质如叶绿素、血红素、核酸以及临床应用的一些有显著疗效的天然药物和合成药物等,都含有杂环化合物的结构。 内酯、交酯和环状酸酐等环也含有杂原子,如 但由于它们与相应的开链化合物性质相似,又容易开环变成开链化合物,所以不包括在杂环化合物之内。本章主要讨论那些环系比较稳定,并且有不同程度芳香性的杂环化合物。 一.杂环化合物的分类和命名 杂环化合物可按杂环的骨架分为单杂环和稠杂环。单杂环又按环的大小分为五元杂环和六元杂环;稠杂环按其稠合环形式分为苯稠杂环和稠杂环。 (一)音译法 杂环化合物的命名主要采用外文译音法,按英文名称译音,用带“口”字旁的同音汉字表示。例如: 音译法是根据国际通用名称译音的,使用方便,缺点是名称和结构之间没有任何联系。 (二)以相应的碳环母核命名 H 2C C O H 2C C O O CH 2 C CH 2 CH 2 O O H 2C 丁二酸酐 δ-戊 内酯 N H Pyrrolo 吡咯O Furan 呋喃 S thiophono 噻吩 N N H 咪唑 Imidazole S N thiazole 噻唑 N Pyridino 吡啶O Pyrin 吡喃 N N Pyrimidine 嘧啶 N H Indole 吲哚N N N N H Purine 嘌呤

即在相应的碳环的名称上冠以杂原子的名称。 杂环化合物的命名原则: 1.以杂环为母体,编号从杂原子开始。环上只有一个杂原子时,杂原子的编号为1,依次用2、3、4…;或从临近杂原子的碳原子开始,标以希腊字母α、β、γ,邻近杂原子的碳原子为α位,其次为β位,再次为γ位。 2.当杂环上连有-R ,-X ,-OH ,-NH 2等取代基时,以杂环为母体,标明取代基位次;如果连有-CHO ,-COOH ,-SO 3H 等时,则把杂环作为取代基。 3.环上有两个或两个以上相同杂原子时,应从连接有氢或取代基的杂原子开始编号,并使这些杂原子所在位次的数字之和为最小。如有相同的两个氮原子时,仲氮先标位,叔氮后标。 4.环上有不同杂原子时,则按氧→硫→氮为序编号。 二.杂环化合物的结构 五元杂环化合物呋喃、噻吩、吡咯的结构和苯相类似。构成环的四个碳原子和杂原子(N ,S ,O )均为sp2杂化状态,它们以σ键相连形成一个环面。每个碳原子余下的一个p 轨道有一个电子,杂原子(N ,S ,O )的p 轨道上有一对未共用电子对。这五个p 轨道都垂直于 N H 吡咯O S 噻吩 N N H 咪唑 S N 噻唑 N 吡啶吡喃N N 嘧啶N H 吲哚N N N N H 嘌呤 (氮杂茂) 呋喃(氧杂茂) (硫杂茂)(1,3-二氮杂茂)(1-硫-3-氮杂茂) O (氮杂苯)(氧杂己)(1,3-二氮杂苯)(氮杂茚)(1,3,7,9-四氮杂茚) 13 2 12 312 3 123 4 56 71 2345 6 789O 呋喃 N 吡啶 S N 噻唑 12 312 3 45 α β1 23456 α β βαγ 45 3-甲基吡啶1 23 4 5 6 α β βαγ N CH 3β-甲基吡啶 NH 2 2-氨基嘧啶 1 2 3 4 56 N N O 2-呋喃甲醛CHO

常见杂环化合物的部分性质

常见五元杂环化合物的部分性质 一,五元杂环: 1.单杂环的电子效应: 有两个影响的因素:“吸电子诱导效应”和“给电子共轭效应”但无论怎样,杂环上的π电子密度都上升了。杂环的反应性都大于苯(不能直接硝化),又因为此,杂环的α位电子密度要高于β位。从中我们能够得出,稳定性(芳香性)顺序:苯<噻吩<吡啶<呋喃。 2.单杂五元单杂环的反应性质:

加成反应:苯<噻吩<吡啶<呋喃 亲电取代:苯<噻吩<呋喃<吡啶(取代考虑的具体因素应该是α位的电子云密度问题,而不是整个环的稳定性。)·呋喃太容易实行加成,在溴水/甲醇中得到 只有用二氧六环溴合物才能得到正常的溴代产物,当然,钝化基团的加入能够使反应变得较为温和。 ·与苯炔反应时,呋喃生成D-A产物,而吡咯生成苯炔的加成产物(1-苯基吡咯),噻吩则不能反应。 3.双杂五元单杂环的反应性质: 咪唑能够互变,通常4,5位混杂,不过在有基团时并不相等,例如“4(5)-硝基咪唑”绝绝绝大部分都为4位。咪唑分子间有氢键(20个分子左右),沸点异常地高。相比之下吡唑一般二聚。 唑环的电子云密度比相对应的单杂环要低,其亲电取代的顺序为: 苯>氮杂>硫杂>氧杂 其反应时,取代位通常为三级氮的间位。机理上先是氮的质子化(噻唑能够在较弱条件下硝化,而噻吩不能够)。弱的亲电试剂不能够和唑环反应,例如F-C。 虽然唑环硝化和磺化时反应活性比苯环低,但是卤化时却比苯环高。 因为存有三级氮,唑环还能够发生亲核取代(在其邻对位)。

4.单杂五元苯并杂环: 5.吲哚 吲哚合成法: 1>Fischer:苯腙+酮 其机理如下: 2>Reisset:邻硝基甲苯+草酸二乙酯 3>Nenitzescu:对苯醌+β-氨基巴豆酸乙酯

第11章 杂环化合物答案

思考题答案 思考题11-1 命名下列化合物: (1)2-氯呋喃(2)2-乙酰噻吩(3)5-甲基咪唑(4)3-吡啶甲酸(5)5-氨基-2-羟基嘧啶(6)5-羟基吲哚(7)6-甲基-2-羟基嘌呤(9)8-羟基喹啉思考题11-2吡咯、呋喃、噻吩的硝化、磺化反应能否在强酸条件下进行?为什么? 答:不能,因为吡咯、呋喃、噻吩对酸不稳定,容易开环发生聚合反应。 思考题11-3吡咯与乙酸酐反应不形成N-乙酰基吡咯,而形成α-乙酰基吡咯,为什么? 答:吡咯亲电取代反应很容易进行。这是由于环上五个原子共有六个π电子,故π电子出现的几率密度比苯环大。换句话说,吡咯环上的杂原子N有给电子的共轭效应,能使杂环活化。所以,在亲电取代反应中的速度比苯环快的多。 思考题11-4比较苯、吡咯、吡啶环上发生亲电取代反应的活性顺序,并解释之。 答:吡咯>苯>吡啶。因为吡咯亲电取代反应很容易进行。吡咯环上的杂原子N有给电子的共轭效应,能使杂环活化。所以,在亲电取代反应中的速度比苯环快的多。而吡啶亲电取代反应很难进行。这是由于环上六个原子共有六个π电子,吡啶环中氮原子的电负性大于碳原子,使电子云会偏向氮原子,使得环上电子云密度比苯环小,称为缺电子的芳杂环或者少电子的芳杂环。所以吡啶的化学性质比苯更钝化,发生亲电取代反应更困难。 思考题11-5比较下列化合物的碱性强弱顺序: 答:二甲胺> 甲胺> 氨> 苯胺> 吡咯 习题答案 1.命名下列化合物或写出结构式: (1)2-甲基呋喃(2)2,3,4,5-四碘吡咯(3)4-甲基-2-硝基吡咯 (4)3-噻吩磺酸(5)2-呋喃甲醛(糠醛)(6)3-吡啶甲酰胺 (7)N-甲基咪唑(8)8-羟基喹啉(9)2-乙基-4-羟基噻唑 (10)2-甲基-5-氨基嘧啶(11)8-甲基-6-羟基嘌呤(12)3-羟基吲哚 2.将下列化合物按碱性递增的顺序排列: (1)乙胺>氨> 吡啶> 苯胺> 吡咯 (2)六氢吡啶> 吡啶> 嘧啶> 吡咯

14-杂环化合物习题答案

练习14-1:命名下列杂环化合物: (1) (2) (3) (4) (5) (6) 答:略 练习14-2: (1)为什么呋喃能与顺丁烯二酸酐进行双烯合成反应,而噻吩及吡咯不能? (2)为什么呋喃、噻吩及吡咯比苯容易进行亲电取代反应? (3)呋喃在溴的甲醇溶液中反应,没有得到溴化产物,而是得2,5-二甲氧基二氢呋喃,请写出相应的反应方程式并解释原因。 答:(1)因为呋喃的芳香性较弱,呋喃及其衍生物可以容易地进行 Diels-Alder 反应,吡咯只能和极活泼亲双烯体发生Diels-Alder 反应,而噻吩则难于发生Diels-Alder 反应。 (2)呋喃、噻吩、吡咯具有芳香的共轭体系,因此可以发生芳香的亲电取代反应,由于这些环上的杂原子有给电子的共轭效应,能使杂环活化,与苯比较,反应较易进行。 (3) 反应过程首先是甲醇与溴反应,生成次溴酸甲酯,次溴酸甲酯很不稳定,形成后立即与具有共轭双烯性质的呋喃进行反应。 练习14-3: 2,5-二甲氧基二氢呋喃经催化氢化后再用酸性水溶液处理,得到什么化合物,请写出相应的反应方程式并标明反应类别。 答:琥珀醛 练习14-4: 2-氨基吡啶能在比吡啶温和的条件下进行硝化或磺化,取代主要发生在5位,说明其原因。 答:氨基是强供电子基,使吡啶环上电子云密度提高,所以2-氨基吡啶能在比吡啶温和的条件下进行硝化或磺化。5位是氨基的对位和吡啶氮原子的间位,亲电试剂进攻5位时,所产生正电荷能够离域到氨基氮原子上,活化能低。进攻3位的电子效应与5位类似,但存在一定空间效应。所以2-氨基吡啶进行硝化或磺化取代主要发生在5位。 练习14-5:如何理解γ-甲基吡啶的甲基的酸性比β-甲基吡啶的强这一事实? 答:可以从共轭碱的稳定性去解释,γ-甲基吡啶共轭碱的负电荷可以离域到电负性大的氮原子上,而β-甲基吡啶的共轭碱则不能。因此,γ-甲基吡啶甲基上的氢更容易电离,酸性 O CH 2COOH S CH 3O CH 2COOH N H CH 2CH 2OH S N H 3C HOH 2CH 2C N NO 2O +Br 3CH 3OH O H H Br 3O H OCH 3H H 3CO O H OCH 3H H 3CO O H OCH 3H H 3CO H +, H 2O CH 2 H 2CHO CHO

五元杂环共轭化合物发光材料的理论(精)

五元杂环共轭化合物发光材料的理论 本文用量子化学方法系统研究了如下3个体系:(1)含五元杂环三苯胺 类化合物;(2)主链含杂环的聚咔唑衍生物;(3)主链含五元杂环的聚噻吩衍生 物。首先,采用密度泛函理论(DFT)B3LYP方法,对N,N,N\',N\'-四苯基-1,1\'- 二苯基-2,2\'-二呋喃-4,4\'-二胺(FurylBz-Ph4)和 N,N,N\',N\',N\'\',N\'\'-六苯基-1,1\'-二呋喃-4,4\'-二胺(PFDA-Ph4)及化 合物1-3在中性、阴离子态和阳离子态下分别进行几何结构优化计算。基于优 化的几何结构,应用含时密度泛函理论(TD-DFT)计算了它们的光学性质。化合物 1-3,FurylBz-Ph4和PFDA-Ph4的重组能与典型空穴传输材料N,N\'-双(3-甲基 苯基)-N,N\'-二苯基-1,1\'-二苯基-4,4\'-二胺(TPD)相近。TD-DFT计算表明, 化合物2的最大吸收峰相对PFDA-Ph4蓝移,而化合物3则相对PFDA-Ph4红移。其次,采用密度泛函理论(DFT)B3LYP方法,对基于咔唑的共轭聚合物聚(2,7-N- 正辛基咔唑)-交替-(1,4-二乙烯苯)(PBC),聚(2,7-N-正辛基咔唑)-交替-(2,5- 二乙烯基噻吩)(PBT)和聚(2,7-N-正辛基咔唑)-交替-(2,5-二乙烯基呋喃)(PBF)在中性、阴离子态和阳离子态下分别进行几何结构优化计算。基于优化的几何 结构,应用含时密度泛函理论(TD-DFT)计算了它们的光学性质。结果表明,与聚 咔唑相比,三种聚合物都具有较好的共面性。由于主链中含有推电子基PBC,PBT 和PBF最大吸收波长发生红移。最后,采用密度泛函理论(DFT)B3LYP方法,对基 于噻吩的共轭聚合物聚(2,5-噻吩)-交替-1,3,4-噁二唑)(PTO),聚(2,5-噻吩)- 交替-(1,3,4-噻二唑)(PTTH)和聚(2,5-噻吩)-交替-(1-正丙基-1,3,4-噻二 唑)(PTTR),在中性、阴离子态和阳离子态下分别进行几何结构优化计算。为获 得包含电子相关的最低激发能,在优化基态几何的基础上进行TD-DFT(B3LYP/6- 31G(d))计算。HOMO与LUMO能隙(ΔE)为最低空轨道和最高占据轨道的能量差(ΔE=ELUMO-EHOMO )。本文采用UB3LYP/6-31G(d)对阳离子和阴离子分子进行 全优化,从而计算电离势(IP)和电子亲合能(Ea)。本论文从理论上对一系列五元杂环化合物发光材料的电子结构和发光性能系统地进行了分析和研究。结果表 明含时密度泛函理论结合密度泛函理论能够对杂环聚合物提供合理的几何结构 和电子性质,并用于新的聚合物发光材料设计。 同主题文章 [1]. 钟爱国. 双核镉配聚物及其衍生物荧光光谱的密度泛函理论研究' [J]. 分子科学学报. 2009.(05) [2]. 李小兵,王学业,禹新良,高进伟,朱卫国. 8-巯基喹啉阴离子的锌配合 物及其衍生物的电子光谱性质的含时密度泛函理论研究' [J]. 化学学报. 2006.(03) [3]. 李明霞,周欣,张红星,付宏刚,孙家锺. [M(N)X_2]~- (M=Ru,Os;X=S_2C_6H_4,mnt)的电子结构和光谱性质的理论研究' [J]. 高等学 校化学学报. 2009.(11)

第十六章 杂环化合物

第十七章 杂环化合物 (heterocyclic Ring compounds ) 一、教学目的和要求 1.掌握杂环化合物的分类和命名。 2.掌握五元单杂环、六元单杂环化合物的化学性质。 3.理解杂环化合物的结构与芳香性。 4.理解吡咯、吡啶的结构与性质的关系。 二、教学重点与重点 重点:杂环化合物、甾体化合物结构特征与命名(俗名)。 难点:杂环化合物的结构。 三、教学方法和教学学时 (1)教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 (2)教学学时:4学时 四、教学内容 1、杂环化合物 (1)杂环化合物概述 (2)吡咯及其衍生物 (3)吡啶及其衍生物 (4)吲哚及其衍生物 (5)苯并吡喃及其衍生物 (6)嘧啶和嘌呤及其衍生物 2、生物碱 (1)生物碱概述 (2)生物碱举例 五、总结、布置作业 17.1 几种基本杂环 (分类和命名) 杂环化合物定义 :杂环化合物是指环比较稳定、含杂原子的环状化合物,包括芳香性杂环和非芳香杂环。 杂环化合物的种类很多,有单环,也有与芳香环或其他杂环并联成的稠杂环。环上的杂原子可以是一个、两个或更多个,而且可以是相同的或是不同的。一般最常见的杂环是五元或六元环。 根据1980年中国化学会颁布的有机化学命名原则,杂环化合物的命名按外文名称音译,并以一口字旁表示是环状化合物。以下是几种常见的杂环化合物的结构与名称。 O S N S N N N H H 呋喃 噻吩 吡咯 噻唑 咪唑 Furan Thiophene Pyrrole Thiazole Imidazole N O N N N N N N

吡啶 吡喃 哒嗪 嘧啶 吡嗪 Pyridine Pyran Pyridazine Pyrimidine Pyrazine H N O N N N N 吲哚 苯并呋喃 嘌呤 N N N 喹啉 异喹啉 吖啶 17.2 几种重要杂环化合物的结构 吡咯、吡啶 、呋喃、噻吩 ----C 、N 、O 、S 皆为 SP2 杂化 ,符合休克尔规则,有芳香性。但根据具体情况的不同,有的是富电子芳杂环,有的是缺电子芳杂环。 1. 1. 五元杂环 吡咯的共轭体系及比例模型如下: 吡咯是富电子芳杂环。 2. 2. 六元杂环 吡啶的共轭体系及比例模型如下: 吡啶是缺电子芳杂环。 富电子芳杂环与缺电子芳杂环因为结构特点的不同而表现出不同的化学 性质,其中亲电取代反应的差异尤为明显。

七元杂环化合物的合成学生讲义

七 一、二、心血反应三、1.所球形瓶 2.3. 薄用验 七元杂环化实验目的1、了解并2、了解七3、掌握薄4、掌握低5、理解通 实验原理苯并二氮血管和抗病应合成该类仪器与试所需仪器:形冷凝管,所需试剂:苯薄层色谱所验钞机替代化合物2,4 并掌握羟醛七元含氮杂薄层色谱板低熔点固体通过薄层色理 氮杂类化合毒药物。本类化合物。反 O Ph 试剂 三口圆底烧温度计,温苯甲醛,苯所需仪器:硅代);溶剂需4-二苯基-2醛缩合反应;杂环化合物的板(TLC )监体化合物的重色谱法和红外合物是一类本实验由苯反应式如下+Ph O +烧瓶(100 m 温度计套管苯乙酮,氢氧硅胶板一大需要甲醇、乙实验十一2,3-二氢 的合成; 监测反应的重结晶方法外光谱法分类重要的七甲醛和苯乙下: NH 2NH 2E mL& 250mL 管,电磁搅拌氧化钠,邻大块;展缸两乙酸乙酯、一 -1H -1,5-苯的原理及操作法 分析有机反应元杂环化合乙酮首先合成Ph EtOH L ),单口圆拌(或机械邻苯二胺、两个;点样二氯甲烷和 苯并二氮杂作; 应及反应机合物,常被成查尔酮,Ph O N H N Ph Ph 底烧瓶,恒械搅拌),布哌啶、乙醇管一盒;紫和石油醚。杂的合成机理的方法 被用作镇静剂再与邻苯二 恒压滴液漏斗布氏漏斗,抽醇 紫外灯一台 成 剂、二胺斗,抽滤(可

四、1)醛、温度半时至1向体重结2)3.54回流晶体洗脱六、实验步骤查尔酮的合在装有滴6.0 g(50 m 度在5±2o 时,体系开15-20 o C ,并体系中加入结晶,得到 2,4-二苯基在装有回4g(17 mmol 流4 h 后,得体, 过滤,滤脱)分离纯 注意事项1. 液体化称量,2. 制备查3. 查尔酮能够实4. 查尔酮和抽滤5. 做好实等均需6. 使用薄洗。 骤 合成 滴液漏斗和温mmol)苯乙酮C ,用滴液漏开始出现浑浊并继续搅拌入50mL 冷水浅黄色晶体基-2,3-二氢-1流冷凝管的l)查尔酮和得深红色溶滤饼用无水纯化, 得黄色项 化合物,通注意不要查尔酮的反酮熔点较低实现重结晶酮重结晶时滤瓶必须洗实验记录,如需及时记录薄层色谱板温度计的10酮和25mL 漏斗滴加1浊,然后浅拌反应0.5h 后水再过滤),体8.0~8.4 g 1H -1,5-苯并的100 mL 三和25mL 无水溶液,将反应水乙醇重结晶色晶体2.5g,通过量筒量取要溅洒样品。反应温度不宜低,重结晶时晶。冷却后,时,如果体系洗干净,贴滤如重结晶时录。 板时,不要蘸00 mL 三口乙醇,电磁12.5 mL 的浅黄色固体逐后,出现大,并用水洗g, 产率77~并二氮杂三口烧瓶中水乙醇,电磁应混合物浓晶或硅胶柱, 熔点128取体积来计 宜过高,过时易呈现熔若加入晶系比较浑浊滤纸时,需时该加入多蘸水;放展口烧瓶中,加磁搅拌,用10%NaOH 逐渐增多),大量浅黄色固洗涤至中性,~81%,熔点的合成 中,加入1.8磁搅拌,再浓缩至约20柱层析(乙酸-129℃, 产计算体积;固过高易生成副熔融状态,必晶种,会加速浊,则需要过需用水润湿才少溶剂等,展开剂(流动加入5.2 g(冰水浴冷却H 水溶液(,滴加完毕固体。过滤,得到的固点54-55℃84g(17 mm 再加入0.2 m 0 mL ,放入酸乙酯和石产率49%。固体化合物副产物。 必须加入溶速结晶的形过滤。过滤才能贴紧。每次TLC 动相)的展(50 mmol)苯 却至5o C ,控(当加入大约毕后,恢复温生成的固体固体用无水乙℃。 mol)邻苯二胺mL 哌啶,加入冰箱析出黄石油醚混合溶 物,则通过天溶剂到呈均相形成。 滤时,布氏漏 板的具体情展缸也不要用苯甲控制约一温度 体(可乙醇胺、 加热黄色溶剂天平相才漏斗情况用水

14杂环化合物习题答案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 14杂环化合物习题答案 练习 14-1: 命名下列杂环化合物: (1)(2)(3)(4)(5)(6)答:略练习 14-2: (1)为什么呋喃能与顺丁烯二酸酐进行双烯合成反应,而噻吩及吡咯不能?(2)为什么呋喃、噻吩及吡咯比苯容易进行亲电取代反应?(3)呋喃在溴的甲醇溶液中反应,没有得到溴化产物,而是得 2,5-二甲氧基二氢呋喃,请写出相应的反应方程式并解释原因。 答: (1)因为呋喃的芳香性较弱,呋喃及其衍生物可以容易地进行Diels-Alder 反应,吡咯只能和极活泼亲双烯体发生 Diels-Alder 反应,而噻吩则难于发生 Diels-Alder 反应。 (2)呋喃、噻吩、吡咯具有芳香的共轭体系,因此可以发生芳香的亲电取代反应,由于这些环上的杂原子有给电子的共轭效应,能使杂环活化,与苯比较,反应较易进行。 (3)反应过程首先是甲醇与溴反应,生成次溴酸甲酯,次溴酸甲酯很不稳定,形成后立即与具有共轭双烯性质的呋喃进行反应。 练习 14-3: 1 / 7

2,5-二甲氧基二氢呋喃经催化氢化后再用酸性水溶液处理,得到什么化合物,请写出相应的反应方程式并标明反应类别。 答: 琥珀醛练习 14-4: 2-氨基吡啶能在比吡啶温和的条件下进行硝化或磺化,取代主要发生在 5 位,说明其原因。 答: 氨基是强供电子基,使吡啶环上电子云密度提高,所以 2-氨基吡啶能在比吡啶温和的条件下进行硝化或磺化。 5 位是氨基的对位和吡啶氮原子的间位,亲电试剂进攻 5 位时,所产生正电荷能够离域到氨基氮原子上,活化能低。 进攻 3 位的电子效应与 5 位类似,但存在一定空间效应。 所以 2-氨基吡啶进行硝化或磺化取代主要发生在 5 位。 练习 14-5: 如何理解-甲基吡啶的甲基的酸性比-甲基吡啶的强这一事实?答: 可以从共轭碱的稳定性去解释,-甲基吡啶共轭碱的负电荷可以离域到电负性大的氮原子上,而-甲基吡啶的共轭碱则不能。 因此,-甲基吡啶甲基上的氢更容易电离,酸性OCH 2 COOHS CH 3OCH 2 COOHNHCH 2 CH 2 OHSNH 3 CHOH 2 CH 2 CNNO 2O+ Br 2CH 3 COOKCH 3 OHOHBrHBrCH 3 OHOHOCH 3HH 3 COOHOCH 3HH 3 CO催化加氢OHOCH 3HH 3 COH + , H 2 OCH 2 H 2 CCHOCHO更强。

杂环化合物

第13章杂环化合物 本章重点介绍杂环化合物的分类和命名;五元杂环化合物的结构特点、芳香性、亲电取代反应,六元杂环化合物的结构特点、芳香性、亲核取代反应;五元、六元杂环化合物的衍生物及其生物活性;稠杂环化合物的结构特点等。 在环状有机化合物中,构成环系的原子除碳原子外,还含有一个或多个非碳原子时,叫做杂环化合物(heterocyclic compound);环上除碳以外的原子称为杂原子,常见的杂原子有氧、硫、氮等。大多数杂环化合物具有不同程度的芳香性,环也比较稳定。因此,杂环化合物是有机化合物中数量最庞大的一类,约占总数的三分之二以上。 自然界中最具有强烈生物活性的天然有机化合物,绝大多数正是杂环化合物。例如:对核酸(nucleic acid)的活性起决定作用的碱基就是嘌呤(purine)和嘧啶(pyrimidine)的衍生物。又如叶绿素(chlorophyll)、氨基酸(amino acid)、维生素(vitamin)、血红素(haeme)、核酸(nucleic acid)、生物碱(alkaloid)等,大多数都在生命的生长、发育、遗传和衰亡过程中起着关键作用。 在现有的药物中,杂环类化合物占了相当大的比重。它们应用于各种疾病和医疗领域,其数量之大和种类之多,是难以想象的,比如我们非常熟悉的青霉素(benzylpenicillin)、头孢菌素(先锋霉素cephalosporin)、喹喏酮(Quinolone)类以及治疗肿瘤的5–Fu(5–Fluorouracil)、喜树碱(comptothecin)、紫杉醇(Taxol)等,都是含有杂环的化合物。 内酯、交酯、环状酸酐、内酰胺性质上与相应的开链化合物相似,它们不列入杂环化合物中讨论。本章将着重讨论五元和六元具有芳香性的化合物。 你在学完本章后,应该能回答以下问题: 1.你能写出一些常见杂环化合物的结构和名称吗? 2.为什么吡咯有一定的酸性而吡啶却显碱性? 3.为什么吡啶可以任意比例溶于水,同时又能溶于其它有机化溶剂? 4.为什么吡啶既能起亲电取代反应又可进行亲核取代反应? 5.你能写出青霉素、头孢菌素、咖啡因、尼群地平、雷米封等常用药物的结构及英文名称吗?

有机化学课后答案第十七章 杂环化合物

第十七章杂环化合物 一、写出下列化合物的构造式: 1,3-甲基吡咯 2,碘化N,N-二甲基四氢吡咯 3,四氢呋喃 4,β-氯代呋喃 5,α-噻吩磺酸 6,糠醛,糠醇,糠酸 7,γ-吡啶甲酸 8,六氢吡啶 9,β-吲哚乙酸 10,8-羟基喹啉 二、用化学方法区别下列各组化合物: 1,苯,噻吩和苯酚 解:加入三氯化铁水溶液,有显色反应的是苯酚。在浓硫酸存在下,与靛红一同加热显示蓝色的位噻吩。 2,吡咯和四氢吡咯 解:吡咯的醇溶液使浸过浓盐酸的松木片变成红色,而四氢吡咯不能。 3,苯甲醛和糠醛 解:糠醛在醋酸存在下与苯胺作用显红色。 三、用化学方法,将下列混合物中的少量杂质除去。 1,苯中混有少量噻吩 解:在室温下用浓硫酸处理,噻吩在室温与浓硫酸反应生成α-噻吩磺酸而溶于浓硫酸,苯不反应。 2,甲苯中混有少量吡啶 解:用浓盐酸处理,吡啶具有碱性而与盐酸生成盐溶于水相,分离出吡啶。 3,吡啶中有少量六氢吡啶。 解:六氢吡啶是仲胺,在氢氧化钠水溶液中与对甲基苯磺酰氯反应生成固体,过滤除去六氢吡啶。 四、试解释为什么噻吩,吡咯,呋喃比苯容易发生亲电取代反

应而吡啶比苯难发生? 解:噻吩,吡咯,呋喃是五元杂环化合物,属于多л-电子杂环化合物,芳环上电子云密度比苯大,所以易于发生亲电取代。而吡啶是六元杂环化合物,是缺л-电子杂环化合物,芳环上电子云密度小于苯环,所以难于发生亲电取代反应。 五、完成下列反应式: 六、用箭头表示下列化合物起反应时的位置。 过量CH 3I 溴化 浓 稀 己二酸 己二胺

七、将苯胺,苄胺,吡咯,吡啶,氨按其碱性由强至弱的次序排列:解:苯胺,苄胺,吡咯,吡啶,氨的碱性强度顺序: 八、下列化合物那些具有芳香性? 的溴化的碘化的硝化的溴化的硝化的硝化的硝化

大学有机化学杂环化合物和维生素练习题

杂环化合物和维生素练习题 1、下列亲电取代反应活性顺序排列正确的是() A、吡咯>吡啶>苯 B、苯>吡咯>吡啶 C、吡咯>苯>吡啶 D、吡啶>吡咯>苯 2、下列化合物中属于五元含氮杂环化合物的是:() A.呋喃 B.吡咯 C.噻吩 D.吡啶 3、吡啶环上发生的亲电取代反应()。 A.比苯容易 B.与苯相同 C.比苯困难 4、吡喃环属于哪一类杂环() A.硼杂环 B.氧杂环 C.氮杂环 D.硫杂环 5、叶绿素和血红素中存在的卟啉系统的基本单元是() A.噻唑 B.呋喃 C.噻吩 D.吡咯 6、下列化合物不属于五元杂环的是() A. 呋喃 B. 吡啶 C. 噻吩 D. 吡咯 7、碱性最强的化合物是() 8、下列化合物发生亲电取代反应速度最快的是() N 9、化合物的名称是() A. 吡咯 B. 吡喃 C. 吡啶 D. 呋喃 10、下列杂环化合物芳香性顺序为() A. 呋喃>噻吩>吡咯 B. 吡咯>呋喃>噻吩 C. 噻吩>吡咯>呋喃 D.吡咯>噻吩>呋喃 11.下列化合物中属于稠杂环的是() A. 吡喃 B.吡啶 C.嘌呤 D.嘧啶 12.下列物质中,能使高锰酸钾溶液褪色的是() A. 苯 B. 2-硝基吡啶 C. 3-甲基吡啶 D.吡啶 13.下列化合物中,能发生银镜反应的是() A. 2-羟基呋喃 B. 2-呋喃甲醛 C. 2-硝基呋喃 D.2-甲基呋喃 14、既显弱酸性又显弱碱性的物质是:() A.吡咯 B.吡啶 C.噻吩 D.呋喃

1、在环状化合物的环中,除碳原子外还含有其它元素的原子时,这类环状化合物就叫做 化合物,环中除碳以外的其它元素的原子叫做 原子。 2、吡咯易发生亲电取代,反应发生在 位上。吡啶难于亲电取代,反应发生在 位上。 3、将下列化合物在水溶液中的碱性由强到弱排列成序 (CH 3CH 2)2NH CH 3CH 2NH 2(CH 3)4NOH NH 3NH 2 N H a 、b 、c 、d 、e 、f 、 4、按碱性由强到弱排列的顺序是:( )>( )>( )>( )。 N H a. b.N c.N H d.

第十七章 杂环化合物 练习及答案

第十七章 杂环化合物 1.写出下列化合物的构造式: (1) 3-甲基吡咯 (2) 碘化N,N -二甲基四氢吡咯 (3) 四氢呋喃 H CH 3 N O N CH 3 CH 3 + I - (4) β-氯代呋喃 (5)α-噻吩磺酸 (6) 糠醛,糠醇,糠酸 Cl O S SO 3H O CHO (7)γ-吡啶甲酸 (8)六氢吡啶 COOH N N H (9)β-吲哚乙酸 (10) 8-羟基喹啉 N H CH 2COOH N OH 2.用化学方法区别下列各组化合物: 解:(1)苯,噻吩和苯酚 加入三氯化铁水溶液,有显色反应的是苯酚。在浓硫酸存在下,与靛红一同加热显示蓝色的位噻吩。 (2) 吡咯和四氢吡咯 吡咯的醇溶液使浸过浓盐酸的松木片变成红色,而四氢吡咯不能。 (3) 苯甲醛和糠醛 糠醛在醋酸存在下与苯胺作用显红色。 3. 用化学方法,将下列混合物中的少量杂质除去。 解:(1) 苯中混有少量噻吩 在室温下用浓硫酸处理,噻吩在室温与浓硫酸反应生成α-噻吩磺酸而

溶于浓硫酸,苯不反应。 (2) 甲苯中混有少量吡啶 用浓盐酸处理,吡啶具有碱性而与盐酸生成盐溶于水相,分离出吡啶。 (3) 吡啶中有少量六氢吡啶。 六氢吡啶是仲胺,在氢氧化钠水溶液中与对甲基苯磺酰氯反应生成固体,过滤除去六氢吡啶。 4. 试解释为什么噻吩,吡咯,呋喃比苯容易发生亲电取代反应而吡啶比苯难发生? 解:噻吩,吡咯,呋喃是五元杂环化合物,属于多л-电子杂环化合物,芳环上电子云密度比苯大,所以易于发生亲电取代。而吡啶是六元杂环化合物,是缺л-电子杂环化合物,芳环上电子云密度小于苯环,所以难于发生亲电取代反应。 5. 完成下列反应式: 解: 1. O O CHO + CH 3CHO O CH=CHCHO 2. O CHO O CH 2OH + 3. N H /Pt N H 4. S C O C + O O AlCl 3 S C O HOOC 5.H 2/Pt O 2HCl Cl(CH 2)4Cl 2 NaCN NC(CH 2)4CN H 2O,H + - CH 3 CH 3 H O O

杂环化合物

杂环化合物 杂环化合物:成环原子除C 外还有O 、S 、N 、P 等杂原子,且环系较稳定、具有一定芳香性的环状化合物。 下列化合物成环原子虽也含有杂原子,但环系不稳定,因此不属于杂环化合物范畴: O O O O O H 3C CH 3 O O O O O NH 交酯 内酯 酸酐 内酰胺 一、分类和命名 (一)分类 杂环化合物分单杂环和稠杂环两大类。 (二)命名 1、一般采用音译,取同音汉字加“口”字旁作为类别名称,取代基标注位置; 2、只有一个杂原子时,杂原子为1号; 3、含有多个杂原子时,按O ,S ,N(H),N 顺序编号,且另外的杂原子位号尽量小; 4、常见稠杂环有固定的编号(表12-1)。 例如: 1、 O 2、 S 3、 N H 4、 N 5、 N H 123456 6、 N 1 2 435 67 7、9N H N N N 12 345678 8、 O SO 3H 9、N H I I I I 10、 O 11、 N H CH 2COOH 12、N N N N H NH 2 13、 O O 2N CHO 14、 N OH 15、 O CH 2OH 16、 N H 17、 N CONH 2 18、 N COOH 19、 N CONHNH 2 20、 N COOH COOH 21、 N H 22、 N CH 3 23、 S Cl COOH

解:1、呋喃 2、噻吩 3、吡咯 4、吡啶 5、吲哚 6、喹啉 7、嘌呤 8、α-呋喃磺酸 9、四碘吡咯 10、四氢呋喃 11、β-吲哚乙酸 12、6-氨基嘌呤 13、5-硝基-2-呋喃甲醛('α-硝基-α-呋喃甲醛) 14、8-羟基喹啉 15、α-呋喃甲醇 16、四氢吡咯 17、β-吡啶甲酰胺 18、β-吡啶甲酸 19、γ-吡啶甲酰肼 20、2,3-吡啶二甲酸 21、六氢吡啶 22、N-甲基吡咯 23、4-氯-2-噻吩甲(羧)酸 二、结构 (一)单杂五元环 1、成环原子均为sp2,杂原子孤对电子参与共轭,πe=6,具芳香性; 2、芳香环上电荷密度非均化,因此芳香性﹤苯,较苯易加成; 3、芳香杂环属于5原子6电子的“富电子”体系,电荷密度>苯,故亲电取代活性>苯,且亲电取代主要进入α位(杂原子提供2个电子共轭,相当于给电子基的作用); 4、吡咯中N 的孤对电子完全参与共轭,因此其碱性↓,反而显弱酸性; 5、O 、S 的另一对孤对电子因处于sp2,其碱性亦↓(了解)。 6、咪唑、吡唑存在互变异构,例如: H 3C H N H N H 3C N N 4(5)—甲基咪唑 (二)单杂六元环(仅以吡啶为例) 1、成环原子均为sp2,N 提供1e 参与共轭,πe=6,具芳香性; 2、芳香环上电荷密度非均化,因此芳香性﹤苯,较苯易加成; 3、N 电负性>C ,因此环上电荷向N 转移,吡啶环属于“缺电子”体系,亲电活性<苯, 且亲电取代主要进入β位(N 相当于起到吸电子基作用); 4、N 孤对e 不参与共轭,因此具有碱性,碱性>苯胺;孤对e 处于sp2上,故其碱性<氨。 三、五元单杂环的化学性质(呋喃,噻吩,吡咯) (一)酸碱性 1、吡咯N 的孤e 参与共轭,碱性↓↓,显弱酸性; + KOH (S) N K -+ + H 2O N H

杂环化合物答案Word版

第13章 杂环化合物 答案 1.(1)浓硫酸+靛红一同加热显蓝色的是噻吩,与溴水作用立即产生白色沉淀的是苯酚。 (2)在醋酸存在下与苯胺作用显红色的是糠醛。 (3)使KMnO 4溶液褪色的是α-甲基吡啶。 (4)其蒸气能使浸过浓盐酸的松木片变成红色的为吡咯。 2.(1)室温下用少量浓硫酸洗去噻吩。 (2)用稀盐酸洗去吡啶。 (3)加入苯磺酰氯,六氢吡啶与之作用生成苯磺酰胺,吡啶不发生反应,通过蒸馏蒸出 吡啶。 (5)H 2/N i,100oC,5M Pa ;浓HCl ,0.4 MPa ,140oC;NC(CH 2)4CN ;H 2O/H + ,H 2/Pt N CH 3 N H CH 3 N (6) K + -; ; (7) N Br (a) N (b)(c)SO 3H 不反应 N (d) NO 2 N (e) NH 2 N (f) Ph Br N SO 3H N NO 2 N NH 2 N Ph N C 2H 5 N O Br + -+-b) c) d) f) g) h) 反 应 S C H 3O 2N COOH N COOK (9) (8)

S S COOH N CH 3 S CH 3 C H 3CH 3 (1) (2) (3) (4)(5) (6) S NO 2 S 4 . 5. (1) d >c >a >b ; (2) a >c >b 6. 2位N 原子碱性最强。 7.(1)有;(2)无;(3)有;(4)无;(5)有。 8.(1) O CHO O O 浓盐酸℃ Cl(CH 2)4Cl 2HO(CH 2)4OH (2) N ①NaNH /NH ② H 2O N NH 2 重氮化 N OH (3) N N CH 3 COOH NH 3 加热 N 2 NaOH,加热 N NH 2 (4) N NH 2 NaNO + H SO 加热 N Br (5) O CHO O CH =CH -COOH 9.

杂环化合物

第十七章 杂环化合物 ——在环上含有杂原子(非碳原子)的有机物称为杂环化合物。 脂杂环 —— 没有芳香特征的杂环化合物称为脂杂环。 三元杂环 (环氧乙烷) (氮杂环丙烷) 四元杂环 NH O 五元杂环 顺丁烯二酸酐) 七元杂环 (1H-氮杂 芳杂环——具有芳香特征的杂环化合物称为芳杂环。 五元杂环 呋喃 六元杂环 吡啶 吡喃(无芳香性) 苯并杂环 吲哚 喹啉 异喹啉 杂环并杂环 嘌呤 17.1 杂环化合物的分类和命名 杂环化合物的分类: 1. 按照环的大小分类:五元杂环和六元杂环 2. 按照杂环中杂原子的数目分类:含有一个杂原子的杂环和含有两个或两个以上杂原子的杂环 O H N O O O O N H O S N H N O N S O N H N N N N N H N

3. 按照环的形式分类:单杂环和稠杂环 4. 按照环上碳原子的电荷密度分类:多π芳杂环和缺π芳杂环 杂环化合物的命名: 1. 多用习惯命名:采取音译法;用“口”字旁表示杂环化合物 五元杂环体系 呋喃(furan) 吡咯(pyrrol 苯并呋喃 (benzofuran 苯并噻 (benzothiophene) 六元杂环体系 吡啶(pyridine) α-吡喃酮(α-pyrone) γ-吡喃酮 哒嗪(pyridazine) 嘧啶 吡嗪(pyrazine) (pyrimidine) 六元杂环苯并环系 喹啉 异喹啉 苯并吡喃 苯并-γ-吡喃酮 (isoquinoline) (quinoline) (benzopyran) (benzo-γ-pyrone) 杂环并杂环: 嘌呤(purine)

16章杂环化合物习题

第十六章 杂环化合物 一 写出下列化合物的构造式: 1. α-呋喃甲醇 2. α,β-二甲基噻吩 3. 溴化N,N-二甲基四氢吡咯 4. 2-甲基-5-乙烯基吡啶 5. 2,5-二氢噻吩 6. 4-甲基-2-乙基噻唑 二 命名下列化合物: 1.N 3 C 2H 5 2. S N CH 3 3.N H CH 2COOH 4. N CON(CH 3)2 5. N S C 2H 5H 3C 6. N COOH COOH 7. N H CH 2COOH 8. N C 2H 5 三 将下列化合物按碱性强弱排列成序: 1. 1. N 2. N NH 2 3. N CH 3 4. N CN 2. 1. N H 2. N 3. N F 4. O N H 5. N H 四、完成下列反应式,写出主要反应产物: 1. O COOEt COOEt 2. N KMnO 4 KOH H 3O 3. S CH 3O 3 H SO 4 4. S COCH 3 3 H SO 4

5.S NO 2 2 6. 2N CH 2OH 7. N CH 31)PhCHO,OH 2)H 2,Ni 8. N NaNH 2 9. N KMnO 4 NaOH H 3O 10. NaOH O Cl 2 浓 EtOH 五、 化合物 A. B. O C. N H D. S E. N 1.稳定性顺序是: 2.亲电取代反应活性顺序是: 六、 用化学方法分离化合物 OH N 七、 组胺是广泛存在于动植物体内的一种生物胺,作为身体内的一种化学传导物质,可以影响许多细胞的反应,包括过敏,炎性反应,胃酸分泌等,也可以影响脑部神经传导,会造成想睡觉等效果。化合物结构中含有三种氮,试按照它们的碱性排序,并给予说明。 N N H NH 2 a b c

相关文档
最新文档