光子晶体光纤激光器

光子晶体光纤激光器
光子晶体光纤激光器

光子晶体光纤激光器

摘要:光纤激光器是这些年来激光领域备受关注的热点,而光子晶体光纤具有很多传统

光纤难以实现的优点,以光子晶体光纤作为增益介质的高功率光纤激光器受到了普遍关注。

本文就光纤激光器的基本原理进行了简单的介绍,并重点介绍了双包层的光子晶体光纤激光器的研究。

关键字:光纤激光器;双包层;光子晶体光纤;Yb3+

前言光纤激光器与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,

例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好。因此,它已经在许多领域取代了传统的YAG,CO2激光器等。

然而,传统光纤激光器,因受光纤波导结构限制,其数值孔径较小,耦合效率低,以及维持单模传输的纤芯面积小,在大功率运转条件下容易产生非线性效应和热光损伤等问题,输出功率受到很大限制。

20 世纪90 年代光纤家族出现了新成员——光子晶体光纤(Photonic Crystal Fiber,PCF),由于其结构灵活多变,特别是拥有大模场面积,同时保持无限单模的优越特性,有效地克服了传统光纤激光器的种种缺陷,因此人们开始将目光转移至

光子晶体光纤激光器。

一.光纤激光器的基本原理[1]

目前开发的光纤激光器主要采用掺稀土元素的光纤作为增益介质。光纤激光器工作原理是泵浦光通过反射镜1(或光栅1)入射到掺杂光纤中,吸收了光子能量的稀土离子会发生能级跃迁,实现“粒子数反转”,反转后的粒子经弛豫后会以辐射形式再从激发态跃迁回到基态,同时将能量以光子形式释放,通过反射镜2(或光栅2)输出激光,如上图1所示。

掺稀土元素的光纤通常为双包层光纤(Doub-le-Clad Fiber,DCF)。此种光纤结构如图 2 所示,由外包层、内包层和掺杂纤芯所构成,外包层的折射率小于内包层的折射率,内包层的折射率小于纤芯的折射率,从而构成双层的波导结构。掺杂双包层光纤是构成光纤激光器的关键部件,在光纤激光器中的作用主要是:1)将泵浦光功率转换为

激光的工作介质;2)与其他器件共同构成激光谐振腔。其工作原理主要是:将泵浦光通过侧向或端面耦合注入光纤,由于外包层折射率远低于光纤的内包层,所以内包层可以传输多模泵浦光。内包层的横截面尺寸大于纤芯,对于所产生的激光波长,内包层与掺稀土离子的纤芯构成了完善的单模光波导,同时它又与外包层构成了传输泵浦光功率的多模光波导。这样可以将大功率多模泵浦光耦合进入内包层,多模泵浦光沿光纤传输的过程中多次穿过纤芯并被吸收,由于纤芯中稀土离子被激发,从而产生较大功率信号激光输出。工作原理如图2所示。

目前,对于光纤激光器的研究方向主要集中在高功率光纤激光器、窄线宽光纤激光器、多波长光纤激光器、超短脉冲光纤激光器、拉曼光纤激光器和光子晶体光纤激光器等几个方面。下面着重介绍下光子晶体光纤激光器。

二.光子晶体光纤激光器

1.光子晶体光纤

光子晶体光纤(photonic crystal fiber,pCF)的概念最早是由P.St.J.Russell等人于1992年提出的,并于1996年第一次在实验室成功制作出样品,他是基于光子晶体非凡的局域电子的能力制作而成的,他是沿轴向均匀排列着的石英光纤。从端面看,这种光纤的包层是有序排列的二维光子晶体,其纤芯是一个破坏了包层结构周期性的缺陷,光能够在缺陷内传播。这个缺陷可以是固体硅也可以是空气孔。下面是几种典型的光子晶体光纤示意图[2]:

图3 几种典型的光子晶体光纤

光子晶体光纤按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子

晶体光纤(TIR-PCF)两类。

2.光子晶体光纤的特性[3,4,5,6]

(1)无截至单模,大模面积

所谓“无截止单模(Endlessly Single Mode)”,即光纤的截止波长很短。普通单模光纤包层折射率随波长变化很小,当传输波长较短时,光纤v值变大,光纤波导将不再满足单模传输条件:在PCF包层中传输的短波长光由于能够更好地避开空气孔传播.使短波长光对应的包层折射率更接近基质材料折射率,这样就可以使V值变化量减小,光纤仍满足单模传输条件,使短波长光很好地约束在纤芯传输.因此不必减小纤芯直径,只需适当设计包层占空比d/A(d为内包层空气孔直径,A为空气孔中心间隔),PCF就可以实现无截止单模传输,这是PCF不同于普通光纤的一个独特优点。

在满足单模传输的情况下,增加PCF纤芯替代空气孔的实芯棒个数,就可实现较常规光纤大很多的纤芯面积,大模面积(1arge mode area,LMA)设计可以降低纤芯的功率密度,提高了光纤的非线性效应阈值,这在高功率激光传输等方面具有广泛的应用。

(2)高数值孔径

光纤集光能力主要与光纤数值孔径NA有关,由于包层空气孔占空比的设灵活性,PCF不仅可以实现包层,纤芯的低折射率差,设计大模面积纤芯PCF:亦可以进行包层/纤芯大折射率差设计,获得高NA多模纤芯或内包层.虽然空气孔结构在传输信号时会导致信号的变形,但高NA PCF对搜集和传输高功率非常有利,因此在高功率包层泵浦光纤激光器和放大器方面具有很重要的应用。高NA的PCF在保证泵浦光高效耦合的基础上,允许采用小尺寸内包层设计,提高泵浦光和信号光的交叉,增加泵浦光吸收效率。

(3)色散特性

反常色散及色散可控特性真空中材料色散为零,空气中的材料色散也非常小,这使得光子晶体光纤的色散非常特殊,光子晶体光纤的色散强烈依赖于包层空气孔的尺寸、形状和排列,由于光纤设计灵活,只要改变孔径与孔间距之比,可方便地控制光子晶体光纤的色散量,使光纤总色度色散达到所希望的分布状态。

(4)非线性效应和双折射效应

强非线性效应可以通过减少光纤的模场面积实现,可以通过改变空气孔的间距调节有效模场面积,在1.5μm波长处调节范围约为1~800μm2,如果在空气孔中填充合适的非线性材料,则会显著提高光子晶体光纤的非线性效应。

优良的双折射效应对于保偏光纤而言,双折射效应越强,波长越短,所保持的传输光偏振态越好。在光子晶体光纤中,只需要破坏光子晶体光纤的剖面圆对称性,使其构成二维结构就可以形成很强的双折射从而制备出高双折射率光子晶体光纤保偏光纤。与传统保偏光纤相比,高双折射光子晶体光纤保偏光纤具有制作工艺简单、设计自由度大、可实现高双折射、对温度变化不敏感等优点。

在光子晶体光纤的纤芯中掺入稀土元素,可以制成光纤激光器;利用光子晶体光纤可以灵活设计的模场特性,改变传导模式和有源介质之间的相互作用,可以制造适用于不同要求的激光器。

3.光子晶体光纤激光器的基本原理[7,8]

双包层光子晶体光纤激光器与其它常规激光器一样,也是由三个基本部分构成:泵浦源、增益介质和谐振腔。泵浦源的能量激励掺杂于双包层光纤纤芯中的稀土离子,形成粒子数反转,使受激辐射光在谐振腔中振荡放大,最后形成激光输出。

图4 光子晶体光纤激光器的基本原理

由于PCF 光纤中存在许多空气孔不利于光纤的焊接,环形腔结构的PCF 激光器难以实现,目前报道的PCF 激光器多采用线性F-P 腔结构。如图4所示,一段PCF 作为增益介质,二色镜(M1)、反射镜(M2)。或光纤端面等作为谐振腔镜,加上所需的抽运源,便构成了线性F-P 腔结构的PCF 激光器。

PCF 激光器与常规光纤激光器的主要不同点就在于所用增益介质为PCF。根据所用PCF 的不同,PCF 激光器件可以分为两大类:一类是利用小模面积PCF 高非线性效应的激光器件;另一类是利用掺稀土元素大模面积(LMA)PCF (尤其是双包层PCF) 研制的高功率、高光束质量近红外PCF 激光器。普通光纤激光器提高功率往往是以牺牲光束质量为代价的,而在大功率PCF激光器中,大模面积PCF 不仅可以提高光纤激光中抽运光的耦合效率,而且在高抽运功率下还能有效地减少光纤中的非线性效应,实现高功率和高光束质量的激光输出。

在双包层PCF中,将光子晶体光纤与包层抽运技术结合,为高光束质量、高功率光纤激光器的进一步发展提供了条件;通过提高包层的空气填充比就可增大外包层与稀土掺杂双包层光子晶体光纤激光器包层的相对折射率差,从而增大光纤内包层的数值孔径;通过增大气孔间距 A和减小气孔直径 d 都可以获得大的模场面积。

因而基于光子晶体光纤的双包层光纤,利用了光子晶体光纤的结构优势,利用空气孔层作为光纤的内包层,在折射率调制上非常便利,可以具有更大的模场面积和更大的内包层数值孔径,从而避免由于高功率和放大自发辐射所产生的非线性效应,并提高抽运光的耦合效率。

4. 掺钇(Yb3+)双包层PCF激光器

目前报导的掺杂PCF激光器主要有掺Yb3+、掺Nd3+和掺Er3+种PCF激光器,报导最多的是掺Yb3+PCF激光器。与其他掺杂光纤相比,掺Yb3+光纤具有其独特的优点:Yb3+能级结构比较简单;有较宽的吸收光谱(800nm--1060nm);它的增益谱也很宽(975nm--1200nm),970-1064nm范围是吸收和发射谱重叠部分。Yb3+离子如此宽的吸收带可以选择许多激光器作为泵浦源。如A1GaAs、InGaAs激光二极管,Ti:sapphire激光器等,并且具有高的吸收和转换效率。此外Yb3+离子的其它能级都在紫外区。因此以Yb3+离子掺杂PCF可以消除多光子弛豫及激发态吸收的影响。Yb3+离子掺杂PCF也具有相当高的吸收和发射横截面积。适合于发展高功率激光器件。许多高功率固体激光器也利用镱掺杂晶体作为激活介质[9]。调谐输出的掺Yb3+光纤激光器在国内外已有了较多的报道。

2003年,德国耶拿的Friedrich Schiller 大学和丹麦的 Crystal Fiber 公司根据双包层和大模场面积设计制作出大功率掺 Yb3+PCFL。2.3m 长的空气包层 PCFL 实现了 80W 输出功率,斜效率为 78%。

2004 年,英国 SPI 制备双端泵浦 12m 长的双包层光纤(内 NA 低于 0.05,芯径 40μm),输出功率 1.36kW,输出激光波长在 1.1μm,光束质量因子 M2=1.4,光束质量接近衍射极限,斜率为 83%;丹麦 Crystal Fibre 公司制备出基于形状双折射原理研制的掺 Yb3+双包层偏振 PCF,得到了 2.9W 的偏振激光输出。

2007 年,丹麦的 Crystal fibre A/S 公司制备出双包层偏振保持 Yb3 +掺杂 PC (DC-200/ 70-PM-Yb-ROD)。这种光纤能够做到偏振保持特性,并且其有效面积高达 2000μm2,大的有效面积保证光纤比较大的脉冲吸收,吸收系数为 30dB/m,其外直径高达

1.7mm,大的外径保证了光纤有一个比较大的芯,也就不再受弯曲损耗的限制。

2008 年 3 月,德国 Jena 研究所与丹麦 Crystal Fi-bre A/S 公司合作报道了一种Yb3 +掺杂单横模棒状PCF,这种光纤具有低非线性和内在偏振稳定的优势。基模模场面积高达 2300μm2,输出功率高达 163W,在谐振腔没有任何附加偏振元件的条件下偏振度大于85%,输出光束的质量 M2=1.2,单横模窗口的范围是1030~1080nm,与掺 Yb3+硅光纤的增益轮廓能够很好的重叠,这种用于偏振或偏振保持的稀土掺杂双包层光纤具有迄今最大的模场面积。

近几年,国外的大模面积双包层掺 Yb3+PCFL 发展迅速,而国内 PCF 激光器的研究刚刚起步,由于 PCF研制技术等方面的限制,目前国内只限于中低功率的PCF 激光器的研究。

展望

光子晶体光纤由于其灵活的光学可控性和新颖的结构特性,在实现大数值孔径和大模场面积的同时,保证单横模运转,且耐热性能好,比常规双包层光纤更适用于高功率激光器的研制。国内外高功率光子晶体光纤的最新进展,充分证明了其在高功率激光器应用中的广泛前景。

参考文献

1.候蓝田,韩颖. 光纤激光器的发展与应用[J]. 燕山大学学报. 2011.35(2): 95-96

2.Jonathan C. Knight. Photonic crystal fibres[J]. nature. 200

3. 424(14): 849

3.崔建华. 掺Yb<'3+>双包层光子晶体光纤激光器研究[D].河北大学.2007.

4.吴铭.光子晶体光纤制造工艺与特性的研究[D].华中科技大学.2008.

5.张国亮.光子晶体光纤的特性及其应用于光纤激光器中的研究[D].北京交通大

学.2010.

6.杨鹏.光子晶体光纤的制备和应用[D].天津大学.2008.

7.杨林,段开椋等. 高功率光子晶体光纤激光器实验研究[J].强激光与粒子

束.2009.21(10):1447-1448.

8.马成举.双包层光子晶体光纤激光器研究进展[J].激光与光电子学进展.2008.45(11):23-24.

9.夏长明,周桂耀等.掺Yb3+光子晶体光纤激光器的研究进展[J]. 光器件.2008.12:9.

THz波段的F_P光子晶体滤波器

THz 波段的F -P 光子晶体滤波器 * 周 梅 1) 陈效双 2)- 王少伟 2) 张建标 2) 陆 卫 2) 1)(中国农业大学理学院应用物理系,北京 100083) 2)(中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083) (2005年11月23日收到;2005年12月11日收到修改稿) 理论上设计了一系列一维非周期光子晶体,这些光子晶体具有超窄带滤波的特性.并利用成熟的半导体工艺制备出了具有此性能的滤波器.通过比对理论和实验上的透射光谱,得到了两者符合较好的结果. 关键词:THz 波段,F -P 滤波器,非周期,光子带隙 PACC :7820P,4270Q *国家重点基础研究发展规划(973)(批准号:2001CB61040),中国科学院/百人计划0基金(批准号:200012),国家自然科学基金重点项目(批准号:10234040),上海科学技术委员会重点基金项目(批准号:02DJ14066)和上海市自然科学基金(批准号:03ZR14023)资助的课题.-E -mail:xschen@mail.si https://www.360docs.net/doc/b95919189.html, 11引言 THz(Terahertz)波段是介于红外与微波之间的一个波段,其频率范围一般在011)10THz(1THz=1012 Hz),具有广泛的应用前景,而以往却是研究得最少.由于最近发现THz 波段在医学影像、化学检测与分析、天文学甚至无线通讯等领域有着巨大的应用潜力 [1)3] ,使得人们对该领域产生了很大的兴趣. 最近THz 波段激光器(414THz)的研制成功[1] ,无疑 将对该领域起到极大的促进作用.众所周知,对于任何波段电磁波的应用都有三个重要环节:光源、传输和探测,只有对这三个重要环节的研究都有所突破,才能真正实现THz 波段的应用.目前对THz 波段的研究主要集中在THz 光源和探测上,控制其传输方面的研究相对较少. 光子带隙作为光子晶体的一个基本特性,具有控制电磁波传输的能力 [4)6] ,可应用于如滤波器、偏 振器及反射器等许多光学元件[7)10] ,因此对THz 波 段光子晶体的研究有利于人们对THz 波段电磁波传输的调控.尽管大部分光子晶体材料的实验研究都集中在微波 [9,11,12] 、红外 [13,14] 及可见 [15,16] 波段,但 是最近,人们也通过微机械加工[17] 、激光快速原位 成形(laser rapid prototyping )等方法[8,18,19] 制备出了 THz 波段的光子晶体,这些对THz 波段光子晶体的 研究和应用都具有相当重要的意义. 作为最简单的一维光子晶体,其理论研究和实验研究都已经比较成熟 [20] ,而且早在光子晶体的概 念提出之前就已经得到广泛应用.比如光学薄膜中的K P 4高反膜就属于一种特殊结构的一维光子晶体,在激光和光学设备中应用广泛.然而,这种多层膜的高反区(反射率高于95%的区域,high refractive region,HRR)较窄,除了增大高、低折射率层的折射率反差外[21] ,如果适当地引入无序,也可以使HRR 变宽[6,22] .当前对一维系统光局域的理论[23)30] 和实 验 [31] 研究表明,如果在一维多层周期膜系(一维光 子晶体)中引入无序,光就会被局域起来.因此,可以利用这种特性,来实现光子晶体的一些特殊用途.本文就是利用这样的特性,在理论上设计了THz 波段的F -P 光子晶体滤波器,并借助于成熟的半导体工艺制备出具备此性质的样品. 21THz 波段F -P 滤波器的设计 常规的超窄带通滤光片多采用类似于F -P 干涉仪的结构,即在两个K P 4膜系构造的高反射层间夹共振腔的设计.这种设计可以给出带宽非常窄的滤光片,但它对膜系中厚度的涨落非常敏感.只要膜层厚度出现微小的涨落,就会使滤光片的性能明显退化.为此,我们提出用非周期型的膜系替代常规的两 第55卷第7期2006年7月1000-3290P 2006P 55(07)P 3725-05 物 理 学 报 AC TA PHYSIC A SINICA Vol.55,No.7,July,2006 n 2006Chin.Phys.Soc.

光子晶体光纤材料

光子晶体光纤材料 光子晶体的能带结构 电子能带与光子能带 在半导体晶体中, 电子受原子周期排列所构成的周期势场的作用, 它的能谱呈带状结构由于原子的布拉格散射, 在布里渊区边界上能量变得不连续, 出现带隙, 电子被全反射在光子晶体中, 也存在类似的周期性势场, 它是由介电函数在空间的周期性变化所提供的当介电函数的变化幅度较大且变化周期与光的波长相比拟时, 介质的布拉格散射也会产生带隙, 相应于此带隙区域的那些频率的光将不能通过介质, 而是被全部反射出去由于周期结构的相似性, 普通晶体的许多概念被引入光子晶体, 如能带、能隙、能态密度、缺陷态等实际制备的光子晶体多由两种介电常数不同的物质构成, 其中低介电物质常采用空气, 因此相应于半导体的价带和导带, 在光子晶体中存在介电带和空气带。 完全光子能隙的产生 光子能隙有完全能隙与不完全能隙的区分所谓完全能隙, 是指光在整个空间的所有传播方向上都有能隙, 且每个方向上的能隙能相互重叠不完全能隙, 相应于空间各个方向上的能隙并不完全重叠, 或只在特定的方向上有能隙由于能隙产生于布里渊区的边界处,原则上完全能隙更容易出现在布里渊区是近球形的结构中。FCC是具有最接近球形布里渊区的空间周期结构。 人们对光子能带的理论计算最初是照搬电子能带的计算方法, 如平面波法和缀加平面波法等, 将光子当作标量波, 利用薛定愕方程求解一计算结果显示, 包括在内的许多结构的光子晶体都将出现光子带隙然而, 随后的研究表明, 这种

标量波近似法不仅在定量上, 甚至在定性上都与实验结果不符。由于电子是自旋为1/2的费米子, 为标量波而光子是自旋为的玻色子, 是矢量的电磁波, 两者存在着本质的区别因此, 计算光子晶体的能带结构必须在矢量波理论的框架下, 从麦克斯韦方程出发在各种理论中, 平面波展开法是应用得最普遍, 也是最成功的由于光子之间没有复杂的相互作用, 理论计算可以非常精确地预言光子晶体的性质, 对实验工作起着重要的指导作用。 能带计算表明由球形颗粒构成的结构具有很高的对称性, 对称性引起的能级简并使它只存在不完全能隙, 例为了得到具有完全能隙的光子晶体结构, 需要从两方面考虑:(1)提高提高周期性介电函数的变化幅度, 即要有高的折射率反差(2)从结构上消除对称性引起的能带简并为此, 在结构的晶胞内引入两个球形粒子构成的金刚石结构, 能产生很宽的完全带隙,通过引入非球形的晶胞颗粒也能消除能带简并从而产生完全的光子带隙。利用材料介电常数的各向异性,在FCC、BCC、SC等各种简单晶格中也将产生部分能隙, 此外, 在介电质材料中引入彼此分离的金属颗粒构成的复合光子晶体, 将具有很宽的完全能隙, 然而由于在可见光和红外波段金属材料的强烈耗散, 这种光子晶体的效率很低。 光子晶体中的缺陷能级 半导体材料的广泛应用与其掺杂特性密切相关向高纯度半导体晶体中掺杂, 禁带中会产生相应的杂质能级, 从而显著改变半导体材料的电学、光学特性类似地, 可以向光子晶体中引入杂质和缺陷, 当缺陷是由引入额外的高介电材料所至图右, 其特性类似于半导体掺杂中的施主原子, 相应的缺陷能级起始于空气带底, 并随缺陷尺寸的变化而移向介电带当缺陷是由移去部分高介电材料所至, 其特性类似于半导体掺杂中的受主原子, 相应的缺陷能级起始于介电带顶, 并随缺陷

光子晶体滤波器

光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。  =0,- E 2m + 2??? ??ψ?????????? ????? ???→→t V r r

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程: 其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

论光子晶体光纤技术的现状和发展

论光子晶体光纤技术的现状和发展 摘要: 光子晶体光纤,又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤的研究工作。本文阐述了PCF的一些独特光学性质、制作技术及其一些重要应用,介绍了PCF的发展以及最新成果。关键词:光子晶体,光子晶体光纤,非线性 1 引言 1987年Yabnolovitch 在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John 在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带。光子能带之间可能出现带隙,即光子带隙。具有光子带隙的周期性介电结构就是光子晶体,或叫做光子带隙材料,也有人把它叫做电磁晶体。 光子晶体光纤(photonic crystal fiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具

有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF 的发展以及最新成果。 2 光子晶体光纤概述 2.1 光子晶体光纤导光原理 光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类[3]。 带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图2-1(a)。 折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图2-1(b)

大模场光子晶体光纤设计

第24卷第3期Vo l.24,No.3滨州学院学报Journal of Binzho u University 2008年6月Jun.,2008 大模场光子晶体光纤设计 收稿日期:2008-01-04第一作者简介:薛 华(1976 ),女,山东惠民人,讲师,在读硕士,主要从事无线电物理研究. 薛 华,韩春艳 (滨州学院物理与电子科学系,山东滨州256603) 摘 要:全内反射型光子晶体光纤纤具有为高折射率,包层为石英-空气周期结构,光通过高折射率纤芯与低平均折射率包层间的全内反射向前传播.包层的周期结构要求也不严格,甚至可以无序.利用其特有的 无截止单模 特性,对大模场光子晶体光纤进行了设计. 关键词:光子晶体光纤;无截止单模;模场 中图分类号:TN 252 文献标识码:A 文章编号:1673-2618(2008)03-0079-04 PCF(Photonic Cry stal Fiber,PCF)的概念最早由ST.J.Russell 等人[1]于1992年提出,它的结构由石英棒或石英毛细管排列而成的,在中心形成缺陷,所以又被称为多孔光纤(H o ly Fiber)或微结构光纤(M icro -structured Fiber).PCF 根据其导光原理可以分为两种,一种是光子带隙光纤(Pho to nic Band Gap PCF,PBG -PCF),另一种是改进的全内反射PCF(T otal Internal Reflection PCF,TIR -PCF),也称作折射率引导PCF(Index Guiding PCF ).T IR -PCF 与传统光纤的差别在于包层具有与PBG -PCF 相似的六角形排列的空气孔,正是这种周期性结构提供了许多独特性质.由于不依赖光子带隙,包层中空气孔并不要求大直径,排列的形状与周期性要求也不严格,甚至包层中可为无序排列的空气孔,同样可以实现相同的导光特性.比较两种PCF,全内反射PCF 无论在理解或是制作上都更为简单,因为它可沿用经典的全内反射理解导光机制,而且不需要精确的空气孔排列,更适合于制作,故在目前大多数的研究和应用都是针对全内反射型PCF [2]. 1 无截止单模(Endlessly single mode)特性 这是T IR -PCF 的一个重要的特性.对于标准的阶跃型单模光纤,其归一化频率V 由下式决定 [3]:V =(2 / )(n 2c o -n 2cl )1/2,(1) 式中n co 和n c l 分别为光纤纤芯和包层材料的折射率, 为纤芯半径, 为光波长.归一化频率V 决定了模式数目,当V <2.405时,光纤才是单模的.对应于V =2.405的波长就称为传统光纤的截止波长,只有当工作波长大于此截止波长时光波才能在光纤中实现单模传输.而PCF 不存在截止波长,用有效折射率模型[4]可以较好地解释这一现象.类似于传统光纤的归一化频率,在PCF 中,亦可定义一个等效的归一化频率为[5]: V ef f =(2 / )(n 2co -n 2ef f )1/2,(2) 其中n c o 和n ef f 分别为PCF 芯层和包层的等效折射率, 为芯层半径.PCF 包层的等效折射率n e f f 可以根据包层晶胞的等效数学模型解出.它是光辐射波长的函数,当波长减小时,光束截面随之收缩,光波模式分布向纤芯集中,因此n ef f 增大,从而n co 和n e f f 的差减小,这就抵消了波长减小的趋势,使V ef f 趋于定值,从而满足了单模传输条件.理论计算及实验证明:只要满足空气孔径与孔间距之比小于0.2,[6]PCF 就具有无截止单模特性.更重要的是,PCF 的无截止单模特性与光纤结构的绝对尺寸无关,只取决于光纤的相对尺

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

第2章 光子晶体及光子晶体滤波器的理论基础

第2章 光子晶体及光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:  =0,- E 2m + 2??? ??ψ????? ????? ????? ???→→t V r r

其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 2.1.2光子能带理论 错误!未找到引用源。 由电子的能带理论知道,当把电子的运动近似地 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2) 禁带 波矢

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

光纤激光器的分类

光纤激光器的分类 光纤激光器种类很多,根据其激射机理、器件结构和输出激光特性的不同可以有多种不同的分类方式。根据目前光纤激光器技术的发展情况,其分类方式和相应的激光器类型主要有以下几种: (1)按增益介质分类为: a)晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:YAG单晶光纤激光器等。 b)非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 c)稀土类掺杂光纤激光器。向光纤中掺杂稀土类元素离子使之激活,(Nd3+、Er3+、Yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)而制成光纤激光器。 d)塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。 (2)按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔、DBR光纤激光器、DFB光纤激光器等。 (3)按光纤结构分类为单包层光纤激光器、双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。 (4)按输出激光特性分类为连续光纤激光器和脉冲光纤激光器,其中脉冲光纤激光器根据其脉冲形成原理又可分为调Q光纤激光器(脉冲宽度为ns量级)和锁模光纤激光器(脉冲宽度为ps或fs量级)。 (5)根据激光输出波长数目可分为单波长光纤激光器和多波长光纤激光器。 (6)根据激光输出波长的可调谐特性分为可调谐单波长激光器,可调谐多波长激光器。 (7)按激光输出波长的波段分类为S-波段(1460~1530 nm)、C-波段(1530~1565 nm)、L-波段(1565~1610 nm)。 (8)按照是否锁模,可以分为:连续光激光器和锁模激光器。通常的多波长激光器属于连续光激光器。 按照锁模器件而言,可以分为被动锁模激光器和主动锁模激光器。 其中被动锁模激光器又有: 等效/假饱和吸收体:非线性旋转锁模激光器(8字型,NOLM和NPR) 真饱和吸收体: SESAM或者纳米材料(碳纳米管或者石墨烯)。

光子晶体光纤设计与分析

光子晶体光纤设计与分析 摘要:光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。光子晶体光纤(以下简称PCF)是一种新型光波导,具有与普通光纤截然不同的特性。这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。由于横向折射率分布有很大的自由度,所以折射率波导型PCF可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。关键词:PCF原理结构分析制备特性应用 正文: 一.PCF的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 1.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种 同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故[3]。 1.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。虽然在空芯PCF中不能发生全内反射,包层中的小孔点阵结构起到反射镜的作用,使光在许多小孔的空气和石英玻璃界面多次发生反射。 二.PCF的结构与制作 PCF的结构一般是在石英光纤中沿径向有规律地排列着许多空气孔道,这些微小的孔道沿光纤轴线平行排列。根据其结构类型可以分为实心光纤和空心光纤。实心光纤是纤芯为石英玻璃、包层为石英玻璃中分布许多空气孔道和石英玻璃壁的组合体。空心光纤的纤芯为一条直径较大的空气孔道,包层与实心光纤类似。通过设计这些空气孔的位置、大小、间距及占空比等波长量级的特征参数,对某以波段形成带隙,从而对这一波段的光传播是实现控制。 光子晶体的制作都要经过拉伸、堆积和熔合等过程,如Knight J C等的制作方法: (1)取一根直径为30mm的石英棒,沿其轴线方向上钻一条直径为16mm的孔,随后将石英棒研磨成一个正六棱柱; (2)把该石英棒放在2000℃的光纤拉丝塔中,将它拉成直径为0.8mm的细长正六棱柱丝; (3)把正六棱柱丝切成适当长度的若干段,然后堆积成需要的晶体结构,再把它们放到拉丝塔中熔合、拉伸,使内部空气孔的间距减小到50Λm左右,形成更细的石英丝; (4)在以上工作的基础上,把上述石英丝高温拉伸,形成最后的PCF。在以上3个阶段的拉伸过程中,晶胞减少了104数量级以上,最后形成的光子晶体的孔间距在2Λm左右。PCF 沿着石英丝的轴向均匀排列着空气孔,从PCF 的横切面看,存在着周期性的二维结构。如果核心处引入一个多余的空气孔,或者在应该出现空气孔的地方由均匀硅代替,从而在光子晶体中引入一

特种光纤技术及其发展趋势

特种光纤技术及其发展趋势 摘要:本文首先回顾了我国民族光纤产业的巨大进步与突破,进而引出激烈竞争情况下的特种光纤年差异化发展策略。着重讲述了我国特种光纤研究进展,包括前沿的光子晶体光纤技术、色散补偿光纤技术、保偏光纤、掺稀土光纤、能量传输光纤等。最后结合国家科技发展计划,阐述了特种光纤的发展趋势。 关键词:光纤通信、光纤、预制棒、光子晶体光纤、特种光纤 一、引言 “十一五”期间,在国家有关部门和各级政府的重点支持下,特别是国家科技部在“十一五”国家科技攻关和“863”光电子新材料研究计划中,安排了光纤预制棒科技支撑计划项目,国内光纤企业积极迎接挑战、踊跃投入,各相关行业协会大力促进,加快了具有自主知识产权的光纤预制棒新技术、新工艺和新材料的开发步伐。在国家自主创新政策的引领下,民族光纤的自主创新研究显著增强,我国的预制棒技术取得了突破性进展,光纤预制棒制造技术与设备研究及产业化等方面均实现了跨越式发展:制造工艺从MCVD与PCVD,发展到OVD与VAD技术,光棒制造能力从2家发展到4家,国内光纤制造商的单模光纤年生产能力突破1000万芯公里的企业迅猛增加到4家,我国已经发展称为名符其实的光纤制造第一大国。 虽然,我国常规单模产能实现了历史性跨越与进步。但是,在经济全球化的今天,常规单模光纤的竞争日趋白热化。加之发达国家将制造业向中国转移,这种现实的环境更是加速了民族光纤产业的竞争,价格迅速下滑,产能将再度出现供大于求的窘境。 因此,民族光纤产业一方面要更一步增强自主创新,狠抓光纤上游核心—-光纤预制棒规模化技术,抢夺利润来源主体;另一方面,民族光纤企业家需要站在全球化市场的战略高度,苦练内功,强化管理,将民族光纤产业走出国门,推向全球市场;第三,面对利润微薄的常规光纤市场实际,要创造性地展开差异化竞争,自主创新地研究与开发特种光纤新产品,拓展新的利润增长点。 二、光子晶体光纤 烽火通信科技股份有限公司在十一五国家重点基础研究发展计划973项目“微结构光纤结构设计及制备工艺的创新与基础研究”(2003CB314905)、高新技术产业化项目“863”计划“光子晶体光纤及器件的研制与开发”(2007AA03Z447)、973计划项目“微结构光纤的创新设计、精确制备及其标准化”(2010CB327606)的支撑下,从微结构光纤设计、制备技术和应用技术等多方面进行了系统深入的研究,取得了重大的科研成果。烽火通信已经初步形成了微结构光纤(光子晶体光纤)的工艺技术与设备控制技术,以及自主知识产权的专利技术,先后制造出如图1~图6所示的光子晶体光纤,包括:高非线性光子晶体光纤、色散平坦光子晶体光纤、FTTH用微结构光纤、大模场单模光子晶体光纤、空心PBG型光子晶体光纤、全固态PBG型光子晶体光纤,以及双包层掺镱光子晶体光纤、掺铒光子晶体光纤等。

光纤激光器研究进展

收稿日期:2008-10-13. 动态综述 光纤激光器研究进展 申人升,张玉书,杜国同 (大连理工大学物理与光电工程学院,辽宁大连116023) 摘 要: 光纤激光器具有寿命长,模式好,体积小,免冷却等一系列其他激光器无法比拟的优点,近年来受到了来自电子信息、工业加工和国防科技等研究开发领域的高度关注。文章概述了光纤激光器典型的工作原理,阐述了其当前主要研究方向以及国内外研究现状,最后提出了光纤激光器产业化的趋势。 关键词: 光纤;光纤激光器;光子晶体光纤;超短脉冲 中图分类号:TN248 文献标识码:A 文章编号:1001-5868(2009)01-0001-05 Latest Development of Fiber Lasers SH EN Ren -sheng ,ZH ANG Yu -shu,DU Guo -tong (School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,C HN) Abstract: Fiber lasers ow n lots of advantages co mpared w ith other lasers,including lo ng life,goo d mode,compactness,etc.Recently,fiber lasers have received increasing ly intensive attention in the applications o f electro nic inform ation,industr y processing and national defense technolog y.T he ty pical principle o f fiber laser is explained and resear ch progr esses about fiber lasers are review ed.Furthermore,the future developm ental trends fo r laser fiber are discussed. Key words: fiber;fiber lasers;photonic crystal fiber;ultrashort pulse 0 引言 光纤激光器诞生于20世纪60年代初,它是伴随着光纤通信技术、光纤制造工艺以及与激光器生产技术的日趋成熟而迅猛发展起来的新型器件。由于其在高速率、密集波分复用(DWDM )通信系统、高精度传感技术和大功率激光加工等方面呈现出潜在的技术优势和广阔的应用前景,所以备受世界各国科研工作者的青睐,现已成为国际学术界的热门研究对象。 光纤激光器与其他类型激光器相比较,其优点为:(1)泵浦功率低、增益高、输出光束质量好;(2)与其他光纤器件兼容,可实现全光纤传输系统;(3)使用光纤作为基体,其结构具有较高的比表面积,因而散热好;(4)体积小,携带方便;(5)光纤激光器可以作为光孤子源,实现光孤子通信。 1 原理与分类 1.1 基本工作原理 图1 所示为典型光纤激光器的基本结构。 图1 光纤激光器基本结构 典型光纤激光器主要由三部分组成:产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激发增益介质的泵浦源。其中,增益介质为掺杂稀土离子的纤芯。 当泵浦光从反射镜1(或光栅1)入射到掺杂光纤芯中时,会被所掺杂的稀土离子吸收。吸收了光子能量的稀土离子会发生能级跃迁,实现/粒子数反 # 1#

光子晶体光纤简介及原理

光子晶体光纤简介及原理 中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。光子晶体光纤有很多奇特的性质。例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。 中文关键字:光子晶体光纤 PCF导光机理 PCF的特性 英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications. 英文关键字: photonic-crystal fiber 光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其 概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的 结构材料。 光子晶体的发现,可以说是光和电磁波传播与控制技术方面的一次革命。与电 子晶体不同,光子晶体是折射率周期性变化产生光子能带和能隙,频率(波长、能量)处在禁带范围内的光子禁止在光子晶体中传播。当在光子晶体中引入缺陷使其 周期性结构遭到破坏时,光子能隙就形成了具有一定频率宽度的缺陷区。我们知道,现代信息技术爆炸之发端是人类能以极为精巧复杂的方法控制半导体中电子流的能力,光子晶体则可以让人们同样地控制光子,甚至控制得更为灵活多样。可以预见,

光子晶体毕业论文

引言 光子晶体光纤(PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域,因而成为目前国际上研究的热点。在光纤激光器这一领域,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特优越特性、导光原理及对光子带隙导光型光子晶体光纤的结构设计,介绍了PCF的发展以及优化设计。

第一章光子晶体光纤概述 §1.1光子带隙型光子晶体光纤的理论进展 上个世纪,随着科学技术的不断发展,电子技术几乎进入了人们生活的各个方面,人们对大规模集成电路的微型化、高效化和稳定性提出了更多、更高、更新的要求,而传统的电子技术不能满足高端前沿的发展需要。因此,人们把目光投向于光子技术,希望可以用光子取代电子来获取、传输、存储和处理信息。光子与电子相比有许多优点,光子具有极快的响应能力、极强的互连能力、极大的存储能力和极高的信息容量,但是光子不能和电子一样随意控制,这使得光通信、光器件的研究和应用难以取得进步。科学家们正努力寻找一种新型光学材料使光子能被有效控制,结果光子晶体迅速成为研究焦点。 1987年,E.Yablonovitch[1]研究在固体物理和电子学中抑制自发辐射时,提出周期性结构中某些特定频率光的传播在一个带隙被严格禁止;几乎同时S.John讨论在特定的无序介质超晶格中光子的局域性时,指出在规则排列的超晶格中引入某种缺陷,光子有可能被局限在缺陷中而不能向其它方向传播。由此提出了光子晶体的概念,指出光子带隙和光子局域是光子晶体的重要特征。直到1989年,Yablonovitch和Gmittern首次在实验上证实了三维光子带隙的存在,并指出当两种材料的折射率比足够大时,才能得到完全光子禁带,这一论断后来被广泛应用到实践中,成为得到光子禁带的重要条件。此后物理界才开始大举投入这方面的理论研究和实际应用,它完全不同于传统利用全反射理论来引导光传输,而是利用光子禁带,这样给光通讯领域带来了新的生机和活力。1999年国际权威杂志(Science)在预计所有学科研究趋势时,将光子晶体方面的研究列为未来的六大研究热点之一。 1992年,Russell提出光子晶体光纤的概:它是包层为有序排列的二维光子晶体,纤芯为破坏了包层有序排列的缺陷,光被局限在缺陷中进行传播。1996年英国的Southampton大学研制成功了世界上第一根光子晶体光纤,这项研究成果给光通信和光研究领域注入了新的活力,引起了全世界人们的普遍兴趣。接下来短短的十年间里,光子晶体光纤的研究和应用已经取得了较大的进步,并在(Science)和(Nature)杂志上多次有过相关报道,发表的论文数也是与

相关文档
最新文档